
Quantitative modeling of SIC1 activation

1. Wiring diagram and justifications

	As explained in the Results section, we consider the regulatory network controlling SIC1 expression with the following network nodes (Figure 5A).

NDD1 and SFF: SFF (Swi Five Factor) is a transcription factor complex consisting of Ndd1, Fkh1/2, and Mcm1 (Reynolds et al., 2003; Zhu et al., 2000) and is responsible for the activation of the “CLB2 cluster” (Spellman et al., 1998). The binding of Fkh1/2 and Mcm1 to the target promoters is mostly constitutive and non-cell-cycle-regulated (Ostrow et al., 2014; Wittenberg and Reed, 2005). On the other hand, Ndd1 protein is periodically degraded during the cell cycle 
(Edenberg et al., 2015; Sajman et al., 2015), implicating that its re-accumulation is essential for SFF activation. Clb-CDKs phosphorylate and increase the activity of SFF through multiple mechanisms (Pic-Taylor et al., 2004; Reynolds et al., 2003). Here we assume that SFF is partially active even without Clb-CDKs. This assumption is further supported by results presented in this study (Figures 3 and S3). Taken together, we model the active SFF as a product initially translated from the NDD1 mRNA. Clb2 protein then mediates feedback to increase the abundance of active SFF.

CLB2 and Clb2: The transcriptional activation of CLB2 is dependent on the SFF complex (Zhu et al., 2000). The CLB2 mRNA is then translated into Clb2 protein. It is known that Clb2 protein is destabilized during mitotic exit (Bäumer et al., 2000; Yeong et al., 2000). However, the major purpose of this model is to investigate the transcriptional activation of SIC1. We reason that the regulated degradation of Clb2 mostly affects the back side but not the front side of the SIC1 transcript dynamics. We thus assume constant degradation rate of Clb2 throughout the cell cycle. Its feedback inhibition by Sic1 is neglected for the same reason.

SWI5 and Swi5: The transcriptional activation of SWI5 is dependent on the SFF complex (Zhu et al., 2000). A general assumption of this model is that nuclear import is spontaneous and instantaneous. In other words, there are no additional equations converting newly synthesized cytosolic Ndd1 (SFF), Clb2, and Swi5 into the active pool in the nucleus. As a result, the SWI5 mRNA is directly translated into active Swi5+ protein in our model. In the presence of Clb2, Swi5 is phosphorylated and sequestered in the cytosol. This is modeled as a conversion from Swi5+ into inactive Swi5- protein mediated by Clb2. During mitotic exit, Cdc14 phosphatase dephosphorylates and activates Swi5. This is modeled by a conversion from Swi5- back into Swi5+ protein by Cdc14. The above approach is generally in line with previously published models (Chen et al., 2004; López-Avilés et al., 2009). As with the justifications above for Clb2 degradation, here we do not model the regulated degradation of Swi5 protein for simplicity (Kishi et al., 2008).

Cdc14: The Cdc14 phosphatase is sequestered and inhibited in the nucleolus during most of the cell cycle (Visintin et al., 1999). Its transient release in late mitosis is promoted by a complex network of FEAR and MEN regulators (Chen et al., 2004; Kraikivski et al., 2015). We thus refrain from modeling the indirect edge from Clb2 to Cdc14. Instead, a short pulse of Cdc14 in the CLB cells is artificially added with variable peak width and variable peak time shortly before SIC1. The absence of Cdc14 release without Clb-CDK activity has been shown previously (Lu and Cross, 2010). This Cdc14 pulse is thus removed when simulating the clbΔ mutant. 

SIC1: The transcriptional activation of SIC1 during both the normal cell cycle or CDK-APC/C arrests has been shown to be dependent on the transcription factor Swi5 (Knapp et al., 1996; Rahi et al., 2016).

We adopted the following simple experimental protocol:

1) Construct two systems of differential equations with variable parameters to model the network dynamics in wild type (CLB) and the clbΔ mutant.
2) Compare simulated and observed data by RNA-seq in both CLB and clbΔ conditions to quantify the quality of the models’ fit to data.
3) Perform parameter optimization, ensuring the parameters are identical in the two conditions, in an attempt to specify models that explain the observed data.

2. Model Variables and Equations

The above interactions are described by two systems of differential equations, the first of which models the CLN-pulse CLB cells (WT-like) and the second of which models the CLN-pulse clbΔ cells.

2.1 Common Equations


Experimental time-point data used to compute simulated RNA expression levels to compare to experimental data.

Form of nonlinearity used to model the gene activation by transcription factors and the SFF activation by Clb2.

 
Piecewise cubic Hermite interpolating polynomial spline of data points , thought of as having been sampled from some function . (Fritsch and Carlson, 1980)

2.2 Wild-type model


Experimental data of NDD1 transcript levels in WT-like cells corresponding to time points in .


Piecewise cubic Hermite interpolating polynomial spline of wild-type RNA data, used as input to the wild-type model.

















2.3 clbΔ model


Experimental clbΔ RNA expression time-series data for NDD1 corresponding to time points in .


Piecewise cubic Hermite interpolating polynomial spline of clbΔ RNA data, used as input to the clbΔ model.









2.4 Model Explanation

To prove the feasibility of our hypotheses by demonstrating the capacity of our proposed mechanism to faithfully reproduce the dynamic profiles seen in data, we opted to have experimental data act as the input to the model. In particular, the concentration profile for SFF is determined, in part, by a linear mass-action model of RNA translation, where the upstream RNA level is determined by the experimental NDD1 data. Thus, in order to compute the production rate of [SFF] at an arbitrary time  in the experimental time range [0 min, 240 min], it is necessary to interpolate the NDD1 expression data over the entire time interval.  Although our results will not sensitively depend on the choice of interpolation method, we chose to use piecewise cubic Hermite interpolating polynomial splines for several reason. First, the resulting PCHIP spline is continuously differentiable over the entire time interval, unlike piecewise linear interpolants.  Moreover, PCHIP splines do not suffer from over or undershooting common to higher-order polynomial interpolants (e.g. cubic splines) because they are monotonic on intervals where the data is monotonic (Fritsch and Carlson, 1980). 
Because Cdc14 concentration profiles for these experiments are not available, we chose to model Cdc14 activity as a symmetric pulse, , centered at time .  The particular expression used to define this pulse was chosen for several reasons: 1) It is differentiable, 2) its value is negligible outside a narrow time window determined by an appropriate choice of parameter , 3) it is qualitatively similar to the expression profile produced by published mathematical models of the budding yeast cell cycle (Chen et al., 2004), which is 4) consistent with our current understanding of the pulsatile nature of Cdc14 activity in wild-type cells. Evaluating  gives the maximum expression of Cdc14 activity which we chose to be equal to 25 FPKM units. This particular value is important only to the extent that it limits the maximum conversion rate of inactive Swi5 protein into active Swi5 protein – since our parameter space includes the rate constant , the maximum value of  is effectively the maximum conversion rate of phosphorylated Swi5 protein into its active state. This choice does not impede finding parameters that allow for rapid nuclear localization of Swi5 protein. 

3. Model Fitting to Data

We devise a global optimization problem whose aim is to minimize an objection function that measures the disparity between simulations and data, in both conditions, as a function of the parameters in the model.

3.1 Parameter Space & Initial Conditions

Unrestricted, the space of model parameters for the wild-type condition is 26-dimensional (), allowing flexibility in each protein synthesis and (de)phosphorylation rate (), basal RNA transcription rate (), gene product degradation rate (), maximum transcription activation rate (), transcription activation threshold (), and Hill coefficient ().  While the clbΔ model contains 14 model parameters in its own right, our approach relies on maintaining precisely the same parameters in both model conditions, and thus the 14 clbΔ model parameters form a subset of the 26 wild-type parameters. In practice we restricted model-parameter space to a bounded, rectangular region defined by lower and upper constraints on each parameter.  This improves the efficiency of the parameter optimization algorithm and is necessary to ensure that parameters remain biologically reasonable and appropriately scaled to the FPKM units of the RNA expression data to which simulations are compared.  
In addition to model parameters, the initial values used for simulations for each of the five RNA expression profiles – CLB2/SWI5/SIC1 in wild-type and SWI5/SIC1 in clbΔ – were treated as parameters and allowed to vary within 5% of the corresponding time-0 experimental RNA expression levels.  The initial values of the transcription factor SFF were also treated as parameters to be optimized. All other proteins, in both conditions, were initialized to 0.
Finally, since the duration and peak timing of Cdc14 activity is only roughly known from earlier experiments, and not precisely known for the Rahi experiments to which we’re comparing, we allowed a small amount of flexibility in these values by treating them as parameters  in the equation defining .  
Altogether, the initial conditions and the model parameters form a bounded, rectangular, 35-dimensional parameter space that we’ll call .  All rate parameters and  are measured in units of ,  is measured in minutes, transcription activation thresholds are in arbitrary units representing mRNA or protein concentrations, and Hill coefficients are dimensionless. 

3.2 Objective Function

Fix a choice of parameters .  Let , ,  be length 8 vectors containing the values of the corresponding RNA variables, determined by numerical integration of the wild-type model with parameters , at the 8 experimental time points,

.

Likewise define simulation vectors ,  by integration of the clbΔ model, restricting to the appropriate components of .  To be explicit,  is the expression level of Swi5 RNA at the th value of  as predicted by the wild-type model with parameter values .  For each choice  we define the objective function,


where   The first summation measures total squared error between experimental and simulated data points across both model conditions, while the second summation measures disagreement in the change in expression over experimental time intervals.
Note that  whenever the simulation vectors are real-valued, with  if and only if each time-series (vector) of RNA expression data is exactly equal to the corresponding simulated vector.  It is worth pointing out that the same statement is true for a simplified objective function which measures only the total squared error in the data values and ignores change-in-expression information (i.e. is determined by the first summation alone).  However, in practice we have found that the efficiency in determining parameter values that may be near the global minimum of  is improved by including (approximate) derivative information in the objective function.  
Our goal then is to solve the bound constrained optimization problem and find a set of parameters:

which produces model simulations best fitting the experimental data in both conditions.


4. Numerical Integration & Parameter Optimization

Numerical integration of both models was performed using the routine ‘ode15s’ in MATLAB R2016a which implements a variable step, variable order solver based on numerical differentiation formulas well-suited for solving stiff systems. Parameter optimization was performed using the routine ‘particleswarm’ in MATLAB R2016a. This iterative, population-based global optimization technique attempts to find the global minimum of an objective function by allowing a randomly initialized ‘swarm’ of candidate solutions to explore the domain of the objective function in search of an optimal solution. At each iteration, the value of the objective function is computed at the present location of each member of the swarm.  Each member is then given a velocity based on the best value it and the other members of the swarm have encountered in any iteration.  The members of the swarm move in  to new candidate solutions, according to their new velocities, and the process is repeated.  After convergence of the particle swarm algorithm, a gradient descent method (MATLAB’s ‘fmincon’) was used to find the local minimum of  nearest to the best solution any member of the swarm had encountered.

4.1 Optimal Parameters

	 supports many local minima and, as with most nonlinear optimization problems, no guarantee can be made that the true global minimum has been found.  That said, our goal was not to identify the absolute minimum of this (somewhat arbitrary) measure of goodness-of-fit.  Rather, we sought to demonstrate the feasibility of our proposed network of interacting gene products to explain the experimental data of Rahi et al. (2016) by specifying a model capable of recapitulating experimental data.  Figure 5B illustrates the RNA and protein expression profiles for a particular choice of parameters corresponding to a local minimum of  along with the experimental data for both conditions.  Below we give the complete list of parameters and initial conditions (i.c.) that generated these simulations.  
[bookmark: _GoBack]During our experimentation, we found several other local minima along with contiguous regions of parameter space giving comparably low values of , as shown in Figure 5C and Figure S5B.  Unsurprisingly, these parameter choices produce qualitatively similar expression profiles for all variables in both conditions. 

Local minimum  and initial conditions (Figure 5B, Figure 5C)
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