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1 Proofs of Lemmas

Proof of Lemma A.1. (i) By the mean value expansion,

|PE D/ v/ = PEDa /|| = ||BE (V) diag [Wa (70 = 70)) Du/ V|
= 0p(1)-|[B} (V) Du/n|
= Op(Gi(L)/+v/n) = op(1)

as n — oo by Assumptions 2.2 and 5.2, where B} (V,,) = (9,pL(51), ..., avpL(ﬂn))/ with V,, = (o4,...,7,)’, and
0; € [0;,v] foreachi =1, ..., n.
(if) We obtain, by the independence,
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Therefore, the result follows from Markov’s inequality with Assumption 5.2.
(iii) Using the same argument as in the proof of Lemma A.1 in Su and Jin (2012), we obtain
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for sufficiently large n by Assumption 6 and the result (ii).
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(iv) By the triangle inequality,
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by the result (i). Furthermore, by Assumption 6.2 and (i),
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PY'Du/ /i = PE'Dy /|| = Op(E3(L) /)

cp
as n — co. This implies (iv).

The proof of (v) is similar to that of (iii) with the use of (iv), and is omitted.

(vi) Denote the ith element of H,(0) as h;(6). Because matrix S, (A) is uniformly bounded in absolute value in
row sums for any A € £ C (—1,1) (see, e.g., Lemma A.2 in Lee, 2004), the £;(0)’s are also uniformly bounded in
absolute value for any 6 € £ x B. Then, we obtain

sup HDnun(e)/\/EH < sup HDan(G)/\/EH + HDngn/\/HH = Op(1). (1.1)
0eLxB 0cLxB

Hence,

sup H(PUD,1 PL’Dn> Uy (6 /nH <’

/= P'Dy /| sup[[Dulhs()/ V]| = op(1)

0eLxB
by ().
(vii) Noting that the eigenvalues of an idempotent matrix are at most one, for sufficiently large 7,
) 1/2
sup |[U(0) Au|| = sup {Un((?)’DnP,f {P,%’anﬂ PL'D, un(e)}
feLxB 0cLxB

< [eacp —op(1)] V% sup |[Dullu(6)//n]| =
0eLxB
by (iii) and (1.1). The proof of (viii) is similar to that of (vii) with the use of (v) and (1.1), and is omitted. m

Proof of Lemma A.2. Write

Qn(6) — Qu(6) = Qu(0) — Qn1(6) + Qn1(6) — Qu(6),

where 1
Qn,l(e) = ﬂun(e)/Dn [In - Pn] Dnun(9>-
First, observe that
(Qu(0) = Qua®)] = |Un(0) Pullu(0)/(2) — U (6) Pulln(6)/(21)| (12)

= ‘un G AnPL’Dnun(G)/(Zn)—Un(e)’ﬁnﬁ,g’Dnun(G)/(%)‘
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uniformly in 8 € £ x B by Lemma A.1 (iv), (vi), (vii), and (viii).
Next, let

[Un(6)' Dnln(8) — E (Un(8)' Duln(6))]

IR, I

U (6) Pl (6) — E (un(e)’annL) (P,f’ﬁnpﬁ) i (P,f’Dnun(e))]

so that
1 1

Qn,l( ) Qn( ) = 2 nl(e) - §5n2(9)‘
Below, we show that 6,1 (0) = op(1) uniformly in 6 € £ x B:
6m(0) = Hu(0)' {Dy —E[Dy)} Hi(0)/n+2Hu(0) {Du&y — E[Dy&n]} /1 + (£;,DnEn/n —E [E;,DnEn/n))

= n! th E[d;]) +2n~" Zh ) (dig; — E[digi]) + (£,Dun/n — E [EDyEn/n])
i=1
= Tnl(g) + Tnz(G) + Tng, say.

Recalling that #;(6)’s are uniformly bounded in absolute value for any 6 € £ x B, it is straightforward to see
Tu1(0) = op(1) and T;;2(68) = op(1) uniformly in 6 € £ x B. In addition, T,;3 = op(1) can be shown by Chebyshev’s
inequality. Specifically, observe that, by the independence,
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where £, 4 = diag (E [e}|ld; =1],..,E {sﬂdj = 1} ), which exists by Assumption 3.1. Therefore,

Var (€,Du€x ~E[£,D4E4]) = E|(£) Dnen)} (E [€1Dués])?
= u(E[D +i§l€ E [d;] 0707 lil]ilE E [d}] o707

=t (E[D)]y0 —E[D,]’X3) = O(n),

where Y, = diag((rlz,. .,02). Thus, we obtain Var (£,D,&,/n — E[ELDyEx /1)) = 0(1).
Finally, we prove 6,2(6) = op(1) uniformly in 6 € £ x B by showing that
-1 _ -1
H (P,%’an,g/n) - (PHL’D,ZP,Q/n) H — op(1)and

Uy (0)/n —E (P,f’DnUn(G)/n) H = op(1) uniformly in 6 € £ x B.

For the first part, we have already shown that ||PY'D,P}/n — PY'D,Pk/n|| = op(1) in Lemma A.1 (i), which
implies the result because

H (P,%’an,g/n) o (P,%’Enp,ﬁ/n) B H (1.3)

= H (P,f’DnPnL/n> B (P,&’Enp,f/n - P,&’an,g/n) (Pg’ﬁnp,g/n) B

< OP(1)"

Ly — P,%’an,g/nH = op(1)
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by Lemma A.1 (ii) and (iii).
For the second part, by the triangle inequality,

PY'D, U, (0)/n — E (P,IL’DnUn(B)/n) H <

n
n~ Y pH(vi) (die; — B [d;ei])
i=1

_1219 (vi)h d—E[d])H

Observe that, by the independence,
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ZZZPk O(L/n) = o(1).
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Then, it follows that ||n=1 Y1 ph(o ) (die; — E[d;e;])|| = op(1) by Markov’s inequality. Similarly, we can show
"1 pE(0;)hi(0) (d; — E[d;])|| = op(1) uniformly in 6 € £ x B by the fact that the /1;(6)’s are uniformly
bounded in absolute value forany § € L x B. m

Proof of Lemma A.3. Because I, [In — 734 D, PLBy; = Ok, +k,42) and Iy — P, is idempotent,

v (1 - P, DnHo(Vn)/ﬁH2
([ =] Du (100(T) — B Bor ) /v

(Ho(?n) - ﬁnLBOL)/ D, [In - 73,1} (TT%, /) {1,1 - 73,1} Dy (HO(Vn) - ﬁ,fBOL)

IN

¢ [r10(%) — PiBo||” = O(nL )

as n — oo. Thus,

r [In - 73} Dnno(Vn)/ﬁH = O(n'/2L~P) = 0(1) by Assumption 5.1. m
Proof of Lemma A.4. Write
Ty [ I = Pu| Duo/ /i =T Da&y/ v/
= T, [Pu—Pu| D/ v/ + {r;DnP# (PYDuRE) ™ PEDAEw/ i - r;Pnann/ﬁ}
= Ry + Ry, say.
Observe that
E[IRm|?IDs] = #7lr (T}, [Py = Pu] DuE [E:E11Du] Du [Py = Pu] T)
ceon”tr (T [Po = Pu] [Pu— Pa] Tu) .
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Using the same argument as in (1.2), we can show both Hn*m [Pn — 754 Py

and anll"’n |:7)n - 754 Pl

are of order op(1). Thus, n~1tr (1”;1 {Pn - 73,1} [Pn - 73,1} Fn) = op(1), implying that ||R,1|| = op(1) by Markov’s
inequality.

Next, by the triangle inequality,
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Noting that ||T, D, P} /n — I'},D, Pk /n|| = op(1) by a similar argument in (1.4),

— 2
E IRl [Da] < ¢+ |[TuDaPE/n =T, DuPE/n | = 0p(1)

for sufficiently large n. In addition, because we have already shown that H (PY'D,PL) - (PY'D,PL) - H =op(1)
in (1.3), similarly

E [|\Rn22||2 |Dn} <c. ‘(PHL’DnPﬁ/n) o (P,%’an,ﬁ/n) _1H2 = op(1)

for sufficiently large n. Finally, by Markov’s inequality, ||R;2|| = op(1), which yields the desired result. m

Proof of Lemma A.5. By the second-order Taylor expansion, as n — oo,
Iy |1 = Pu (Dallo(V) = Dallo(Va)) /v = T [l = Po| Dullo(Vi)Wa [ = 0] /v
3T [l =P DALo(Va) {Wa [T — 7032 /v
= [0 |1 = Pu] DuTTo(Va) Wi/ 1] s+ 0 (1),

where I1y(V,,) = diag {03710(91), ..., 0570(0x) } with 9; € [0;,v;] for i = 1,..,n, and the second equality follows
from Assumption 2.2. Then, using similar arguments to the proof of Lemma A.4, we obtain the desired result. m

Proof of Lemma A.6. First, observe that

-~

= [E&’Dnﬁ,&] ~pu (DnYnfDnSn(Xn)ZnB\n)

o~}

= Bor+ ATa () (60 — 6) + A, (To(Va) = PrBor ) + A&,
= BoL + M1 + Mpz + My, say.

By the \/n-consistency of 8,,,
~ ~ ~ [~ ~1—2 A ~ ~
Ml < (80— 82)'Tu(Ru) DuPk [PE'DuPE] "~ P Dulu (R (B0 — 00)
= [eacp —op(1)] " (89 = 8)' (Tw(An)Tu(R) /1) (60 — ) = Op(1/m)

as n — oo. Thus, ||[My1|| = Op(1/+/n). For M,;, by the mean value expansion and the same argument as in the
proof of Lemma A.3, we obtain

Mz |
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| &30V ) War s = 0] | + | A5 (T (Vir) — PBov )|
Op(1/+/n) + O(L ™).

In addition, by Markov’s inequality, we can readily show that ||M,;3]| = Op(+v/L/+/n). Then, the result follows
from the triangle inequality. m

2 Sketch of the Proof of Theorem 4.3

In Theorem 4.3 of this paper, we showed that the NLS estimator 5,,,,1 for the model with group-specific effects
has an asymptotic normality result similar to the one in Theorem 4.1. In order to establish this result, we modify
Assumption 5 and 7, as follows.

Assumption 5

Assumption 5 holds and, in addition, L2/n — 0asn — .



Assumption 6
1.0 < cg < liminfy—co Tmin (Rx) and 2. Assumption 6.2 holds.
Assumption 7

1. ‘Y{ = limy—oo TL and ‘I’; = lim; oo ‘I’Zz exist and are positive definite and 2. F (1) = lim, 0 F »(A) exists and
is positive definite uniformly in A € £, where

Fu(A) = Tu_y(A)RuTj_1(A)/n
l"n,—1()\) = Sn(/\) [Gnsn()\0>zn,—l,30,—1/Zn,—l]

_ -1 _
(M) = T1(0) = PE (PERaPE)  PERT,,1(A).

Note that Assumption 5" is automatically satisfied by Assumption 5.2 for, for example, splines such that
Zo(L) = O(LY?). Then, replacing D, and D, with R, and R,, respectively, we can obtain the desired result
following the same line as Theorem 4.1. Most parts of the proof are similar to those given in the paper and above
and can be omitted, so we only point out the differences.

First, we show the result which corresponds to Lemma A.1 (ii); namely,

PYR,PE/n — PYR,PL/n|| = op(1). (2.1)
Observe that, by definition, we can write
L L 1¢
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where p,, ;; is the (7, j)th element of Ry, and ¢;; = (Ljen, o d]-)’ldidj. Hence, by the triangle inequality,
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As we have shown above, the first term on the right-hand side is of order op(1). For the second term, recalling that
the size of each group is fixed at a constant number (i.e., there exists a constant ¢, > 0 such that max;<;j<, n r(i) < Cr
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Here, note that all (%, j,j') belong to the same group as i. Let

L L n
Anl = 72222?’%
k=1/¢=1i=1
) L L n )
Ap = n2Y Y Y Y pie)pe(vi)pe(vy)
k=1/=1i=1 JIENr(l)\{l}
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=1L=1i=1heN,;\{i} jeN; ;)\ i} /' €Nriy \{i}

As already shown in the proof of Lemma A.1 (i), we have A,; = O(Z3(L)L/n) = o(1). Similarly, for A,;,

L L n
A < n 2 N Y piw) - pe(oi)l Y Ipe(op)]

k=1¢=1i=1 J€Ni \i}
) L L n 2
< e )n 2 Y Y Y pr(oi) - |pe(wi)]
k=1¢=1i=1

= O (L)L/n) = o(1).

Further, we have A,3 = O(Z3(L)L/n) = o(1) and A,s = O(L?/n) = o(1), implying that the left-hand side of (2.2)
is 0(1). Thus, by Markov’s inequality, we obtain (2.1).

Next, as in Lemma A.2, we need to confirm that &,R,&,/n — E[£),R,E,/n] = o(1). This can be proved by
using an analogous argument to Lemmas A.2 and A.3 of Lin and Lee (2010).

Finally, in the proof of asymptotic normality, we show, with a slight abuse of notation,

iE [(j‘lﬂ =o0(1), and iE [@‘2}]} =o0(1)
j=1 j=1

so that .
- - s d
Y (& + &) = n V2SIV R, 5 N(0,1),
=1
where
n
& = nVAYITYEY 1w,
i=1
& = —n V2d¥ V1D, Pk (P,%’Bnpg) Zp 0)0niE)-

Note that, since g; _; is uniformly bounded and the column sums of R, is uniformly bounded in absolute
value (as long as each group has at least one respondent with d = 1), we have Y./ ; [¢; _1 pn,i]'\ < oo uniformly in 7.
Hence,

Dy,

i E [g‘{]} — n2 i EE
j=1 j=1
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n
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Similarly, we can show 2;1:1 E [C‘zﬂ =o(1).



3 Supplementary Tables

Below, we provide the descriptive statistics for the dataset used and supplementary empirical results in the above
paper. Table 1 presents the descriptive statistics for our data, Table 2 shows the estimation results for the first-
step estimation by the standard probit and Klein and Spady’s (1993) SML, and Table 3 reports the results of the
estimation of the GPA equation by the IMR and SSS models for the case when the two health status variables,
Health and Absence, are excluded from the regressors.

Table 1: Descriptive statistics

Mean  Median Std. Dev. Min. Max.

d 0.8695 1 0.3369 0 1
GPA 2.8438 3 0.7780 1 4
Age 14.8631 15 0.8365 11 19
Male 0.4712 0 0.4992 0 1
White 0.7115 1 0.4531 0 1
Hispanic 0.5492 0 1.8769 0 8
Black 0.1781 0 0.3826 0 1
Asian 0.0516 0 0.2213 0 1
Live with both parents 0.7363 1 0.4406 0 1
Mother’s education (< 9) 0.1033 0 0.3043 0 1
Mother’s education (> 16) 0.2576 0 0.4373 0 1
Mother’s job (professional) | 0.2995 0 0.4581 0 1
Mother’s job (unemployed) | 0.0482 0 0.2142 0 1
Father’s education (< 9) 0.0922 0 0.2894 0 1
Father’s education (> 16) 0.2358 0 0.4245 0 1
Father’s job (professional) 0.2436 0 0.4293 0 1
Father’s job (unemployed) 0.0415 0 0.1995 0 1
Academic club 0.2273 0 0.4191 0 1
Sports club 0.6434 1 0.4790 0 1
No club 0.1427 0 0.3498 0 1
Delinquency 1.8459 1.3744 1.6098 0 9.5090
Health 2.1287 2 0.9357 1 5
Absence 0.4943 0 0.6355 0 4
*: The descriptive statistics for GPA are calculated over those with d = 1.

Sample size: 6721 (3302: 9th graders, 3419: 10th graders)



Table 2: Estimation results for the selection equation

Probit Klein and Spady*

Coefficient t-value | Coefficient t-value

Intercept 3.2836 6.1690 - -
Own Effects
Neg. Age 0.1273 4.0026 1.0000 -
Male -0.0043 -0.0881 -0.0018 -0.1894
White 0.1801 2.4712 0.0466 3.0430
Hispanic -0.0192 -1.8523 -0.0014 -0.6202
Black 0.0564 0.6237 0.0141 0.7587
Asian 0.0423 0.3689 0.0114 0.5094
Live with both parents 0.1475 2.8179 0.0220 2.0100
Mother’s education (< 9) 0.0602 0.8648 0.0090 0.6064
Mother’s education (> 16) 0.1391 2.1769 0.0172 1.3755
Mother’s job (professional) 0.0879 1.6439 0.0177 1.6537
Mother’s job (unemployed) -0.1184 -1.2835 -0.0172 -0.9024
Father’s education (< 9) 0.0363 0.4624 0.0082 0.5017
Father’s education (> 16) -0.0116 -0.1712 -0.0021 -0.1584
Father’s job (professional) 0.0618 0.9622 0.0051 0.4088
Father’s job (unemployed) -0.1054 -0.9923 -0.0150 -0.6988
Academic club 0.2544 4.2995 0.0321 2.8296
Sports club -0.0186 -0.3325 0.0012 0.1047
No club -0.1076 -1.5528 -0.0220 -1.5102
Delinquency 0.0001 0.0096 -0.0004 -0.1307
Health -0.0410 -1.7165 -0.0080 -1.7059
Absence -0.0581 -1.7116 -0.0150 -2.1526
10th grade dummy -0.1502 -0.5061 0.0032 0.0858
Contextual Effects

Age -0.0036 -0.3181 -0.0031 -1.3163
Male 0.0233 0.2906 0.0043 0.2672
White 0.0966 0.7830 0.0246 0.9396
Hispanic -0.0138 -0.7126 -0.0023 -0.5717
Black 0.0381 0.2679 0.0201 0.6917
Asian -0.2920 -1.6273 -0.0744 -2.1104
Live with both parents 0.1764 1.8620 0.0446 2.2741
Mother’s education (< 9) -0.1139 -0.9381 -0.0209 -0.8257
Mother’s education (> 16) 0.1329 1.2138 0.0240 1.1372
Mother’s job (professional) 0.1906 1.9695 0.0292 1.5117
Mother’s job (unemployed) 0.1362 0.7874 0.0243 0.7017
Father’s education (< 9) -0.0439 -0.3303 -0.0058 -0.2120
Father’s education (> 16) 0.0776 0.6348 0.0158 0.6781
Father’s job (professional) 0.0245 0.2182 -0.0018 -0.0822
Father’s job (unemployed) -0.0132 -0.0717 -0.0106 -0.2879
Academic club 0.0094 0.0987 -0.0091 -0.5070
Sports club 0.1566 1.6978 0.0404 2.1920
No club 0.0130 0.1031 0.0021 0.0787
Delinquency -0.0456 -1.8786 -0.0084 -1.6872
Sample size 6721 6721

Note: The results for the school-specific dummies are omitted to save space.

*: The coefficient of negative age (Neg. Age) is set to one for identification.



Table 3: Estimation results when the health variables are excluded from the GPA equation

Group-specific effects No Yes
IMR model* SSS model* IMR model SSS model

Coef. t-value Coef. t-value Coef.  t-value  Coef. t-value
Intercept 42580 152265 3.3020  3.0151
Endogeneous Effect 0.3450 59117  0.3940 47499 05660 49870 0.6274  6.9272

Own Effects
Age -0.1154  -5.8334  -0.4061 -1.8679 -0.0581 -2.5911 -0.0816 -4.3190
Male -0.1279  -5.1513  -0.1286 -6.1635 -0.1534 -6.0798 -0.1545 -6.9703
White 0.0716 1.6221 0.0765  2.0622  0.0961 23601 0.0979  2.4013
Hispanic -0.0222  -3.4842 -0.0214 -4.0982 -0.0137 -2.0847 -0.0165 -2.9593
Black -0.0986 -1.8107 -0.1041 -2.3222  0.0078 0.1129 0.0126  0.1979
Asian 03222  5.0255 0.2996 58169 0.2071 2.8758 0.2130  3.3561
Live with both parents 0.0774 25756  0.0777  3.1456  0.0688 2.1819  0.0909  3.4854
Mother’s education (< 9) -0.0781 -1.8716  -0.0795 -2.2663 -0.0988 -2.2451 -0.0936 -2.4297
Mother’s education (> 16) 0.1254 43520 0.1284 52429  0.0822 27650 0.0977  3.9159
Mother’s job (professional) | 0.0371 1.4768  0.0406 1.8763  0.0131 05109 0.0210  0.9543
Mother’s job (unemployed) | -0.0453  -0.8366 -0.0519 -1.1782  -0.0265 -0.4744 -0.0454 -0.9661
Father’s education (< 9) -0.0099 -0.2324 -0.0059 -0.1635 -0.0309 -0.7057 -0.0207 -0.5417
Father’s education (> 16) 0.0883  3.0054 0.0885  3.5554  0.0518 1.7546  0.0482 1.9199
Father’s job (professional) 0.1133  4.0584  0.1127 47156  0.0615 21683 0.0689  2.8361
Father’s job (unemployed) | -0.0365 -0.6539 -0.0397 -0.8481 -0.0401 -0.6991 -0.0580 -1.2001
Academic club 0.1933 7.0493 01975 84003  0.1194 4.0222 0.1435  6.1584
Sports club 0.0751 26718  0.0766 ~ 3.1830  0.0439 14984  0.0433 1.6928
No club -0.0988  -2.4578 -0.1000 -2.9652 -0.0252 -0.5971 -0.0408 -1.1292
Delinquency -0.0888 -11.5775 -0.0912 -14.0129 -0.0745 -9.6298 -0.0710 -10.4665
10th grade dummy 0.1017  2.6680  0.1213  3.2293
Contextual Effects

Age -0.0554  -5.0827 -0.0123 -0.8798  0.0020  0.0707  0.0199  0.7268
Male 0.1737 45161 0.1848 56997 01772 49572 0.1812  5.6110
White -0.0040  -0.0606 -0.0157 -0.2947  0.0390 0.5904  0.0251 0.4232
Hispanic 0.0002  0.0202  0.0022  0.2574  -0.0085 -0.8453 -0.0065 -0.7173
Black 0.0515  0.6686  0.0581 0.9035  0.0211 0.2461 0.0263  0.3332
Asian -0.1140  -1.1578 -0.1420 -1.7748 0.0797 0.7383  0.0358  0.3797
Live with both parents -0.0685 -1.4216 -0.0683 -1.6664 -0.0238 -0.5104 -0.0193 -0.4534
Mother’s education (< 9) 0.0741 1.1047  0.0826 1.4731 0.0169 02467 0.0116  0.1890
Mother’s education (> 16) | -0.0409 -0.8964 -0.0492 -1.2241 -0.0193 -0.4025 -0.0204 -0.4751
Mother’s job (professional) | 0.0825 2.0040 0.0831 2.3812 0.0478  1.1371  0.0583 1.5511
Mother’s job (unemployed) | 0.1288 14864  0.1284 1.7649  -0.0232 -0.2602 0.0110  0.1381
Father’s education (< 9) -0.0276  -04173 -0.0492 -0.8812 -0.0838 -1.2458 -0.0818 -1.3581
Father’s education (> 16) 0.1045  2.1227  0.0991 22678  0.0535 1.4398  0.0580 1.8678
Father’s job (professional) -0.0383 -0.8313  -0.0459 -1.1338  0.0163  0.3369 0.0026  0.0605
Father’s job (unemployed) | -0.0298 -0.3434 -0.0250 -0.3386 -0.0676 -0.7437 -0.0525 -0.6534
Academic club 0.0539 12993  0.0356 09126  0.0899 1.7570  0.0591 1.2865
Sports club -0.0123  -0.2915 -0.0099 -0.2669 -0.0159 -0.3921 -0.0037  -0.1009
No club -0.0189  -0.2927  0.0021 0.0384  -0.0346 -0.5602 -0.0160 -0.2892
Delinquency -0.0214 -1.5513 -0.0136  -0.8763  -0.0082 -0.4405 -0.0092 -0.5710
Sample size 6721 6721 5689 5689

* School specific-dummy variables are included, but are not displayed to save space.

10



4 Additional Monte Carlo experiment

In this section, we numerically examine the estimation accuracy of the intercept term in a model with isolated
individuals. As discussed in Section 3.1, the (regular) identification of the intercept ag is not possible if Ay = 0;
and even when Ay is not zero but close to zero, the identification is weak. The DGP considered in this analysis is
as follows:

di-yi = d;- <n/\((z)) Y Ely] +xil301+ngi> ij,B02+“0+€i>

JjeCi j€Ci
di = 1(yo1 + xivo2 +wiyes +1; > 0),

fori =1,..,n, where, x;'s ~iid. N(0,1), w;’s ~iid. N(0,1), #;'s ~iid. N(0,1),and &; = v/0.3 -1, + /1 — 0.3 - ¢y
with €1;’s ~ 1.i.d. N(0,1). The true values for the parameters are as follows: o1 =1, B2 = 1, 701 = 0.5, y02 = 0.5,
Y03 = 0.5, and &y = 1. For this DGP, we consider three sample sizes: n € {200,400,800}. The size of each group
ny is set to either 20, 30, or 50 in a way such that n; = 20, np = 30, n3 = 50, ny = 20, ... and so on. For each
group r, the interaction matrix G, is defined according to a rook-contiguity spatial weight matrix. In other words,
we randomly allocate 7, units on the lattice of 5 X t such that 5t = n,, and set j € C; if i and j are rook-contiguous
on the lattice. Furthermore, we randomly select 7, /5 individuals within each group and reset their C; to empty to
identify ag. Then, we compute the average bias for estimating ag with different Ay values ranging from 0.1 to 0.9,
that is, Ag € {0.1,0.2,...,0.9}. The first-step estimation of (o1, Y02, Y03) is carried out simply using the standard
probit estimator. The number of Monte Carlo repetitions is set to 500 for each case.

The results of this simulation analysis are summarized in Figure 1, where the x-axis represents the value of Ay
and the y-axis is the average bias. As predicted by the theory, when Ay is close to zero, &y cannot be estimated
correctly regardless of sample size. In addition, we observe that the identification power is heavily dependent on
the sample size: the larger the sample size, the higher the power. This result may reflect the fact that, in our DGP,
we can observe a larger number of isolated individuals as the sample size increases, and thus more variations in
the value of (I, — Ag Gn)*l. For example, when Ay = 0.4, it is possible to almost precisely estimate the intercept if
we have n = 800, while the estimates of the intercept for n = 200 are still largely biased. When n = 200, it seems
to require A to be at least 0.6 for precise estimation; the case with n = 400 is in between.

Bias of estimating the intercept
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14

0.9

0.4
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

=200 = n=400 n =800

Figure 1: Bias of estimating the intercept
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