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Appendix 0 Notation and Prior Tables

Table S1 presents the notation symbols used in the main paper and their definitions. Table S2 lists
the priors for all parameters and the reasons of choosing them, where TBPJ(α, Sθ) is the TBP
prior, ICAR(τ2) is the ICAR prior, GRF(τ2, φ) is the GRF prior, and IID(τ2) is the IID prior.

Table S1: List of Notations.

Notation Definition

α precision parameter of the TBP prior
β = (β1, . . . , βp)

′ p-vector of regression coefficients for survival models
β0 mean of the normal Np(β0,W0) prior on β

β̂ estimate of β under the parametric survival model with S0 = Sθ
δj,J(·) beta density function with parameters (j, J − 1 + 1)
∆j,J(·) beta cumulative distribution function with parameters (j, J − 1 + 1)
γ = (γ1, . . . , γp)

′ latent binary variable with γ` = 1 indicating the presence of the `th
covariate, ` = 1, . . . , p

Γ(a, b) gamma distribution with shape parameter a and rate parameter b
θ = (θ1, θ2)

′ parameters of the centering distribution families Sθ
θ0 mean of the normal N2(θ0,V0) prior on θ

θ̂ estimate of θ under the parametric survival model with S0 = Sθ
ν powered exponential correlation function shape parameter, ν ∈ (0, 2]
ξ` = (ξ`1, . . . , ξ`K)′ coefficients of the cubic B-spline basis functions for the `th covariate,

` = 1, . . . , p
ρ(·, ·) correlation function; arguments are two spatial locations
ρ(·, ·;φ) correlation function indexed by the range parameter φ
κ shrinkage parameter used under the proper CAR
τ2 scale parameter under the ICAR or GRF or IID frailty prior
φ range parameter in the powered exponential correlation function
aij , bij endpoints of the interval (aij , bij) that contains the survival time tij ,

i = 1, . . . ,m, j = 1, . . . , ni
aα, bα shape and rate parameters of the Γ(aα, bα) prior on α
aτ , bτ shape and rate parameters of the Γ(aτ , bτ ) prior on τ−2
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Table S1: List of Notations.

Notation Definition

aφ, bφ shape and rate parameters of the Γ(aφ, bφ) prior on φ
A number of knots used in the FSA
B number of blocks used in the FSA
C precision matrix of the vector of frailties v = (v1, . . . , vm)′

d(·|J,wJ) density function of Bernstein polynomial
D(·|J,wJ) cdf associated with density d(·|J,wJ)
Fe m×m diagonal matrix with the i diagonal element being ei+
eij equals 1 if regions i and j share a common boundary and 0 otherwise,

i, j = 1, . . . ,m; set eii = 0
ei+ number of adjacent regions for region i, i.e. ei+ =

∑m
j=1 eij

E m×m adjacency matrix with the ijth element equal to eij
fxij (·) density function of the survival time tij given the covariate xij
f0(·) baseline density function in the survival models
g parameter in the g-prior for variable selection
G distribution of covariate vectors x with support on X ⊆ Rp
hxij (·) hazard function of the survival time tij given the covariate xij
h0(·) baseline hazard function in the survival models
Ip p× p identity matrix
I(·) the usual indicator function
J number of Bernstein polynomials used for defining d(·|J,wJ)
K number of basis functions used for modeling the nonlinear function u`(·)
L(wJ ,θ,β,v) likelihood function for (wJ ,θ,β,v)
m number of distinct spatial locations
M used to determine the g in the g-prior for variable selection
ni number of subjects within the ith spatial location, i = 1 . . . ,m
n total number of subjects in the data, i.e. n =

∑m
i=1 ni

N(a, b2) normal distribution with mean a and variable b2

Nk(µ,Σ) k-variate normal distribution with mean µ and covariance Σ
oij number of observations for the time-dependent covariate vector xij(t),

i = 1, . . . ,m, j = 1, . . . , ni
p dimension of the covariate vector xij
p(·) generic symbol for prior and posterior density functions
q used to determine the g in the g-prior for variable selection
r(tij) Cox-Snell residual equal to − log{Sxij (tij)}
R correlation matrix of v under the GRF prior
Sxij (·) survival function of the survival time tij given the covariate xij
S0(·) baseline survival function in the survival models
u`(·) nonlinear function for the `th covariate, ` = 1, . . . , p
v = (v1, . . . , vm)′ vector of frailties
V0 covariance matrix of the normal N2(θ0,V0) prior on θ

V̂ estimate of the covariance of θ̂ under the parametric survival model
wJ = (w1, . . . , wJ)′ J-vector of positive weights used in the TBP prior
W0 covariance matrix of the normal Np(β0,W0) prior on β

Ŵ estimate of the covariance of β̂ under the parametric survival model
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Table S1: List of Notations.

Notation Definition

xij p-vector of covariates for subject ij, i = 1, . . . ,m, j = 1, . . . , ni
xij` `th element of the xij , ` = 1, . . . , p
x generic symbol for p-vector of covariates
x` `th element of the x, ` = 1, . . . , p
X design matrix associated with {xij} with mean-centered columns
X` design matrix associated with u`(x`) with mean-centered columns ` =

1, . . . , p
zj equals log(wj)− log(wJ)
zJ−1 equals (z1, . . . , zJ−1)

′

Table S2: List of priors.

Parameter Prior Justification

S0(·) TBP(α, Sθ) Selects smooth densities and can be centered at a standard para-
metric family: one of log-logistic, log-normal, and Weibull.

α Γ(aα, bα) α > 0 acts like the precision in a Dirichlet process controlling how
stochastically pliable S0 is close to Sθ. A gamma prior has been
widely used for Dirichlet processes. Defaults: aα = bα = 1.

β Np(β0,W0) Gaussian is common for regression effects. Defaults: β0 = 0,
W0 = 1010Ip or W0 = gn(X′X)−1 when the SSVS is performed.

θ N2(θ0,V0) Centering distribution Sθ is parameterized so that θ is defined
on R2, so a Gaussian prior is appropriate. Defaults: θ0 = θ̂,
V0 = 10V̂. Note here we assume a somewhat informative prior
on θ to obviate confounding between θ and wJ .

v ICAR(τ2) When clusters are formed by spatial regions and spatial smoothing
is of interest, the ICAR prior is commonly used for modeling the
frailties in survival models.

v GRF(τ2, φ) Very common prior for georeferenced data.
v IID(τ2) When spatial dependence among clusters is not of interest, the

IID Gaussian frailties are commonly assumed.
τ−2 Γ(aτ , bτ ) The gamma distribution is a conjugate prior on τ−2. Defaults:

aτ = bτ = 0.001.
φ Γ(aφ, bφ) The range parameter φ is positive and the gamma prior is a natural

choice. Defaults: aφ = 2 and bφ = (aφ − 1)/φ0 so that the prior
of φ has mode at φ0, where φ0 satisfies ρ(s′, s′′;φ0) = 0.001 with
‖s′, s′′‖= maxi,j‖si − sj‖.

γ

p∏
`=1

Bern(q`) Commonly used for Bayesian variable selection (e.g. Kuo and
Mallick, 1998). Defaults: q` = 0.5, ` = 1, . . . , p.

ξ` NK(0,Sξ) Here Sξ = gn(X′`X`)
−1 was chosen following the idea of informa-

tive g-prior introduced Appendix E.
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Appendix A MCMC Sampling

The joint posterior distribution for all parameters is given by

L(β,θ,wJ , α,v, τ
2, φ) ∝ L(wJ ,θ,β,v)

× exp

{
−1

2
(β − β0)

′W−1
0 (β − β0)

}
× exp

{
−1

2
(θ − θ0)

′V−10 (θ − θ0)

}
× Γ(αJ)

Γ(α)J

J∏
j=1

(wj)
α−1 × αaα−1 exp{−bαα}

×
(
τ−2

) rank(C)
2 exp

{
− 1

2τ2
v′Cv

}
×
(
τ−2

)aτ−1
exp

{
−bττ−2

}
× p(φ)|C|1/2

(A.1)

For the GRF prior, C = R−1 and p(φ) = φaφ−1 exp {−bφφ}. The ICAR prior does not need
p(φ)|C|1/2, and C = Fe − E, where Fe is an m ×m diagonal matrix with Fe[i, i] = ei+. For the
IID prior, p(φ)|C|1/2 is also not needed and C = Im is an identity matrix.

Note that when wj = 1/J the underlying parametric model with S0(t) = Sθ(t) is obtained, so
a fit from a standard parametric survival model can provide starting values for the TBP survival
model. Let θ̂ and β̂ denote the parametric point estimates of θ and β, and let V̂ and Ŵ denote their
asymptotic covariance matrices, respectively. These estimates can be easily obtained by running
the proposed MCMC below with wj ≡ 1/J and relatively vague priors on (θ,β).

Step 1: Update wJ .
Set zJ−1 = (z1, . . . , zJ−1)

′ with zj = log(wj) − log(wJ). The full conditional distribution for zJ−1
is

p(zJ−1|else) ∝ L(wJ ,θ,β,v)×
J∏
j=1

[
ezj∑J
k=1 e

zj

]α
,

where zJ = 0. The vector zJ−1 can be updated using adaptive Metropolis samplers (Haario et al.,

2001). Suppose we are currently in iteration l and have sampled the states z
(1)
J−1, . . . , z

(l−1)
J−1 . We

select an index l0 (e.g., l0 = 5000) for the length of an initial period and define

Σl =

{
Σ0, l ≤ l0
(2.4)2

d (Cl + 10−10Id) l > l0.

Here Cl is the sample variance of z
(1)
J−1, . . . , z

(l−1)
J−1 , d = J − 1 is the dimension of zJ−1, and Σ0 is an

initial diagonal covariance matrix of z, defined so that the variance of zj is 0.16. The choice of 0.16
is based on extensive simulation studies; other choices (as long as it is not too small or large) will

have little impact on posterior inferences. We generate z∗J−1 = (z∗1 , . . . , z
∗
J−1)

′ from NJ−1(z
(l−1)
J−1 ,Σl)

and accept it with probability

min

{
1,
p(z∗J−1|else)

p(z
(l−1)
J−1 |else)

}
.
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Step 2: Update θ.
The full conditional distribution for θ is

p(θ|else) ∝ L(wJ ,θ,β,v)× exp

{
−1

2
(θ − θ0)

′V−10 (θ − θ0)

}
.

The centering distribution parameters θ are updated via adaptive Metropolis samplers. At iteration
l, each candidate is sampled as θ∗ ∼ N2(θ

(l−1),Σl) and accepted with probability

min

{
1,

p(θ∗|else)

p(θ(l−1)|else)

}
.

where Σl is defined similarly as above, but with Σ0 set to be V̂.

Step 3: Update β.
The full conditional distribution for β is

p(θ|else) ∝ L(wJ ,θ,β,v)× exp

{
−1

2
(β − β0)

′W−1
0 (β − β0)

}
.

The survival model coefficients β are updated via adaptive Metropolis samplers as well with pro-
posal β∗ ∼ Np(β

(l−1),Σl) and acceptance probability

min

{
1,

p(β∗|else)

p(β(l−1)|else)

}
.

where Σl is defined similarly as above with Σ0 = Ŵ.

Step 4: Update α.
The full conditional distribution for α is

p(α|else) ∝ Γ(αJ)

Γ(α)J

J∏
j=1

(wj)
α−1 × αaα−1 exp{−bαα}.

The precision parameter α is updated via adaptive Metropolis samplers with normal proposal
α∗ ∼ N1(α

(l−1),Σl) with Σl is defined similarly as above with Σ0 = 0.16, and the acceptance
probability is

min

{
1,

p(α∗|else)

p(α(l−1)|else)

}
.

Step 5: Update v.
Let L(wJ ,θ,β,v) =

∏m
i=1

∏ni
j=1 Lij(wJ ,θ,β,v). For the ICAR prior, the full conditional distribu-

tion for vi, i = 1, . . . ,m, is

p(vi|else) ∝
ni∏
j=1

Lij(wJ ,θ,β,v) exp

− ei+2τ2

vi − m∑
j=1

eijvj/ei+

2 .

The vj is updated via Metropolis-Hastings sampling steps with proposal v∗j ∼ N(v
(l−1)
j , τ2/ej+).

The candidate v∗j is accepted with probability

min

{
1,

p(v∗j |else)

p(v
(l−1)
j |else)

}
.
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After each individual frailty update, the vector of v is updated to have sample mean zero through
v ← v − 1

m1′mv. Although ad hoc, this approach to enforcing the sum-to-zero constraint on
v1, . . . , vm has negligible effect on the posterior and has been advocated by many authors, e.g.
Banerjee et al. (2014) and Lang and Brezger (2004).

For the IID prior, the full conditional distribution for vi, i = 1, . . . ,m, is

p(vi|else) ∝
ni∏
j=1

Lij(wJ ,θ,β,v) exp

{
− 1

2τ2
v2i

}
.

The vj is updated via Metropolis-Hastings sampling steps with proposal v∗j ∼ N(v
(l−1)
j , τ2). The

candidate v∗j is accepted with probability

min

{
1,

p(v∗j |else)

p(v
(l−1)
j |else)

}
.

For the GRF prior, the full conditional distribution for vi, i = 1, . . . ,m, is

p(vi|else) ∝
ni∏
j=1

Lij(wJ ,θ,β,v) exp

− pii
2τ2

vi +
∑
{j:j 6=i}

pijvj/pii

2 ,

where pij is the (i, j) element of R−1. The vj is updated via Metropolis-Hastings sampling steps

with proposal v∗j ∼ N(v
(l−1)
j , τ2/pii). The candidate v∗j is accepted with probability

min

{
1,

p(v∗j |else)

p(v
(l−1)
j |else)

}
.

Step 6: Update τ2.
The full conditional distribution for τ−2 is

p(τ−2|else) ∝
(
τ−2

)aτ+ rank(C)
2
−1

exp

{
−
[
bτ +

1

2
v′Cv

]
τ−2

}
.

Thus τ−2 is sampled from Γ(a∗τ , b
∗
τ ), where a∗τ = aτ + rank(C)

2 − 1 and b∗τ = bτ + 1
2v′Cv.

Step 7: Update φ for georeferenced data.
The full conditional distribution for φ is

p(φ|else) ∝ |R|−1/2exp

{
− 1

2τ2
v′R−1v

}
φaτ−1 exp {−bφφ}

The range parameter φ is updated via adaptive Metropolis samplers with normal proposal φ∗ ∼
N1(φ

(l−1),Σl) with Σl is defined similarly as above with Σ0 = 0.16, and the acceptance probability
is

min

{
1,

p(φ∗|else)

p(φ(l−1)|else)

}
.

Step 8: Update γ when variable selection is performed.
When variable selection is performed, all βs in steps 1-7 need to be replaced by γ � β, where �
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denotes componentwise multiplication. Then each γj is generated from its full conditional, i.e. a
Bernoulli distribution with the success probability

qj
qj + (1− qj)L(wJ ,θ,γj0 � β,v)/L(wJ ,θ,γj1 � β,v)

,

where the vector γj0 (γj1) is obtained from γ with the jth element replaced by 0 (1).

Appendix B The Full Scale Approximation

For georeferenced data, a computational bottleneck of the MCMC sampling scheme is inverting
the m×m matrix R, which typically has computational cost O(m3). In this section, we introduce
a full scale approximation (FSA) approach proposed by Sang and Huang (2012), which provides
a high quality approximation to the correlation function ρ at both the large and the small spatial
scales, such that the inverse of R can be substantially sped up for large value of m, e.g., m ≥ 500.

Consider a fixed set of “knots” S∗ = {s∗1, . . . , s∗A} chosen from the study region. These knots
can be chosen using the function cover.design within the R package fields, which computes
space-filling coverage designs using the swapping algorithm (Johnson et al., 1990). Let ρ(s, s′)
be the correlation between locations s and s′. The FSA approach approximates the correlation
function ρ(s, s′) with

ρ†(s, s′) = ρl(s, s
′) + ρs(s, s

′). (B.2)

The ρl(s, s
′) in (B.2) is the reduced-rank part capturing the long-scale spatial dependence, defined

as ρl(s, s
′) = ρ′(s,S∗)ρ−1AA(S∗,S∗)ρ(s′,S∗), where ρ(s,S∗) = [ρ(s, s∗i )]

A
i=1 is an A × 1 vector, and

ρAA(S∗,S∗) = [ρ(s∗i , s
∗
j )]

A
i,j=1 is an A×A correlation matrix at knots S∗. However, ρl(s, s

′) cannot
well capture the short-scale dependence due to the fact that it discards entirely the residual part
ρ(s, s′)− ρl(s, s′). The idea of FSA is to add a small-scale part ρs(s, s

′) as a sparse approximate of
the residual part, defined by ρs(s, s

′) = {ρ(s, s′)− ρl(s, s′)}∆(s, s′), where ∆(s, s′) is a modulating
function, which is specified so that the ρs(s, s

′) can well capture the local residual spatial dependence
while still permits efficient computations. Motivated by Konomi et al. (2014), we first partition the
total input space into B disjoint blocks, and then specify ∆(s, s′) in a way such that the residuals
are independent across input blocks, but the original residual dependence structure within each
block is retained. Specifically, the function ∆(s, s′) is taken to be 1 if s and s′ belong to the same
block and 0 otherwise. The approximated correlation function ρ†(s, s′) in (B.2) provides an exact
recovery of the true correlation within each block, and the approximation errors are ρ(s, s′)−ρl(s, s′)
for locations s and s′ in different blocks. Those errors are expected to be small for most entries
because most of these location pairs are farther apart. To determine the blocks, we first use the R
function cover.design to choose B ≤ m locations among the m locations forming B blocks, then
assign each si to the block that is closest to si. Here B does not need to be equal to A. When
B = 1, no approximation is applied to the correlation ρ. When B = m, it reduces to the approach
of Finley et al. (2009), so the local residual spatial dependence may not be well captured.

Applying the above FSA approach to approximate the correlation function ρ(s, s′), we can
approximate the correlation matrix R with

ρ†mm = ρl + ρs = ρmAρ
−1
AAρ

′
mA +

(
ρmm − ρmAρ

−1
AAρ

′
mA

)
◦∆, (B.3)

where ρmA = [ρ(si, s
∗
j )]i=1:m,j=1:A, ρAA = [ρ(s∗i , s

∗
j )]

A
i,j=1, and ∆ = [∆(si, sj)]

m
i,j=1. Here, the

notation “◦” represents the element-wise matrix multiplication. To avoid numerical instability, we



8

add a small nugget effect ε = 10−10 when define R, that is, R = (1− ε)ρmm + εIm. It follows from
equation (B.3) that R can be approximated by

R† = (1− ε)ρ†mm + εIm = (1− ε)ρmAρ−1AAρ
′
mA + Rs,

where Rs = (1− ε)
(
ρmm − ρmAρ

−1
AAρ

′
mA

)
◦∆ + εIm. Applying the Sherman-Woodbury-Morrison

formula for inverse matrices, we can approximate R−1 by(
R†
)−1

= R−1s − (1− ε)R−1s ρmA
[
ρAA + (1− ε)ρ′mAR−1s ρmA

]−1
ρ′mAR−1s . (B.4)

In addition, the determinant of R can be approximated by

det
(
R†
)

= det
{
ρAA + (1− ε)ρ′mAR−1s ρmA

}
det(ρAA)−1 det(Rs). (B.5)

Since the m ×m matrix Rs is a block matrix, the right-hand sides of equations (B.4) and (B.5)
involve only inverses and determinants of A × A low-rank matrices and m × m block diagonal
matrices. Thus the computational complexity can be greatly reduced relative to the expensive
computational cost of using original correlation function for large value of m.

Appendix C The DIC and LPML Criteria

To set notation, denote by D the observed dataset, by Di the ith data point, and by D−i the
dataset with Di removed, i = 1, . . . , n. Let Ω denote the entire collection of model parameters
under a particular model, L(D|Ω) be the likelihood function based on observed data D, and Li(·|Ω)
be the likelihood contribution based on Di. Suppose {Ω(1), . . . ,Ω(L)} are random draws from the
full posterior ppost(Ω|D). Let Ω̂ =

∑L
l=1 Ω(l)/L be the posterior mean estimate for Ω.

The DIC, a generalization of the Akaike information criterion (AIC), is commonly used for com-
paring complex hierarchical models for which the asymptotic justification of AIC is not appropriate.
The DIC is defined as

DIC = −2 logL(D|Ω̂) + 2pD, (C.6)

where

pD = 2

(
logL(D|Ω̂)− 1

L

L∑
l=1

logL(D|Ω(l))

)
is referred to as the effective number of parameters measuring the model complexity. Similar to
AIC, a smaller value of DIC indicates a better fit model.

The definition of LPML is based on the conditional predictive ordinate (CPO) statistic. The
CPO for data point Di is given by

CPOi = f(Di|D−i) =

∫
Li(Di|Ω)ppost(Ω|D−i)dΩ,

where ppost(·|D−i) is the posterior density of Ω give D−i. Let CPOi,1 and CPOi,2 denote the CPO
for the ith data point under models 1 and 2, respectively. The ratio CPOi,1/CPOi,2 measures how
well model 1 supports the data point Di relative to model 2, based on the remaining data D−i. The
product of the CPO ratios gives an overall aggregate summary of how well supported the data are
by model 1 relative to model 2 and is called the pseudo Bayes factor (PBF),

B12 =
n∏
i=1

CPOi,1

CPOi,2
.



9

It is well known that Bayes factors (Kass and Raftery, 1995; Han and Carlin, 2001) are usually
difficult to obtain in practice. The PBF is a surrogate for the more traditional Bayes factor and can
be interpreted similarly, but is more analytically tractable, much less sensitive to prior assumptions,
and does not suffer from Lindley’s paradox.

As noted by Gelfand and Dey (1994), one can use importance sampling to estimate CPOi by{
1

L

L∑
l=1

1

Li(Di|Ω(l))

}−1
.

However, these estimates may be unstable since the weights ωi,l = 1/Li(Di|Ω(l)) can have infinite
variance (Epifani et al., 2008), depending on the tail behavior of ppost(Ω|D−i) relative to Li(Di|Ω)
as a function of Ω. To stabilize the weights, Vehtari and Gelman (2014) suggest replacing ωi,l with

ω̃i,l = min{ωi,l,
√
Lω̄i}, where ω̄i =

∑L
l=1 ωi,l/L. Therefore, the stabilized estimate of the CPO

statistic is

ĈPOi =

∑L
l=1 Li(Di|Ω(l))ω̃i,l∑L

l=1 ω̃i,l
.

Finally, the LPML is defined as

LPML =

n∑
i=1

log ĈPOi. (C.7)

A further improved estimate was recently proposed by Vehtari et al. (2017) using Pareto-smoothed
importance sampling; this version will be implemented in later versions of the R package.

The LPML can be viewed as a predictive measure that generalizes leave-one-out cross-validated
prediction error to more heavily penalize “bad predictions.” Consider the frequentist LPML pro-

posed by Geisser and Eddy (1979) for normal-errors regression data. Let yi
ind.∼ N(x′iβ, σ

2); then

CPOi =
1√

2πσ̂i
exp

{
−(yi − x′iβ̂i)

2

2σ̂2i

}
,

where (β̂i, σ̂i) is the MLE of (β, σ) leaving out (xi, yi). Then

−LPML =

n∑
i=1

1

2σ̂i
(yi − ŷ−i)2︸ ︷︷ ︸

squared bias

+

n∑
i=1

log σ̂i︸ ︷︷ ︸
variance

+ constant.

This generalizes to any location-scale family, e.g. parametric survival models log ti = x′iβ + εi,
where εi has a scaled standard extreme value distribution, scaled log-logistic distribution, or scaled
normal distribution yielding common Weibull, log-logistic, and log-normal regression models. Note
that unlike the usual predicted residual error sum of squares (PRESS) statistic the bias terms are
weighted by the variability of the prediction: “bad” predictions with less variability (more precision)
provide much more discrepancy than “bad” predictions with large variability. Having both bias
and variance pieces, the LPML is of similar form to the L-measure (Ibrahim et al., 2001), but more
naturally generalizes to survival data; note that Ibrahim et al. (2001) advocating taking the log of
the survival time and require a different L-measure for each family of distributions.

A Bayesian might view the frequentist CPOi using the MLE above as overoptimistic. The
MLE is the posterior mode under a flat prior and sampling variability is not taken into account.
Instead, one might want to average the CPOi statistic over the (perhaps asymptotic) estimated
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sampling distribution of Ωi, e.g. Ωi
•∼ N(Ω̂i,Vi). Equivalently, and more precisely, the Bayesian

approach averages the predictive density for a new observation with covariates xi over the leave-i-
out posterior [Ω|D−i]. Thus the Bayesian LPML used here can be viewed as a measure similar to
PRESS or prediction error, but a properly pessimistic one that averages over the (non-asymptotic)
sampling distribution of the parameters. The more sampling variability there is (reflecting smaller
sampler sizes n), the more heavily each CPOi is penalized.

In addition to DIC and LPML, the Watanabe-Akaike information criterion (WAIC) (Watanabe,
2010) has also gained popularity in recent years due to its stability compared to DIC (Gelman et al.,
2014; Vehtari and Gelman, 2014). The WAIC is defined as

WAIC = −2
n∑
i=1

log

(
1

L

L∑
l=1

Li(Di|Ω(l))

)
+ 2pW , (C.8)

where

pW =
n∑
i=1

 1

L − 1

L∑
l=1

{
logLi(Di|Ω(l))− 1

L

L∑
k=1

logLi(Di|Ω(k))

}2


is the effective number of parameters. A smaller value of WAIC indicates a better predictive model.
WAIC can be viewed as an approximation to −2

∑n
i=1 log CPOi (Gelman et al., 2014), so WAIC

is also used to compare models’ predictive performance. The WAIC has been implemented in the
function survregbayes and saved in its returned object.

Appendix D Parametric vs. Nonparametric S0(·)
Many authors have found parametric models to fit as well or better than competing semiparametric
models (Cox and Oakes, 1984, p. 123; Nardi and Schemper, 2003). Here, testing for the adequacy of
the simpler underlying parametric model is developed. The proposed semiparametric models have
their baseline survival functions centered at a parametric family Sθ(t). Note that zJ−1 = 0 implies
S0(t) = Sθ(t). Therefore, testing H0 : zJ−1 = 0 versus H1 : zJ−1 6= 0 leads to the comparison of
the semiparametric model with the underlying parametric model. Let BF10 be the Bayes factor
between H1 and H0. Zhou et al. (2017) proposed to estimate BF10 by a large-sample approximation
to the generalized Savage-Dickey density ratio (Verdinelli and Wasserman, 1995). Adapting their
approach BF10 is estimated

B̂F 10 =
p(0|α̂)

NJ−1(0; m̂, Σ̂)
, (D.9)

where p(0|α) = Γ(αJ)/[JαΓ(α)]J is the prior density of zJ−1 evaluated at zJ−1 = 0, α̂ is the
posterior mean of α, Np(·; m,Σ) denotes a p-variable normal density with mean m and covariance

Σ, and m̂ and Σ̂ are posterior mean and covariance of zJ−1.

Appendix E Variable Selection

There is a large amount of literature on Bayesian variable selection methods; see O’Hara and
Sillanpää (2009) for a comprehensive review. Let x = (x1, . . . , xp)

′ denote the p-vector of covariates
in general. The most direct approach is to multiply β` by a latent Bernoulli variable γ` for ` =
1, . . . , p, where γ` = 1 indicates the presence of x` in the model, and then assume an appropriate
prior on (β,γ), where γ = (γ1, . . . , γp)

′. Kuo and Mallick (1998) considered an independent prior
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p(β,γ) = Np(0,W0)×
∏p
`=1 Bern(q`), where W0 was taken as a diagonal matrix yielding a diffuse

prior on β, and q` is a prior probability of including x` in the model. The resulting MCMC
algorithm does not require any tuning, but mixing can be poor if the prior on β is too diffuse
(O’Hara and Sillanpää, 2009). The g-prior of Zellner (1983) and its various extensions (Bové et al.,
2011; Hanson et al., 2014) have been widely used for variable selection. We consider one such prior
adapted for use in the semiparametric survival models considered here. Specifically, the same prior
as Kuo and Mallick (1998) is considered, but with

β ∼ Np(0, gn(X′X)−1), (E.10)

where X is the usual design matrix, but with mean-centered covariates, i.e. 1′nX = 0′p. Assume that
the covariate vectors xij arise from a distribution G with support on X ⊆ Rp, and are independent
of β. Following Hanson et al. (2014) g is set equal to a constant based on prior information on ex

′β,
i.e. the relative risks (PH), acceleration factors (AFT), or odds factors (PO) of random subjects x
relative to their mean

∫
X xG(dx). Under the prior (E.10), Hanson et al. (2014) showed that x′β

has an approximately normal distribution with mean 0 and variance ng. Thus, a simple method of
choosing g is to pick a number M such that a random ex

′β is less than M with probability q. It
follows that g =

[
logM/Φ−1(q)

]2
/p. Here, M = 10 and q = 0.9 are fixed. The MCMC procedure

is described in supplementary Appendix A. Posterior output includes a list of sub-models with their
posterior probabilities, i.e. a ranking of models much like the best subsets Cp statistic.

This variable selection method was originally termed “stochastic search variable selection”
(SSVS) by George and McCulloch (1993) who instead of using Bernoulli point masses for each
regression effect used highly concentrated normal distributions centered at zero. This approach has
also been called “spike and slab” variable selection by many authors. A recent review and extensive
simulation study by Pavlou et al. (2016) suggests that SVSS can routinely outperform other variable
selection approaches. They found that SSVS performed overall the best across many realistic data
scenarios for variable selection among methods that also include versions of the LASSO (regular,
adaptive, and Bayesian), SCAD, and the elastic net. All methods grossly outperformed backwards
elimination; see Table 4 in Pavlou et al. (2016).

Appendix F Left-Truncation and Time-Dependent Covariates

To avoid an explosion of subscripts, drop the ij from tij , etc. The survival time t is left-truncated at
u ≥ 0 if u is the time when the subject under consideration is first observed. Left-truncation often
occurs when age is used as the time scale. Given the observed left-truncated data {(u, a, b,x, s)},
where a ≥ u, the likelihood contribution is

L = [Sx(a)− Sx(b)]I{a<b} fx(a)I{a=b}/Sx(u).

Note that the left censored data under left-truncation are of the form (u, b).
We next discuss how to extend the semiparametric AFT, PH and PO models to handle time-

dependent covariates. Let {(u, a, b,x(t), s) : u ≤ t ≤ a} be the observed data with time-dependent
covariates and possible left-truncation. Suppose we observe x(t) at o ordered times t = t1, . . . , to,
denoted as x1, . . . ,xo, respectively, where t1 = u and to ≤ a. Following Kneib (2006) and Hanson
et al. (2009), we assume that x(t) is a step function given by

x(t) =
o∑

k=1

xkI(tk ≤ t < tk+1),
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where to+1 =∞. Assuming the AFT, PH or PO holds conditionally on each interval, the survival
function at time a is

P (t > a) = P (t > a|t > to)
o−1∏
k=1

P (t > tk+1|t > tk)

=
Sxo(a)

Sxo(to)

o−1∏
k=1

Sxk(tk+1)

Sxk(tk)
.

This leads to the usual PH model for time-dependent covariates (Cox, 1972), the AFT model first
proposed by Prentice and Kalbfleisch (1979), and a particular piecewise PO model.

Returning to the use of subscripts for the ijth subject, for time-dependent covariates replace
(uij , aij , bij ,xij(t), si) by a set of new oij observations (tij,1, tij,2,∞,xij,1, si), (tij,2, tij,3,∞,xij,2, si),
. . ., (tij,oij , aij , bij ,xij,oij , si) yielding an augmented left-truncated data set of size

∑m
i=1

∑ni
j=1 oij .

Then the likelihood function becomes

L(wJ ,θ,β,v) =
m∏
i=1

ni∏
j=1

{[
Sxij,oij (aij)− Sxij,oij (bij)

]I{aij<bij}
fxij,oij (aij)

I{aij=bij}/Sxij,oij (tij,oij )

×
oij−1∏
k=1

Sxij,k(tij,k+1)

Sxij,k(tij,k)

}
.

Note that the derivations above still hold for time-dependent covariates without left-truncation (i.e.
uij = 0 for all i and j).

Appendix G Partially linear predictors

An additive PH model was first considered by Gray (1992) as

hxij (t) = h0(t) exp{x′ijβ +

p∑
`=1

u`(xij`)},

where the nonlinear functions u1(·), . . . , up(·) are modeled via penalized B-splines with the linear
portion removed. Setting some of the u`(·) ≡ 0 gives the so-called “partially linear PH model”
that has been given a great deal of attention in recent literature. This model has been extended
to spatial versions by Kneib (2006) and Hennerfeind et al. (2006) for PH and can be easily fit in
R2BayesX.

Additive partially linear predictors can be implemented in the proposed AFT, PH and PO
models by simply adding a linear basis expansion for any continuous covariate; cubic B-splines are
considered here and illustrated in Section 3.3. Specifically, u`(·) is parameterized as

u`(·) =

K∑
k=1

ξ`kB`k(·),

where {B`k(·) : k = 0, . . . ,K + 1} are the standard cubic B-spline basis functions with knots
determined by the data; the first and last basis functions have been dropped to ensure a full-rank
model (the linear term is already included). Independent normal priors are considered for β and
ξ` = (ξ`1, . . . , ξ`K)′:

β ∼ Np(0,W0), ξ` ∼ NK(0, gn(X′`X`)
−1), ` = 1, . . . , p
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where W0 = 1010Ip, X` is the design matrix for the u`(·) term, and g =
[
log 10/Φ−1(0.9)

]2
/K.

This approach can be viewed as a simplified version of the Bayesian P-splines (Lang and Brezger,
2004) with fewer basis functions and a g-prior “penalty” instead of a random-walk penalty. Note
that posterior updating could be inefficient if a large number of basis functions is considered, as
(β, ξ1, . . . , ξp) is currently updated in one large block via adaptive Metropolis. For this reason, the
full Bayesian P-spline approach may be a better choice, but requires updating high-dimensional
vectors of spline coefficient parameters, and their suggested iteratively weighted least squares pro-
posals would need to be modified to handle our survival models. We hope to include this in future
updates of the R package

Bayes factors can be used to test the linearity of xij` through the hypothesis H0 : ξ` = 0
versus H1 : ξ` 6= 0. Let BF10 be the Bayes factor between H1 and H0. We estimate BF10 by a
large-sample approximation to the Savage-Dickey density ratio (Dickey, 1971)

B̂F 10 =
NK(0; 0, gn(X′`X`)

−1)

NK(0; m̂`, Σ̂`)
, (G.11)

where m̂` and Σ̂` are posterior mean and covariance of ξ`.

Appendix H Implementation Using R

An illustrative use of the R function survregbayes in the package spBayesSurv is presented to fit
AFT, PH and PO frailty models with the TBP prior on baseline survival functions using simulated
data. We take Example 2 of the variable selection simulation (see Simulation IV below) as an
example. The following code is used to generate data:

##-------------Load libraries-------------------##

rm(list=ls())

library(coda)

library(survival)

library(spBayesSurv)

library(BayesX)

##-------------Set the true models--------------##

betaT = c(1,1,0,0,0);

## Baseline Survival

f0oft = function(t) 0.5*dlnorm(t, -1, 0.5)+0.5*dlnorm(t,1,0.5);

S0oft = function(t) 0.5*plnorm(t, -1, 0.5, lower.tail=FALSE)+

0.5*plnorm(t, 1, 0.5, lower.tail=FALSE)

## The Survival function:

Sioft = function(t,x,v=0) exp( log(S0oft(t))*exp(sum(x*betaT)+v) ) ;

Fioft = function(t,x,v=0) 1-Sioft(t,x,v);

## The inverse for Fioft

Finv = function(u, x,v=0) uniroot(function (t) Fioft(t,x,v)-u, lower=1e-100, upper=1e100,

extendInt ="yes")$root

##-------------Generate data-------------------##

## read the adjacency matrix of Nigeria for the 37 states

nigeria=read.bnd(system.file("otherdata/nigeria.bnd",

package="spBayesSurv"));

adj.mat=bnd2gra(nigeria)

W = diag(diag(adj.mat)) - as.matrix(adj.mat); m=nrow(W);

tau2T = 1;

covT = tau2T*solve(diag(rowSums(W))-W+diag(rep(1e-10, m)));
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v0 = MASS::mvrnorm(n=1, mu=rep(0,m), Sigma=covT);

v = v0-mean(v0);

mis = rep(20, m); n = sum(mis);

vn = rep(v, mis);

id = rep(1:m, mis);

## generate x

x1 = rbinom(n, 1, 0.5); x2 = rnorm(n, 0, 1);

x3 = x2+0.15*rnorm(n); x4 = rnorm(n, 0, 1); x5 = rnorm(n, 0, 1);

X = cbind(x1, x2, x3, x4, x5);

colnames(X) = c("x1", "x2", "x3", "x4", "x5");

## generate survival times

u = runif(n);

tT = rep(0, n);

for (i in 1:n){

tT[i] = Finv(u[i], X[i,], vn[i]);

}

## generate partly interval-censored data

t1=rep(NA, n);t2=rep(NA, n); delta=rep(NA, n);

n1 = floor(0.5*n); ## right-censored part

n2 = n-n1; ## interval-censored part

# right-censored part

rcen = sample(1:n, n1);

t1_r=tT[rcen];t2_r=tT[rcen];

Centime = runif(n1, 2, 6);

delta_r = (tT[rcen]<=Centime) +0 ; length(which(delta_r==0))/n1;

t1_r[which(delta_r==0)] = Centime[which(delta_r==0)];

t2_r[which(delta_r==0)] = NA;

t1[rcen]=t1_r; t2[rcen]=t2_r; delta[rcen] = delta_r;

# interval-censored part

intcen = (1:n)[-rcen];

t1_int=rep(NA, n2);t2_int=rep(NA, n2); delta_int=rep(NA, n2);

npois = rpois(n2, 2)+1;

for(i in 1:n2){

gaptime = cumsum(rexp(npois[i], 1));

pp = Fioft(gaptime, X[intcen[i],], vn[intcen[i]]);

ind = sum(u[intcen[i]]>pp);

if (ind==0){

delta_int[i] = 2;

t2_int[i] = gaptime[1];

}else if (ind==npois[i]){

delta_int[i] = 0;

t1_int[i] = gaptime[ind];

}else{

delta_int[i] = 3;

t1_int[i] = gaptime[ind];

t2_int[i] = gaptime[ind+1];

}

}

t1[intcen]=t1_int; t2[intcen]=t2_int; delta[intcen] = delta_int;

## make a data frame

d = data.frame(t1=t1, t2=t2, X, delta=delta, tT=tT, ID=id, frail=vn); table(d$delta)/n;

##------- Fit the PH model with variable selection -----------##

# MCMC parameters

nburn=10000; nsave=2000; nskip=4; niter = nburn+nsave

mcmc=list(nburn=nburn, nsave=nsave, nskip=nskip, ndisplay=500);

prior = list(maxL=15, a0=1, b0=1);

state <- list(cpar=1);

ptm<-proc.time()
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res2 = survregbayes(formula = Surv(t1, t2, type="interval2")~x1+x2+x3+

x4+x5+frailtyprior("car", ID),

data=d, survmodel="PH", selection=TRUE, prior=prior, mcmc=mcmc, state=state,

dist="loglogistic", Proximity = W);

sfit2=summary(res2); sfit2;

systime2=proc.time()-ptm; systime2;

Note that the data have to be sorted by region ID before model fitting. The argument mcmc

above specifies that the chain is subsampled every 5 iterates to get a total of 2, 000 scans after a
burn-in period of 10, 000 iterations. The argument prior is used set all the priors; if nothing is
specified, the default priors in the paper are used. The output is given below:

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.105):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

x1 1.00002 1.00201 0.09491 0.82401 1.18337

x2 0.93568 0.97427 0.16605 0.44710 1.15790

x3 -0.68349 -0.66875 0.83818 -2.26155 0.56054

x4 0.03566 0.06164 0.75003 -1.42845 1.47316

x5 -0.02822 0.01343 0.72955 -1.43050 1.28246

Posterior inference of precision parameter

(Adaptive M-H acceptance rate: 0.2652):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

alpha 0.3843 0.3642 0.1509 0.1541 0.7288

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.6576 0.6162 0.2504 0.2994 1.2456

Variable selection:

x1,x2 x1,x2,x3 x1,x2,x4 x1,x2,x5 x1,x2,x3,x5 x1,x2,x3,x4 x1,x2,x4,x5

prop. 0.6490 0.2245 0.0505 0.0485 0.0155 0.0075 0.0045

Log pseudo marginal likelihood: LPML=-417.0232

Deviance Information Criterion: DIC=833.0498

Number of subjects: n=740

Remarks: The function survregbayes can also fit a semiparametric survival model (AFT, PH,
or PO) with independent Gaussian frailties by setting frailtyprior("iid", ID), with Gaussian
random field frailties by setting frailtyprior("grf", ID), a model without frailties by removing
frailtyprior() in the formula, and a parametric (loglogistic, lognormal or weibull) survival model
by specifying a0 at a negative value and adding an argument state=list(cpar=Inf). If FSA is
used for GRF frailty models, the number of knots A and the number of blocks B are specified via
prior=list(nknots=A, nblock=B).

Appendix I Additional Results for Real Data Applications

I.1 Loblolly Pine Survival Data

Table S3 presents some baseline characteristics for the trees.



16

Table S3: Loblolly pine data. Baseline characteristics of the 45,525 trees.

Categorical variables Level Proportion (%)

Censoring status uncensored 12.65
right censored 87.35

Treatment (treat) 1–control 24.78
2–light thinning 40.32
3–heavy thinning 34.90

Physiographic region (PhyReg) 1–coastal 55.53
2–piedmont 37.01

3–other 7.46
Crown class (C) 1–dominant 28.21

2–codominant 52.22
3–intermediate 15.50
4–suppressed 4.07

Continuous variables Mean Std. Dev.

Total height of tree in meters (TH) 38.47 11.77
Diameter at breast height in cm (DBH) 5.88 1.77

Appendix J Additional Results for Simulations

J.1 Simulation I: Areal Data

Figure S1 presents the average, across the 500 MC replicates, of fitted (posterior means over a grid
of time points) baseline survival functions; the proposed method capably captures complex (here
bimodal) baseline survival curves.

J.2 Simulation III: Georeferenced Data

We generated the data using the same settings as Simulation I except that i = 1, . . . , 150, j =
1, . . . , 5, and vi follows the GRF prior with τ2 = 1, ν = 1 and φ = 1. The locations {si}150i=1 were
generated from [0, 10]2 uniformly. Table S4 summaries the results, where we see that the point
estimates of β are unbiased under all three models, SD-Est values are close to the corresponding
PSDs, and the CP values are close to the nominal 95% level. We also observe that φ tends to
be overestimated and the standard deviations for τ2 and φ are underestimated (because SD-Est
is smaller than PSD). Even though, the CP values are still close to 95%. The ESS values for
β are much smaller than these obtained for areal data, indicating that the georeferenced spatial
dependency makes the posterior samples more correlated.

J.3 Simulation IV: Variable Selection

We next assess the performance of our variable selection method via three simulated examples.
For each example, one data set was generated from the PH model with S0(t) and ICAR as
in Simulation I. Under Example 1, we set xij = (xij1, . . . , xij5) with xij1∼Bernoulli(0.5) and

xij2, . . . , xij5
iid∼ N(0, 1), and β = (1, 1, 0, 0, 0)′. Example 2 is identical to Example 1 except that

xij3 = xij2 + 0.15z where z ∼ N(0, 1), yielding a 0.989 correlation between x2 and x3. For Exam-

ple 3, we set xij = (xij1, . . . , xij10) with β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0) and xijk|z
iid∼ N(z, 1) where



17

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(a)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(b)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(c)

Figure S1: Simulated I. Mean, across the 500 MC replicates, of the posterior mean of the baseline
survival functions under AFT (panel a), PH (panel b) and PO (panel c). The true curves are
represented by continuous lines and the fitted curves are represented by dashed lines.

Table S4: Simulation III. Averaged bias (BIAS) and posterior standard deviation (PSD) of each
point estimate, standard deviation (across 500 MC replicates) of the point estimate (SD-Est),
coverage probability (CP) for the 95% credible interval, and effective sample size (ESS) for each
point estimate.

Model Parameter BIAS PSD SD-Est CP ESS

AFT β1 = 1 -0.002 0.085 0.089 0.946 1933
β2 = 1 -0.000 0.045 0.042 0.964 1815
τ2 = 1 0.000 0.329 0.220 0.948 548
φ = 1 0.082 0.388 0.357 0.962 471

PH β1 = 1 -0.016 0.112 0.116 0.934 1943
β2 = 1 -0.015 0.068 0.068 0.942 1110
τ2 = 1 0.042 0.451 0.316 0.938 366
φ = 1 0.066 0.471 0.420 0.918 351

PO β1 = 1 -0.001 0.157 0.159 0.952 3006
β2 = 1 0.003 0.087 0.088 0.944 1960
τ2 = 1 0.034 0.410 0.341 0.954 502
φ = 1 0.313 1.361 0.768 0.912 353
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Table S5: Simulated IV. High frequency models with selected variables.

Example 1 Example 2 Example 3
Variables Proportions Variables Proportions Variables Proportions

1 2 0.80 1 2 0.49 1-5 0.63
1 2 3 0.08 1 2 3 0.22 1-5, 10 0.15
1 2 5 0.05 1 3 0.17 1-5, 7 0.09
1 2 4 0.05 1 2 5 0.04 1-5, 8 0.05

z ∼ N(0, 1), which induces pairwise correlations of about 0.5. We applied our method to the three
simulated datasets using all default priors designed for variable selection. A sample of 10, 000 scans
was thinned from 50, 000 after a burn-in period of 10, 000 iterations. Table S5 lists the proportions
for the four highest frequency models under each example. The results reveal that our method
predicts the right model very well even in the presence of extreme collinearity.

J.4 Comparing with Polya Trees

Zhao et al. (2009) considered the AFT, PH and PO models for right censored areal data, and used
the mixture of Polya trees (MPT) prior on the baseline survival function. In their MCMC scheme,
most parameters were updated using simple random walk Metropolis-Hastings steps, so a careful
tuning of the proposal distribution was required to achieve desirable acceptance rate. We instead
used adaptive Metropolis samplers (Haario et al., 2001) on most parameters and implemented the
three MPT models into an R function survregbayes2; this function can also fit arbitrarily censored
data. We generated data using the same settings as Simulation I, then fitted each model with
finite Polya tree level equal to 4, a Γ(5, 1) prior on the Polya tree precision parameter, and priors
on other parameters similar to Section 2.3 in the main paper. For each MCMC algorithm, 5,000
scans were thinned from 50,000 after a burn-in period of 10,000 iterations.

Table S6 summarizes the results for regression parameters β and the ICAR variance τ2, in-
cluding the averaged bias (BIAS) and posterior standard deviation (PSD) of each point estimate
(posterior mean for β and median for τ2), the standard deviation (across 500 MC replicates) of the
point estimate (SD-Est), the coverage probability (CP) of the 95% creditable interval, and effective
sample size (ESS) out of 5,000 (Sargent et al., 2000) for each point estimate. We can see that
effective sample sizes for β1 and β2 under the MPT AFT are 2 times smaller than those under the
TBP AFT. In addition, the MPT PH model provides more biased estimates than the TBP PH.

Due to the non-smoothness of Polya tree densities, the MPT AFT often suffers poor mixing
when the true baseline survival function is far away from the centering parametric distribution
family Sθ and uncensored survival times are available. For example, for right censored data, the
likelihood will involve fxij (t) = ex

′
ijβ+vif0(e

x′
ijβ+vit), where f0(·) is the density of a Polya tree.

Note that f0(·) consists of many big jumps when the precision parameter of the Polya trees is
small, and hence a tiny change in β imply a big jump in the likelihood value, leading to poor
mixing. However, MCMC mixing issues are mitigated for interval censored data, since only the
survival function S0(e

x′
ijβ+vit) is involved in the likelihood and S0(t) is continuous.

J.5 Model Selection via LPML and DIC

We next demonstrate via simulations that the LPML and DIC are reasonable criteria for model
selection among AFT, PH and PO models. Arbitrarily censored survival data of size n = 740 and
n = 1850 were generated from each of the three models with ICAR frailties using the same settings
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Table S6: Simulation under MPT. Averaged bias (BIAS) and posterior standard deviation (PSD)
of each point estimate, standard deviation (across 500 MC replicates) of the point estimate (SD-
Est), coverage probability (CP) for the 95% credible interval, and effective sample size (ESS) out
of 5,000 with thinning=10 for each point estimate.

Model Parameter BIAS PSD SD-Est CP ESS

AFT β1 = 1 0.002 0.094 0.071 0.986 1009
β2 = 1 0.002 0.050 0.038 0.988 1079
τ2 = 1 0.013 0.309 0.243 0.976 3760

PH β1 = 1 -0.045 0.099 0.098 0.932 2887
β2 = 1 -0.043 0.060 0.060 0.874 1794
τ2 = 1 -0.084 0.318 0.280 0.954 3599

PO β1 = 1 -0.014 0.149 0.142 0.962 3579
β2 = 1 -0.029 0.082 0.078 0.938 2561
τ2 = 1 -0.038 0.407 0.346 0.966 2903

as Simulation I. For each model, 200 MC replicates were generated. We fitted each dataset using
all three models with the default priors and the same MCMC settings as Simulation I. Table S7
(under log-logistic Sθ(·)) presents the proportion (out of 200 MC replicates) of times each model
is picked. The model picked is the one with largest LPML or smallest DIC. DIC and LPML yield
very similar proportions for n = 740 and identical results when n = 1850, indicating that the two
criteria are consistent for model comparison. When the true model is PH, DIC has a 3% chance of
picking PO under n = 740, but is reduced to zero for the larger sample size n = 1850.

Table S7: Simulation for model selection via LPML and DIC. Proportion of times DIC or LPML
selects each model when truth is known out of 200 replicated datasets.

log-logistic Weibull log-normal
Model picked Model picked Model picked

True model Criteria AFT PH PO AFT PH PO AFT PH PO

n = 740
AFT DIC 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

LPML 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
PH DIC 0.000 0.985 0.015 0.000 1.000 0.000 0.000 1.000 0.000

LPML 0.000 0.970 0.030 0.000 1.000 0.000 0.000 0.995 0.005
PO DIC 0.000 0.000 1.000 0.000 0.075 0.925 0.000 0.000 1.000

LPML 0.000 0.000 1.000 0.000 0.025 0.975 0.000 0.000 1.000

n = 1850
AFT DIC 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

LPML 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
PH DIC 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000

LPML 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000
PO DIC 0.000 0.000 1.000 0.000 0.010 0.990 0.000 0.000 1.000

LPML 0.000 0.000 1.000 0.000 0.010 0.990 0.000 0.000 1.000
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Figure S2: Simulation for sensitivity analysis of the TBP’s centering distribution when AFT is the
true model. Mean, across the 200 MC replicates, of the posterior mean of the baseline survival
functions under log-logistic (panel a), Weibull (panel b) and log-normal (panel c). The true curves
are represented by continuous lines and the fitted curves are represented by dashed lines (red is for
AFT, green is for PH and blue is for PO).

J.6 Sensitivity Analysis of The TBP’s Centering Distribution

The TBP prior is centered at a parametric family of distributions. The log-logistic Sθ(t) =
{1 + (eθ1t)exp(θ2)}−1, the log-normal Sθ(t) = 1 − Φ{(log t + θ1) exp(θ2)}, and the Weibull Sθ(t) =
1− exp

{
−(eθ1t)exp(θ2)

}
families are implemented in the software. We next demonstrate via simu-

lations that posterior inference and model selection is not very sensitive to the choice of centering
parametric family. Table S7 presents the proportion (out of 200 MC replicates) of times each model
is picked under all settings when data are generated as in the previous simulation J.5. When the
true model is PH with n = 740, the Weibull centering distribution has a improved chance to pick
the correct model than log-logistic, indicating that the Weibull slightly favors PH for this bimodal
baseline S0. As sample sizes increase, all three centering distributions give the same model selection
results.

Figures S2, S3, and S4 present the averaged (across the 200 MC replicates) fitted baseline
survival functions under three centering distribution families when the true model is AFT, PH and
PO, respectively. Overall, the three families yield almost the same estimates regardless of what the
true model is, although we do see that Weibull provides a slightly better estimate than the other
two (Figure S3) when the true model is PH with the bimodal baseline S0 and PH is used to fit
the model. We also compared the inference results on the coefficient estimates (not shown), which
resulted in very similar biases, coverage probabilities and effective sample sizes.
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Figure S3: Simulation for sensitivity analysis of the TBP’s centering distribution when PH is the
true model. Mean, across the 200 MC replicates, of the posterior mean of the baseline survival
functions under log-logistic (panel a), Weibull (panel b) and log-normal (panel c). The true curves
are represented by continuous lines and the fitted curves are represented by dashed lines (red is for
AFT, green is for PH and blue is for PO).
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Figure S4: Simulation for sensitivity analysis of the TBP’s centering distribution when PO is the
true model. Mean, across the 200 MC replicates, of the posterior mean of the baseline survival
functions under log-logistic (panel a), Weibull (panel b) and log-normal (panel c). The true curves
are represented by continuous lines and the fitted curves are represented by dashed lines (red is for
AFT, green is for PH and blue is for PO).
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