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SUPPLEMENTAL MATERIAL:

R computation details

RGMM were implemented in R by adding a Ridge regularization term νI to the covari-
ance matrix Σc, where the parameter ν has been tuned using a 5-fold cross-validation.
HDDA method [2] has been implemented thanks to the R package HDclassif [1]. Im-
plemented using the R package e1071 [7], SVM require the setting of the kernel scale
parameter and the soft margin cost, tuned by a 5-fold cross-validation. Random For-
est method has two parameters to be tuned: the number of trees in the forest and
the Bagging number of variables. We decided to set the number of trees to 500, and
the Bagging parameter was tuned by a 5-fold cross-validation [5]. The Random For-
est method was implemented thanks to the R package randomForest [6]. As there is
no standard R package to implement FMLM, we made our own functional adaptation
of the multinomial logit model in decomposing the data on a cubic spline basis (de-
gree 3) [10], then applying the standard multivariate multinomial logit model on the
obtained coefficients (we used the R package splines [8] to compute the cubic spline
basis and the R package nnet [11] to build the multinomial logit model). The spline
decomposition requires the choice of the number of pieces of polynomial functions (or
the number of knots), tuned by a 5-fold cross-validation. NPFD requires the choice the
pseudometric δ, the k-nearest neighbours parameter k and the kernel function K (the
original R implementation codes of the NPDFA method are freely available online at
http://www.math.univ-toulouse.fr/~ferraty/. We made an adaptation the function
funopadi.knn.lcv in order to make global the automatic choice of the k-nearest neighbours
parameter k by a 5-fold cross-validation. However, Ferraty and Vieu [4] showed that the
choice of the kernel function K has a negligible impact on the NPFD estimator’s conver-
gence rate compared to the the pseudometric δ and the k-nearest neighbours parameter
k; thus, we arbitrarily fixed it as the standard quadratic kernel. Among several others,
we chose in this study δ as the MPLSR (Multiple Partial Least Squares Regression)
pseudometric, because it seems to be particularly adapted for hyperspectral data classi-
fication [12]. FSVM is based on an approach proposed by Rossi and Villa [9], computing
the standard SVM on the coefficients of functional data decomposition by a cubic splines
basis. FRF applies a Random Forest approach for functional data classification, decom-
posing the data on a cubic splines basis, then applying the standard Random Forest on
the obtained coefficients. For both last methods, parameters have been tuned by a 5-fold
cross-validation in the same way than their multivariate version.
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