Appendix

A Proofs of Theorems 4.1 and 4.2

Throughout the proofs, we use the following notations:
-1
Pu = D,PL [PYD,PE] " PYD, Un(0) = Yn — Su(A)ZyB Hu(0) = Su(Ao)ZuBo — Su(A)ZnB
_ N T 11
A, = D,PL [PY'D,PL] " A, = D, DL {P,&’anﬂ

The proofs of the technical lemmas are given in Section 1 in the online supplementary material.

A.1 Proof of Theorem 4.1

Lemma A.1 (i) ’

PY'D/ /it = PY'Da/ /|| = Op(@1(L)/v/i) = op(1); (i) ||PY'DuPk/n ~ PED,PE /]| =
Op(Zo(L)LY?/\/n) = op(1); (iii) for sufficiently large n,

cacp = 0p(1) < Tnin (PE'DaPli /1) < Tmax (PE'DuPi /1) < €p+0p(1);

(iv) ]

PYD,PL/n — P,%’DnP,%/nH = Op(C1(L)/+/n) = op(1); (v) for sufficiently large n,
cacp — 0p(1) < Tunin (PE'DuBl /1) < Tmax (PE'DuBi /1) < b+ 0p(1);

(00)$Upge 5 | (P Do = PE'D ) Un(0) /1| = 0p(1); o) supge 1.5 | Un (6)' Au| = Op(1); (vii) supge .5 | Uin(6) A
Op(1).

Lemma A.2 Q,(6) converges in probability to Q},(6) as n — co uniformly in 6 € L x B, where

Q:(0) = %E (U, (6) Dl (6)) — %E (un(e)’ang) (P,&'ﬁnp,f)_lE(P,g’Dnun(e)).

Proof of consistency

We prove consistency following Theorem 3.4 of White (1996). We have already shown the uniform conver-
gence of Q,,(0) to Q;;(0) on L x Bin Lemma A.2. Then, it suffices to show the identifiable uniqueness condition

(White, 1996, Definition 3.3): for all € > 0,

lim inf i 2(6) — QL(6 : Al
T 00 g £ B 0o > [2:(6) = Qu(60)] >0 B
Observe that
1 1
Qn(0) = Qu(60) = 5 E(Hu(0)'DuHn(0)) + - E (Hn(0) Dutn)
1 _ -1
—5E (Hn(e)’DnPnL) (P,%’an,f) E (P,%’Dan(e))

—%E (Fin(6) DaPY) (P#’EP,E)*l E (PY'Duén) .
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Furthermore, by the law of iterated expectations,

%E (Hu(0)' D) = %E (Hn(6)' DuTTo (Vi)
- %E (Hn(e)’DnPﬁBOL> + %E (Hn(e)’Dn [Ho(vn) - P,%BOLD
= %E (Hn(e)’DnPnLBOL> +O(L).

Similarly, we obtain
1 = -1 1 .
“E (Hn(e)’DnPnL) (P,%’D,ZPHL) E (P,%’Dngn) = °E (Hn(e)’DnPnLBOL) +O(L™).

n n

Consequently,

Q(0) — Q%(6) = [Hn(e)’Dan(B)/n— (H,,(e)’ﬁnp,g/n) (p,gfﬁnp,g/n)*l (PnL’Dan(G)/n)] +o(1)

Nl = N =

(60— 6) An(A) (60 — 6) +o(1).

Then, since A, (A) is positive definite for any A € £ as n — oo by Assumption 7.2, this implies (A.1). B
Lemma A3 T/, [I, — B,| Dullo(V,)/ /5 = o(1).

Lemma A4 T, [I, — P,| Dy, / /it = TN DyEy / /i1 + 0p(1).

Lemma A.5 I, :1,1 - 73,1: (Dnno(vn) - DnHO(Vn)) /i = — [T DTy (Va)Wa /1] 9 + 0p(1).
Proof of normality
By the first-order condition and the mean value theorem,
Ok, +ky+2) = V1199Qu(60) + g Qu (6)v/n(8, — 6)
with 6, € [@Z, 90} . By Lemmas A.3, A4, and A.5, we obtain
Vi99Qu(0) = ~TuDu [l = Pu] (DaYu = DuSu(A0)ZuBo) / V1
= — (T/Da&u/ Vi = [T Dallo (Vi) Wa /1] ) + 0p(1).

Now, we show that T';+/ DpEn/ /1 4N (O(k e +2),‘Y1> . To demonstrate this, we show that

n V2w V2Tl D, 8, =8, % N(0,1), (A2)
where c is an arbitrary (k; 4 k2 +2) x 1 vector satisfying [|c|| = 1. Furthermore, we define &, = Y i ; {; =
Yq (61 + Goj) with

Clj = I’lil/ZC/‘F;ll/zg]'djgj,

— — -1
& = —n VYT DLPE (PEDLPE) vt (o))dsE,

29



where ¢; is the jth column of T}, and €; = ¢; — 7o(v;). Then, by Assumptions 3.1 and 7.1 and the law of

iterated expectations,

i E [g‘lﬂ — n2 f E { (c"lf;f/zg,-)4 d;B [Ej*Idj] }
= =

n
< on 2 Y P ey gy 1 e
=1
n
< o ?Y JY Y le=0(m1) =0(1)
=1

as n — oo. Similarly
n B B i B B » B
Y E {é‘%j] < cZ3(L)yn? {cn{f’;luzr;DnP,% (p’g/annL> pPL'D, Pk (Pﬁ’DnP,Q) P%/Dnrnq;;ll/zc}
=1
< LI le =0 (3(L)/n) = o(1)

holds as n — co by Assumption 5.2. Then, we obtain

]éE @] = ]éE [+ 22)°]

IN

- 4 . 4
8 LE g+ LE[g) =00
j=1 j=1
by the ¢,-inequality. Therefore, (A.2) is verified by Lyapunov’s central limit theorem, and we obtain
_ — s 4
n V2T D E N (0, Ty )

by the Cramer-Wold device. Noting the consistency of 8, for 6y and, thus, the convergence in probability of
999 Qn(0) to A as n — oo by the continuous mapping theorem, the proof is completed by applying Slutsky’s

theorem. W

A.2 Proof of Theorem 4.2

Lemma A.6 HBOL — B\nL ‘ =0Op (\/E/ﬁ)
Proof of Theorem 4.2
First, note that

max |dy710(3;) — 9op"(3;)'Bur| < sup ‘avno(v) - avpL(v)’BOL‘ + sup |d.pt(v) (BOL - EnL)‘
ve

1<i<n VE[—Cy,C] [—cv.c0]

= oL~ V) +0p(&1(L)VL//n) = 0p(1)
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as n — oo by Lemma A.6 and the assumptions made in the theorem. This leads to H‘T’nz — Y2l =o0p(l)ina
straightforward way by the continuity of 0,779 ().
Next, by the same argument as in Newey (2009, A.12), we can obtain H‘?nl —THsiTh/n ’ = op(1).

Further,

f#/z.;;f#/n —¥m

IA

H (T —18) =5 (B —18) /n

”]nl” +2 H]nZH , say.

42 H (f; - r;)’z;;r,f/n

- 2
For J,1, wehave ||J,1]| < G2 ‘ (Fﬁ; — l"nJ-) //n H = op(1). For J,;», by the matrix Cauchy-Schwarz inequality,

e [T | = op(1).

1/2
lhell < |[Trzimie /a2

IN

IN

This implies that H{I\[m —¥,1|| = op(1) by the triangle inequality. The rest of the proof is straightforward and

is omitted. W
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