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SUPPLEMENTAL MATERIALS

I. ELECTRON CONFIGURATION

Z element name
non-zero element(s)

of one-hot-vector atomic electron configuration

1 H s1 1s1

5 B s2, p1 [He]2s22p1

6 C s2, p2 [He]2s22p2

7 N s2, p3 [He]2s22p3

8 O s2, p4 [He]2s22p4

16 S s2, p4 [Ne]3s23p4

21 Sc s2, d1 [Ar]4s23d1

22 Ti s2, d2 [Ar]4s23d2

23 V s2, d3 [Ar]4s23d3

24 Cr s1, d5 [Ar]4s13d5

25 Mn s2, d5 [Ar]4s23d5

26 Fe s2, d6 [Ar]4s23d6

27 Co s2, d7 [Ar]4s23d7

28 Ni s2, d8 [Ar]4s23d8

29 Cu s1, d10 [Ar]4s13d10

30 Zn s2, d10 [Ar]4s23d10

39 Y s2, d1 [Kr]5s24d1

40 Zr s2, d2 [Kr]5s24d2

41 Nb s1, d4 [Kr]5s14d4

42 Mo s1, d5 [Kr]5s14d5

43 Tc s2, d5 [Kr]5s24d5

44 Ru s1, d7 [Kr]5s14d7

45 Rh s1, d8 [Kr]5s14d8

46 Pd d10 [Kr]4d10

47 Ag s1, d10 [Kr]5s14d10

48 Cd s2, d10 [Kr]5s24d10

57 La s2, d1 [Xe]6s25d1

58 Ce s2, d1, f1 [Xe]6s25d14f1

59 Pr s2, f3 [Xe]6s24f3

60 Nd s2, f4 [Xe]6s24f4

61 Pm s2, f5 [Xe]6s24f5

62 Sm s2, f6 [Xe]6s24f6

63 Eu s2, f7 [Xe]6s24f7

64 Gd s2, d1, f7 [Xe]6s25d14f7

65 Tb s2, f9 [Xe]6s24f9

66 Dy s2, f10 [Xe]6s24f10

67 Ho s2, f11 [Xe]6s24f11

68 Er s2, f12 [Xe]6s24f12

69 Tm s2, f13 [Xe]6s24f13

70 Yb s2, f14 [Xe]6s24f14

71 Lu s2, d1, f14 [Xe]6s25d14f14

72 Hf s2, d2, f14 [Xe]6s25d24f14

73 Ta s2, d3, f14 [Xe]6s25d34f14

74 W s2, d4, f14 [Xe]6s25d44f14

75 Re s2, d5, f14 [Xe]6s25d54f14

76 Os s2, d6, f14 [Xe]6s25d64f14

77 Ir s2, d7, f14 [Xe]6s25d74f14

78 Pt s1, d9, f14 [Xe]6s15d94f14

79 Au s1, d10, f14 [Xe]6s15d104f14
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II. SIMILARITY MEASURE

Once the representation for materials is derived, the next important step is the measurement
of similarity (distance). In this work, we examine various types of distance measurements for
measuring the similarity of local structures and materials represented by the proposed OFM: (1)
Euclidean distance:

deucl(X,Y ) =

√∑
i,j

(Xij − Yij)2,

(2) Manhattan distance:

dman(X,Y ) =
∑
i,j

|Xij − Yij |,

(3) Cosine distance:

dcos(X,Y ) = 1−
∑

ij XijYij√∑
i,j X

2
ij

√∑
i,j Y

2
ij

,

(4) Bary-Curtis distance:

dbar(X,Y ) =

∑
ij |Xij − Yij |∑
ij |Xij |+ |Yij |

,

(5) Canberra:

dcan(X,Y ) =
∑
ij

|Xij − Yij |
|Xij + Yij |

,

and (6) correlation:

dcor(X,Y ) =
Cov(X,Y )
√
σX · σY

.

where Cov(X,Y ) is covariance between X and Y; σX and σY are variance of X and Y , respectively.

III. MACHINE-LEARNING EXPERIMENTS

A. Decision tree

To learn the mechanism of determination of the local magnetic moment from data, we apply a
decision tree regression model to represent the dependence of magnetic moment on the descriptors.
The concept in the decision tree is that the prediction model is broken down into a set of choices
for each descriptor element, in turn, starting at the root of the tree and progressing to the leaves,
where the prediction result is received. The goal is to create a model that predicts the value of a
target variable by learning simple and interpretable decision rules inferred from the data features
[1]. We employ a decision tree builder using the variance of explanatory variables and tree pruning
using reduced-error pruning with back fitting (REPTree) implemented in the Weka package [2].

TABLE I. Local magnetic moment discretization of transition metal elements for decision tree analysis.

Transition-metal

element

Local magnetic moment

Low Medium High

Mn ≤ 1.0µB 1.0µB ∼ 2.0µB ≥ 2.0µB

Fe ≤ 2.2µB 2.2µB ∼ 2.5µB ≥ 2.5µB

Co ≤ 0.5µB 0.5µB ∼ 1.5µB ≥ 1.5µB

Ni ≤ 0.2µB 0.2µB ∼ 0.4µB ≥ 0.4µB

For a better interpretation, we discretized the range of the local magnetic moment of transition-
metal sites into three levels: high, medium, and low. The discretization is carried out with consid-
ering the balance in the number of data instances in each level, as shown in Table 1. We performed
ten fold cross-validation, and the structure of the decision trees appear to be stable.
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B. Nearest-neighbor regression

The principle behind the nearest-neighbor methods is to find a predefined number of training
samples at shortest distances to a new interest point and the predicted value of the target variable
for this new point is weighted average over values of the target variable of its neighbors. The
number of samples can be a user-defined constant (k-nearest-neighbor learning), or can vary based
on the local density of points (radius-based neighbor learning). The accuracy of nearest-neighbor
regression, therefore, indicates the performance of data representation and similarity measurement.

We employ a nearest-neighbor regressor implemented in the scikit-learn package [3]. The number
of nearest neighbors is fixed as 5, and the nearest neighbors are determined by a brute-force search.
The prediction is weighted by the distance to the nearest neighbors.

C. Kernel ridge regression

In the present work, the physical properties of materials are represented using kernel ridge
regression (KRR)[4], which is a combination of the kernel method and ridge regression. This
method has been used successfully in the recent past within the materials and chemical sciences.
In the KRR algorithm, the property of a system can be given by the weighted kernel function:

y = f(x, c) =
∑

k∈Dref

ckK(x, xk), (1)

where k runs over all the reference data (Dref ). We use Laplacian kernel function: K(x, xk) =

e−γd(x,xk), where d(x, xk) is the Euclidean distance function of (x, xk). In order to minimize the
prediction risk, the coefficients ck are determined by minimizing the total square error regularized
by L2 norm (ridge regression):

arg max
c

(∑
i

[f(xi, c)− yi]2 + λ
∑
k

||ck||22

)
. (2)

Parameters γ and λ are determined in an inner loop of the 10-fold cross validation by using a
logarithmic-scale grid to predict the local magnetic moment. We optimize the hyperparameters
of the KRR model to predict formation energies, kernel width σ and regularization parameter
λ, by minimizing the 10-fold cross-validated RMSE. The optimized parameters are identified by
searching over 2500 pairs of σ and λ on a 2D logarithmic grid. These procedures are routinely
applied in machine-learning and statistics to avoid overfitting and overly optimistic error estimates.
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