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The materials in this document supplement the information presented in
the manuscript “Finding the Number of Groups in Model-Based Clustering
via Constrained Likelihoods”. Section A provides the proof of Theorem 3.1
and a graphical illustration of it. Section B gives the optimal c values for each
k, when using CLAc-CLA and MIXc-MIX, for the data set in Figure 1 and
the associated “contour plot” for the three constrained clustering criteria.
Section C shows the tables that have been applied to obtain the results
presented in Section 5.2.1 and a graph with the first 4 discarded “spurious”
solutions for the data set considered in that section. Section D provides the
car-bike plot for the Hennig and Liao’s type of data in Section 5.2.2. The
application of the proposed methodology to the well-known “Iris data set”
is given in Section E. Section F summarizes the three best ranked solutions
obtained for the “road traffic data” in Section 6 by using functional boxplots.
Finally, all the routines to obtain the results presented in this paper, and
included in the FSDA toolbox for MATLAB, are briefly presented in Section
G.

A Proof of Theorem 3.1 and graphical illustration

Proof of Theorem 3.1: In order to prove that result, let us first consider
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There are D! different orderings of λ1, ..., λD and, thus, we have (by consid-
ering obvious symmetry arguments) that

Vol(Bt) = D!×Vol(B∗

t ) = tD
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1
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.

Thus, final result follows from the trivial fact that Vol(At) = tD. �

Figure 1 shows a graphical interpretation when t = 1, D = 2 (that
is one group of two-dimensional observations) and c = 4. In this case
Vol(At) = 1 and the ratio Vol(Bt)/Vol(At) equals the area of a square of
side [0,

√

1− 1/c].
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Figure 1: Illustration of Theorem 3.1 when t = 1, D = 2 and c = 4. The surface enclosed
within dashed lines corresponds to B1. Since Vol(A1) = 1, the ratio Vol(B1)/Vol(A1)
equals the area of the square [0,

√

1− 1/4]× [0,
√

1− 1/4] shown with solid lines.
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Table 1: Optimal c values for each k when using CLAc-CLA and MIXc-MIX for the data
set shown in Figure 1.

k = 1 k = 2 k = 3 k = 4 k = 5

optimal c for CLAc-CLA 4 16 8 128 1
optimal c for MIXc-MIX 4 16 8 128 128

B Optimal c for each k and “contour plot” for the

data set in Figure 1

The optimal c for each k is shown for the data set in Figure 1 in the first
line of Table 1 when using CLAc-CLA and in the second line when using
MIXc-MIX.

Figure 2 shows the associated contour plots that summarize the resulting
monitoring process for the data set shown in Figure 1 and for our three
constrained clustering criteria.
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Figure 2: Contour plots for the (k, c) 7→ Fm(k, c) functions when the m =
MM, MC and CC criteria are applied.

C Tables for Section 5.2.1 and graph with the first

4 discarded “spurious” solutions

The starting point of the analysis done in Section 5.2.1 is the matrix which
contains the values of CLAc-CLA for all (k, c) pairs (given in Table 2). The
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Table 2: Matrix of K × C possible of CLAc-CLA (k, c) pairs to be explored.

c = 1 c = 2 c = 4 c = 8 c = 16 c = 32 c = 64 c = 128

k = 1 195.12 156.58 147.35 147.70 147.87 147.95 147.98 148.00
k = 2 166.19 138.49 95.16 74.25 72.60 72.95 73.13 73.22
k = 3 125.06 94.65 79.05 77.13 78.46 79.12 79.45 79.61
k = 4 114.24 101.58 99.57 98.01 94.95 92.85 91.86 89.66
k = 5 125.08 124.92 122.06 116.50 114.54 112.13 111.87 109.24

Table 3: Matrix of K × (C − 1) containing the values of the ARI for two consecutive
values of c (for fixed k).

c : 1-2 2-4 4-8 8-16 16-32 32-64 64-128

k = 1 1 1 1 1 1 1 1
k = 2 0.17 0.89 1 0.84 1 1 1
k = 3 1 0.86 1 1 1 1 1
k = 4 0.87 0.93 0.57 0.71 0.99 0.96 0.99
k = 5 0.65 0.77 0.92 0.68 0.99 1 0.81

threshold given in equation (7) in the manuscript is obtained by considering
the matrix which contains the ARI indexes for two consecutive values of c
given k (see Table 3).

Figure 3 shows the first 4 discarded “spurious” solutions for the simu-
lated data set in Section 5.2.1. We can see that these discarded solutions
either include clusters made up with a few almost collinear or concentrated
observations (solutions 3 and 5), or correspond to solutions close to one
already detected “optimal” partition (solution 7).

D Car-bike plot for the Hennig and Liao’s type of

data

The car-bike plot (given in Figure 4) presents a nice summary of the solutions
seen so far because it shows with a tall rectangle the first best ranked solution
with 3 groups. The longest car is for the homoscedastic solution with 5
groups. The car-bike plot has the additional advantage of showing clearly
that while the second best ranked solution with 4 groups is best just for
a particular value of c, the homoscedastic solution is best in the interval c
[1,16]. The height of the rectangle for the fourth best ranked solution is very
small reflecting its low order in the ranking. The fifth best ranked solution
is local and is shown as a “bike”.
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Figure 3: The first four discarded “spurious” solutions detected when using the autCLA-

CLA procedure for the simulated data set displayed in Figure 1.

E Application to the “Iris data set”

The “Iris data set”, originally collected by Anderson (1935) and first an-
alyzed by Fisher (1936), is considered in this example. We have applied
the proposed procedure to this well-known four-dimensional (p = 4) data
set. Figure 5 shows the ranked list of “sensible” cluster partitions which are
automatically found when using the autMIXMIX procedure. For purposes
of clarity we show just the scatter plots of sepal width (SW) vs sepal length
(SL), petal length (PL) vs sepal width (SW) and petal width (PW) vs petal
length (PL).

We can see that the most clear two-component partition is the first
offered by our method. In this partition “Iris setosa” is well-separated from
“Iris virginica” and “Iris versicolor” (that are not so easy to separate). The
second proposed partition essentially coincides with the three actual species.

With respect to the third best ranked solution, we recall that this “Iris
data set” was initially collected by Anderson with the aim of seeing whether
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Figure 4: Car-bike plot for the when using the autMIXMIX for a data set similar to
that in Hennig and Liao (2013).

there was “evidence of continuing evolution in any group of plants”. Thus, it
is interesting to evaluate whether “virginica” species should be split into two
subspecies or not. In their Section 3.11, McLachlan and Peel (2000) focused
only on the 50 virginica iris data and fitted a mixture of k = 2 normal
components to them. They listed 15 possible local ML maximizers together
with different quantities summarizing aspects as the separation between
clusters, the size of the smallest cluster and the determinants of the scatter
matrices corresponding to these solutions. After analyzing this information,
the so-called “S1” solution is chosen as the most sensible one among the local
ML maximizers. It is very nice to see that our third best ranked solution
exactly detects a four-component partition where the “virginica” species is
automatically split into 2 components in such a way that it coincides with
the “S1” partition already proposed in McLachlan and Peel (2000).

F Functional boxplots for the three best ranked

solutions for the “road traffic data”

Figures 6, 7 and 8 summarize the three best ranked solutions by using
functional boxplots as introduced in Sun and Genton (2011) (we consider
the fbplot function in the fda package with its default values; see Ramsay
et al. (2014)).
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Figure 5: Best-ranked partitions when using autMIXMIX procedure criterion for the
“Iris data set”. Only some few pairs plots are shown for each cluster partition.

G Computer code

All the routines to obtain the results presented in this paper have been
included in the FSDA toolbox for MATLAB which is freely downloadable
from the web address

http://www.riani.it/MATLAB

or from

http://fsda.jrc.ec.europa.eu .

An explanation of the available routines is as follows:

7



Cluster  1

s
p

e
e

d

5 8 11 14 17 20 23

0
5

0
1

0
0

1
5

0

Cluster  2
s
p

e
e

d

5 8 11 14 17 20 23

0
5

0
1

0
0

1
5

0

Cluster  3

s
p

e
e

d

5 8 11 14 17 20 23

0
5

0
1

0
0

1
5

0

Figure 6: First of the three best-ranked partitions when using the autMIXMIX for the
“road traffic data” with k = 3 and c = 128 represented by using functional Box-plots.

1. The routine out=tclustIC(Y,varargin) takes as input a data ma-
trix containing n observations on p variables and computes the values
of BIC (MIXMIX), ICL (MIXCLA) or CLA (CLACLA), for different
values of k (number of groups) and different values of c (constraint
factor). In varargin it is possible to specify the range of mixture
components, the values of the constraint factor, the information crite-
ria to use, the trimming level, the number of subsamples to extract,
the number of refining iterations, the tolerance for the refining steps,
the number of cores to use in parallel computing, and another series of
small options. The output of this routine is a structure which contains
a series of matrices which for each combination of values of k and c
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Figure 7: Second of the three best-ranked partitions when using the autMIXMIX for
the “road traffic data” with k = 4 and c = 128.

gives the associated information criterion.

2. The routine out = tclustICsol(IC,varargin) takes as input the
output of function tclustIC and extracts the first best solutions. In
varargin it is possible to specify the information criterion to use,
the number of solutions (NumberOfBestSolutions) to consider, the
threshold to identify spurious solutions and another series of small
options. The output of this routine is a structure which contains a
MATLAB cell of size NumberOfBestSolutions-×-5 with the details of
the best solutions and a matrix of adjusted Rand indexes among the
best solutions associated with the requested information criteria.

9



Cluster  1

sp
ee

d

5 8 11 14 17 20 23

0
50

10
0

15
0

Cluster  2

sp
ee

d

5 8 11 14 17 20 23
0

50
10

0
15

0

Figure 8: Third of the three best-ranked partitions when using the autMIXMIX for the
“road traffic data” with k = 2 and c = 128.

3. The routine tclustICplot(IC,varargin) plots information criteria
as a function of c and k. In other terms, tclustICplot takes as input
the output of function tclustIC (that is a series of matrices which
contain the values of the information criteria BIC/ICL/CLA) and plots
them as a function of c or of k. Similarly to many of the other graphical
routines included inside FSDA, the plot enables interaction in the sense
that, if option databrush has been activated, it is possible to click on
a point in the plot and to see the associated classification in the scatter
plot matrix.

At the end of the preamble of each .m file (and also inside the corre-
sponding .html file) there are a series of examples containing chunks of
code which can reproduce all the figures shown in the current paper.

4. The routine carbikeplot takes as input the output of function tclustICsol
and enables us to create the car-bike plot.

Finally, in agreement with all the other routines present inside FSDA
toolbox, the above procedures have an extensive documentation both inside
the .m file and in the corresponding .html file. The help system of the
FSDA toolbox is completely integrated with that of MATLAB and is almost
indistinguishable from that of the official toolboxes provided by Mathworks.
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