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Abstract

This document provides supplementary material to the paper “Understanding the Risk-

Return Relation: The Aggregate Wealth Proxy Actually Matters.” Appendix A shows analyti-

cally that stock-based tests of the ICAPM generally produce biased estimates of the coefficient

of relative risk aversion when stocks are an imperfect proxy for aggregate wealth. Appendix B

introduces a Monte Carlo simulation exercise to characterize the magnitude of the bias in stock-

based tests of the ICAPM and examine the power of alternative tests to identify a positive

risk-return relation. Appendix C provides additional detail on the data for asset-class values

and returns used in constructing the aggregate wealth proxy in the paper. Appendix D analyzes

the relation between measurement error in our aggregate wealth proxy and bias in estimated

risk-return coefficients. Appendix E includes supplementary empirical results and robustness

tests.
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A Derivation of Risk-Return Coefficient for Stocks

In this appendix, we derive equation (12) in the paper which relates the risk-return coefficient

from stock-based tests, γs, to the coefficient of relative risk aversion, γ, when stocks are an imperfect

proxy for aggregate wealth. We specifically show that the coefficient of relative risk aversion does

not generally govern the tradeoff between expected stock returns and stock variance. Instead, the

true risk-return relation for stocks is substantially less pronounced.

For the purpose of deriving an analytical solution, we assume that aggregate wealth and stock

market returns jointly follow the scalar BEKK bivariate GARCH model of Engle and Kroner (1995)

given in equations (8) to (10) in the paper. If the ICAPM holds and Et−1(Rs,t) = γσs,aw,t, the

coefficient from a predictive regression of stock market returns on stock market variance is

γs =
Cov(Rs,t, σ

2
s,t)

V ar(σ2
s,t)

=
Cov

(
γσs,aw,t + εs,t,

Cov(σ2
s,t,σs,aw,t)

V ar(σs,aw,t)
σs,aw,t + νt

)
V ar(σ2

s,t)
, (A1)

where νt is the residual from an unconditional regression of σ2
s,t on σs,aw,t. Because Et−1(Rs,t) =

γσs,aw,t then Cov(Rs,t, νt) = 0, such that1

γs =
Cov

(
γσs,aw,t + εs,t,

Cov(σ2
s,t,σs,aw,t)

V ar(σs,aw,t)
σs,aw,t + νt

)
V ar(σ2
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=
γ
Cov(σ2
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V ar(σ2
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. (A2)

Given the structure of the scalar BEKK GARCH model, we can solve for V ar(σ2
s,t) and

Cov(σ2
s,t, σs,aw,t) as functions of the underlying parameters. First, define Ω∗ = Ω

1−α2−δ2 . Note

that

V ar(σ2
s,t) = E(σ4

s,t)− E(σ2
s,t)

2, (A3)

and

E(σ2
s,t) = E(ε2

s,t) = Ω∗s,s. (A4)

1Keeping with the notation in the paper that σ2
s,t is known to the representative investor at time t − 1, the νt

shock occurs in time t − 1 such that it is uncorrelated with the unexpected stock market return εs,t. Further, νt is
orthogonal to σs,aw,t by construction, so Cov(Et−1(Rs,t), νt) = 0. The statement that Cov(Rs,t, νt) = 0 results from
these two facts.
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Solving for E(σ4
s,t) produces

E(σ4
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such that
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. (A6)

Finally,
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s,t)

2
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To solve for Cov(σ2
s,t, σs,aw,t), note that

Cov(σ2
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s,tσs,aw,t)− E(σ2
s,t)E(σs,aw,t), (A8)

where

E(σ2
s,t)E(σs,aw,t) = Ω∗s,sΩ
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Rearranging,
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Thus,
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=
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Substituting the solutions for Cov(σ2
s,t, σs,aw,t) and V ar(σ2

s,t) into equation (A2),

γs =
γCov(σ2

s,t, σs,aw,t)

V ar(σ2
s,t)

= γ
Ω∗s,aw
Ω∗s,s

. (A13)

Noting that Ω∗s,aw = ρσsσaw, where ρ is the unconditional correlation between stock market and

aggregate wealth returns,

γs = γ
Ω∗s,aw
Ω∗s,s

= γρ
σaw
σs

. (A14)
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B Model Simulation

Appendix A demonstrates that empirical tests that relate the expected stock market return

to conditional stock market variance produce biased estimates of the coefficient of relative risk

aversion. In this appendix, we use a Monte Carlo simulation exercise to investigate the quantitative

magnitude of this bias in the risk-return coefficient and to consider the power of various tests to

identify a positive relation between risk and return.

We simulate time series of returns for the stock market and aggregate wealth portfolios from a

diagonal BEKK bivariate GARCH model. In particular, return dynamics are given by

 Raw,t

Rs,t

 = πt + εt, εt ∼ N(0,Σt), (B1)

where πt is the expected return vector. The process for Σt is

Σt = Ω + α(εt−1ε
′
t−1)α+ δΣt−1δ, (B2)

and the diagonal BEKK bivariate GARCH model restricts the α and δ parameters to be diagonal

matrices. We consider two alternative scenarios for specifying the expected return vector, πt, in

equation (B1). The first case assumes that stocks are a perfect proxy for aggregate wealth, such

that Et−1(Rs,t) = γσ2
s,t under the ICAPM. Prior literature uses the stock market as a proxy for

aggregate wealth, such that this case provides a baseline for the assumed properties of risk-return

tests in these studies. In the second and more realistic case, the stock market portfolio is an

imperfect proxy for aggregate wealth. The ICAPM therefore implies that Et−1(Raw,t) = γσ2
aw,t

and Et−1(Rs,t) = γσs,aw,t in this scenario. As such, we are able to directly investigate the effect of

using an imperfect aggregate wealth proxy by comparing across the two scenarios.

The BEKK model parameters in the simulation match values estimated using historical data

for the stock market and the aggregate wealth portfolio that we develop in Section 4 in the paper.

In particular, we estimate the model using monthly data over the 1953 to 2013 period using our

aggregate wealth portfolio and the stock market portfolio. The covariance process has parameters

α =

 0.2837 0.0000

0.0000 0.3175

 , (B3)
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δ =

 0.9449 0.0000

0.0000 0.9315

 , (B4)

and

Ω× 104 =

 0.1173 0.2789

0.2789 0.7400

 . (B5)

For a range of γ from 0 to 10 (with increments of 0.1), we simulate 10,000 draws of 732-month

sample periods of the returns and conditional covariance matrix of aggregate wealth and stock

returns. In each draw, we initially set the covariance matrix to its long-run expectation, (I − α−

δ)−1Ω(I − α − δ)−1, and then simulate a 500-month warm-up period. The first value of Σt in the

732-month sample is set to the ending value from the warm-up period.

Given the simulated series of stock market and aggregate wealth returns, we examine three

risk-return tests using two-step approaches. In the first step of each test, the relevant conditional

variance is estimated using a GARCH(1,1) process. The second step in each test is a predictive

regression for returns given the fitted variance predictive variable. More specifically, in the scenario

in which stocks are a perfect proxy for aggregate wealth, we regress stock returns on the fitted

conditional stock market variance from a GARCH(1,1) model. For the case in which stocks are an

imperfect proxy, we examine two tests. First, we relate stock returns to the GARCH(1,1) fitted

conditional stock market variance. This test produces a biased estimate of the coefficient of relative

risk aversion and is comparable to tests used in the prior literature. Second, we regress aggregate

wealth portfolio returns on the fitted conditional aggregate wealth variance from a GARCH(1,1)

process, which produces an unbiased estimate of the coefficient of relative risk aversion according

to the ICAPM.

To assess statistical significance of coefficient estimates in our simulation, we implement a

bootstrap approach within each of the 10,000 Monte Carlo draws that closely matches the method

from our empirical tests in the paper. Specifically, given a draw of the time series of returns and

fitted conditional variance for a given test, we form 1,000 bootstrapped 732-month samples. We

estimate the risk-return coefficient for each bootstrap sample and record the proportion of estimates

that are below zero in each iteration of the simulation, which corresponds to bootstrap p-value for

the one-sided test that the risk-return coefficient is less than zero. We then assess test power

by examining how often this p-value is below the 5% level across iterations in the Monte Carlo

simulation.

We begin our analysis by considering tests of the risk-return relation that predict stock returns
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using stock variance as in equation (6) in the paper. Figure B.1 shows the distribution of γs

estimates for the cases in which stocks are a perfect proxy (solid line) or imperfect proxy (dotted

line) for aggregate wealth. We focus here on the simulations for which the true coefficient of relative

risk aversion is set to five. The γs estimates from the predictive regression are concentrated around

this true value when stocks are a perfect proxy. Further, the estimated risk-return coefficient is

positive in over 99% of draws, and the γs estimates are statistically significant at the 5% level in

a one-tailed test in about 80% of the simulated samples. Thus, the test has desirable properties if

stocks are a perfect proxy for aggregate wealth.

Figure B.1 also shows results from the more realistic setting in which stocks are an imperfect

proxy. The risk-return coefficient from the predictive regression in equation (6) in the paper is a

biased estimate of γ in this case, consistent with the discussion above. The average estimate is 1.94

even as the true γ is 5.00, so the bias is large and economically meaningful. Further, test power

is substantially reduced by the bias. A 5% statistical rejection in a one-tailed test occurs in only

25% of simulated samples. The standard errors for the coefficient estimates from the perfect and

imperfect proxy cases are similar, such that the observed reduction in power for this test is largely

attributable to the downward bias in the risk-return coefficient estimate.

We next turn to a more comprehensive investigation of test power. In related work, Lundblad

(2007) examines tests of the risk-return relation for stocks. He assumes that the stock market is

a perfect proxy for aggregate wealth and that the true coefficient of relative risk aversion is two.

Under these assumptions, Lundblad (2007) finds that the commonly used tests suffer from low

power to identify a significantly positive risk-return relation.

Figure B.2 shows the power of the predictive regression in equation (6) in the paper to identify

a positive risk-return relation for the perfect and imperfect proxy cases. We consider test power

for a range of γ from 0 to 10. In particular, the figure plots the proportion of simulations in which

the bootstrap p-value is less than the 5% level for the one-tailed test of the null hypothesis γs ≤ 0

versus the alternative γs > 0. The solid line plots test power when stocks are a perfect proxy for

aggregate wealth and the dashed line represents the imperfect proxy case.

Figure B.2 demonstrates that test power is substantially reduced when stocks are an imperfect

proxy for aggregate wealth. In the case in which stocks are a perfect proxy, the predictive regression

produces significant evidence of a positive risk-return relation in 28% of simulations under Lund-

blad’s (2007) assumption of γ = 2. For higher levels of risk aversion, the test’s ability to detect a

relation between risk and return increases substantially. For example, a 5% rejection is obtained in

65% of draws when γ = 4 and 89% of draws for γ = 6. Thus, in the setting studied by Lundblad
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(2007) and prior literature, this test has relatively high power to identify a significant relation

between expected stock returns and conditional stock variance even with a moderate sample size

as long as γ is reasonably large.

On the other hand, we find that test power is much lower when stocks are an imperfect proxy.

That is, the probability of identifying a significant positive relation between the expected stock

return and conditional stock variance is substantially reduced relative to the perfect-proxy case over

the reasonable range of γ. In comparison to the cases above, the predictive regression produces

significant evidence of a positive risk-return relation in only 11% of draws when γ = 2, 19% of

simulations if γ = 4, and 31% of draws for γ = 6. Figure B.2 thus shows that finding significant

evidence of a positive relation between expected stock returns and conditional stock market risk

is likely to be difficult in the more realistic case in which stock returns are not exactly equal to

returns on aggregate wealth.

Finally, we consider the properties of risk-return tests when stocks are an imperfect proxy.

In this case, the ICAPM implies that expected returns are given by equation (11) in the paper.

We examine two predictive regressions in this setting: (i) regress aggregate wealth returns on

conditional aggregate wealth variance and (ii) regress stock market returns on conditional stock

market variance. Despite the fact that the first of these regressions produces an unbiased coefficient

of relative risk aversion estimate, Figure B.3 shows that the power of this test is not substantially

different from the power of the second, biased regression. Although the coefficient estimates are

substantially larger for the aggregate wealth tests, the standard errors are also larger such that

the rejection rates from both tests are similar. Intuitively, the low power of the aggregate wealth

risk-return test relative to the perfect-proxy case for a given γ in Figure B.2 results from the

comparatively low variation in expected returns when premiums are based on exposure to the

risk of aggregate wealth rather than stocks. This test is therefore useful for recovering unbiased

estimates of γ but is not expected to substantially increase the statistical evidence for a positive

risk-return relation.
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Figure B.1: Monte Carlo Densities of the Risk-Return Coefficient.
The figure shows distributions of the estimated risk-return coefficient from a Monte Carlo simulation in
which the true coefficient of relative risk aversion equals five. The solid (dashed) line represents the case
in which stocks are a perfect (imperfect) proxy for aggregate wealth. Returns are generated assuming
that the conditional covariance matrix of stock market and aggregate wealth returns follows a diagonal
BEKK bivariate GARCH process. Conditional stock market variance is estimated in each draw using a
GARCH(1,1) model. Estimates of γs are from the predictive regression Rs,t = µ + γsσ̂

2
s,t + ηs,t, and the

figure plots distributions of γ̂s for the two scenarios over 10,000 simulations of 732-month sample periods.
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Figure B.2: Monte Carlo Simulations: Comparison of Test Power for the Perfect Proxy
and Imperfect Proxy Cases.
The figure shows the probability of obtaining a statistical rejection at the 5% significance level for the
one-sided test of the null hypothesis that the risk-return parameter is less than zero using a Monte Carlo
simulation. The solid (dashed) line shows the case in which stocks are a perfect (imperfect) proxy for
aggregate wealth. The true coefficient of relative risk aversion varies from 0 to 10. The Monte Carlo
simulation generates 10,000 draws of 732-month sample periods of stock market and aggregate wealth returns,
which are generated assuming that the conditional covariance matrix of stock market and aggregate wealth
returns follows a diagonal BEKK bivariate GARCH process. Conditional stock market variance is estimated
in each draw using a GARCH(1,1) model. We measure the statistical significance of the γs estimates from
the predictive regression Rs,t = µ + γsσ̂

2
s,t + ηs,t in each simulation draw using a pairs bootstrap approach

with 1,000 bootstrap samples of 732-month time series. The figure plots the proportion of Monte Carlo
draws in which the bootstrap p-value is less than 0.05.
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Figure B.3: Monte Carlo Simulations: Comparison of Test Power for Alternative
Approaches when Stocks are an Imperfect Proxy for Aggregate Wealth.
The figure shows the probability of obtaining a statistical rejection at the 5% significance level for the one-
sided test of the null hypothesis that the risk-return parameter is less than zero when stocks are an imperfect
proxy for aggregate wealth using a Monte Carlo simulation. The solid line shows results for a test relating
expected aggregate wealth returns to conditional aggregate wealth variance and the dashed line represents
a test relating expected stock returns to conditional stock market variance. The true coefficient of relative
risk aversion varies from 0 to 10. The Monte Carlo simulation produces 10,000 draws of 732-month sample
periods of stock market and aggregate wealth returns, which are generated assuming that the conditional
covariance matrix of stock market and aggregate wealth returns follows a diagonal BEKK bivariate GARCH
process. The conditional variances of stock market and aggregate wealth returns are estimated in each draw
using GARCH(1,1) models. We measure the statistical significance of the γ and γs estimates from predictive
regressions of returns on conditional variance estimates in each simulation draw using a pairs bootstrap
approach with 1,000 bootstrap samples of 732-month time series. The figure plots the proportion of Monte
Carlo draws in which the bootstrap p-value is less than 0.05 for each test.
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C Data Description

This appendix provides additional details on the construction of our aggregate wealth return

series. Section C.1 provides the data sources for component returns, Section C.2 outlines the

estimation of portfolio weights using the Federal Reserve Flow of Funds tables, and Section C.3

discusses the primary assets excluded from our specification of aggregate wealth.

C.1 Aggregate Wealth Component Returns

This section details the data sources for returns on each of the nine component asset classes

included in the aggregate wealth portfolio. Unless otherwise noted, we use monthly returns for

each asset class over the period January 1953 to December 2013.

• Corporate Equity: Corporate equity returns are based on the CRSP value-weighted port-

folio. We obtain this data from Kenneth French’s website.

• Noncorporate Equity: Noncorporate equity returns are based on the returns of small

publicly traded stocks. We use returns of the smallest decile portfolio from portfolios sorted

on market capitalization from Kenneth French’s website.

• Deposits: Deposits returns are based on the U.S. 30-day Government Bond return series

(Table A-14) from the Ibbotson SBBI Classic Yearbook.

• Treasury Debt: Treasury debt returns are calculated using returns data for U.S. Intermediate-

Term Government bonds (Table A-10) and U.S. Long-Term Government bonds (Table A-6)

from the Ibbotson SBBI Classic Yearbook. The Federal Reserve Flow of Funds tables re-

port overall household ownership of Treasury securities. We therefore form a portfolio of

the Intermediate-Term and Long-Term Government bond series to proxy for the returns on

household government bond holdings. The weights on the Intermediate-Term and Long-Term

series are based on the total face values of shorter- versus longer-term maturity bonds, where

bonds with less (greater) than 10 years to maturity are classified as intermediate-term (long-

term) bonds. Historical outstanding Treasury debt is from the Monthly Statement of the

Public Debt, and archived reports are available on the U.S. Department of the Treasury web-

site (http://www.treasurydirect.gov/govt/reports/pd/mspd/mspd.htm). We calculate the

weights of Intermediate-Term and Long-Term bonds using the December report for each year

and apply these weights to calculate the government bond return series for the following year.
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• Agency Debt: Agency debt returns are based on the Bank of America Merrill Lynch U.S.

Agency Index available through Bloomberg. This return series starts in January 1978.

• Municipal Debt: Municipal debt returns are based on the Bank of America Merrill Lynch

U.S. Municipal Securities Index available through Bloomberg. This return series starts in

January 1989.

• Corporate Debt: Corporate debt returns are based on the U.S. Long-Term Corporate Bond

return series (Table A-5) from the Ibbotson SBBI Classic Yearbook.

• Defined Benefit Pensions: We approximate defined benefit pension returns using a port-

folio of corporate and government bonds, with weights determined by the relative values of

private pension plans for the corporate bond series and local, state, and federal government

pension plans for the government bond series. The corporate bond returns are from the

U.S. Long-Term Corporate Bond return series (Table A-5), and the government bond returns

are from the U.S. Intermediate-Term Government Bond return series (Table A-10) from the

Ibbotson SBBI Classic Yearbook. In estimating weights, we use the value of total financial as-

sets in defined benefit plans for private pension funds (Flow of Funds Table L.117), state and

local government employee retirement funds (Table L.118), and federal government employee

retirement funds (Table L.119).

• Real Estate: Residential real estate returns are estimated using information from the

Housing component of the Consumer Price Index (CPI). For the period from December

1952 to June 1985, the CPI calculation included a cost index of Homeownership which re-

flected the cost of home purchase. This data series is used by Fama and Schwert (1977a)

and Stambaugh (1982), with Fama and Schwert (1977a) noting that the CPI Homeowner-

ship data “seems to be the best available quality adjusted index of transaction prices for

real estate.” CPI data for this period are taken from the monthly Consumer Price In-

dex report (http://fraser.stlouisfed.org/publication/?pid=67&tid=21) and CPI Detailed Re-

port (http://fraser.stlouisfed.org/publication/?pid=58&tid=21). Prior to January 1964, the

Homeownership index was not directly listed in these reports. Thus, we infer its value from

the reported Housing index and its subcomponents along with the CPI basket weights. See

http://fraser.stlouisfed.org/docs/publications/bls/bls no1517.pdf for basket weights in this

period. For the period from July 1985 to December 2013, the CPI is based on Owner’s Equiv-

alent Rent rather than cost of home purchase. The Owner’s Equivalent Rent series is obtained

12



from the Federal Reserve Bank of St. Louis website (http://research.stlouisfed.org/fred2/).

Monthly returns are calculated as the percentage change in the index value.

C.2 Aggregate Wealth Component Weights

Individual asset-class weights are assigned in proportion to their respective aggregate values

as reported in Table B.100 (Balance Sheet of Households and Nonprofit Organizations) of the

quarterly Flow of Funds release. As described below, we also make use of Tables B.100.e (Balance

Sheet of Households and Nonprofit Organizations with Equity Detail), L.116 (Private and Public

Pension Funds), L.117.c (Private Pension Funds: Defined Contribution Plans), and L.121 (Mutual

Funds) in assigning estimates of holdings of indirectly held assets to the appropriate asset classes.

Given the quarterly frequency of the Flow of Funds releases, we estimate aggregate wealth portfolio

weights at the beginning of each quarter and apply these weights in computing returns over the

subsequent three months. The procedure for estimating the aggregate holdings of each asset class

is summarized below.

• Corporate Equity: Corporate equity holdings are directly held equity shares at market

value (Table B.100.e) plus indirectly held equity shares at market value (Table B.100.e).

• Noncorporate Equity: Noncorporate equity holdings are reported directly as equity in

noncorporate business (Table B.100).

• Deposits: Deposits are reported directly in Table B.100.

• Treasury Debt: Treasury debt holdings are direct holdings of Treasury securities (Table

B.100) plus household share of mutual funds times Treasury securities in mutual funds (Table

L.121) plus defined contribution plan share of mutual funds times Treasury securities in

mutual funds (Table L.121) plus Treasury securities in defined contribution plans (Table

L.117.c). The household share of mutual funds is mutual fund shares (Table B.100) divided

by total financial assets of mutual funds (Table L.121). The defined contribution plan share

of mutual funds is mutual fund shares (Table L.117.c) divided by total financial assets of

mutual funds (Table L.121).

• Agency Debt: Agency debt holdings are direct holdings of agency- and GSE-backed se-

curities (Table B.100) plus household share of mutual funds times agency- and GSE-backed

securities in mutual funds (Table L.121) plus defined contribution plan share of mutual funds
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times agency- and GSE-backed securities in mutual funds (Table L.121) plus agency- and

GSE-backed securities in defined contribution plans (Table L.117.c).

• Municipal Debt: Municipal debt holdings are direct holdings of municipal securities (Table

B.100) plus household share of mutual funds times municipal securities in mutual funds

(Table L.121) plus defined contribution plan share of mutual funds times municipal securities

in mutual funds (Table L.121).

• Corporate Debt: Corporate debt holdings are direct holdings of corporate and foreign

bonds (Table B.100) plus household share of mutual funds times corporate and foreign bonds

in mutual funds (Table L.121) plus defined contribution plan share of mutual funds times

corporate and foreign bonds in mutual funds (Table L.121) plus corporate and foreign bonds

in defined contribution plans (Table L.117.c).

• Defined Benefit Pensions: Defined benefit pension assets are pension entitlements (Table

B.100) minus household defined contribution plan assets (Table L.116).

• Real Estate: Real estate assets are real estate for households and nonprofit organizations

(Table B.100) minus home mortgages (Table B.100).

C.3 Exclusions from the Aggregate Wealth Specifications

This section itemizes individual asset classes excluded from the proxy for aggregate wealth used

in our empirical tests.

• Human Capital: Returns and values of human capital are notoriously difficult to estimate,

and various assumptions about labor cash flow dynamics and discount rates can produce

alternative estimates which differ substantially from an economic perspective. Depending on

assumptions, researchers have made the case that returns on the stock market and human

capital are strongly positively related (e.g., Campbell (1996), Baxter and Jermann (1997),

and Benzoni, Collin-Dufresne, and Goldstein (2007)), not closely related (e.g., Fama and

Schwert (1977b), Jagannathan and Wang (1996), and Lustig, Van Nieuwerburgh, and Verdel-

han (2013)), or even negatively related (e.g., Lustig and Van Nieuwerburgh (2008)). Due to

the difficulty of measuring both the value and returns to human capital, our paper focuses

primarily on the components of aggregate wealth that are measurable. In Appendix E, we

examine an aggregate wealth series that incorporates Jagannathan and Wang’s (1996) mea-

sure of human capital returns. Although accounting for human capital using this measure
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or one of the alternative proxies may change the estimate for the coefficient of relative risk

aversion in our tests, it seems unlikely that including labor wealth would change the broader

conclusion that tests of the ICAPM differ substantially across the stock market and aggregate

wealth portfolios.

• Durable Goods: Stambaugh (1982) considers durable goods in his aggregate wealth port-

folio proxies. Reliable monthly returns on durables are not available, and durables are also a

relatively small proportion of total wealth.

• International Assets: We restrict our analysis to the asset holdings of U.S. households,

whereas the aggregate wealth portfolio potentially includes the holdings of all households

in the world. Theoretically, if the U.S. market is segmented from foreign markets then the

assumption of a U.S.-only aggregate wealth portfolio is valid for studying risk and return.

A related literature studies the International CAPM by examining equity markets across

countries and finds evidence of interrelated markets (e.g., Chan, Karolyi, and Stulz (1992)

and Pástor, Sinha, and Swaminathan (2008)), which suggests that international assets may

be relevant for characterizing the risk-return relation. From a practical perspective, how-

ever, comparable worldwide data on household asset holdings and reliable returns data on

alternative asset classes are not readily available. We thus restrict our analysis to the U.S.

market.
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D Measurement Error

Our main tests rely on a market proxy that weights the returns of several asset classes to form

a more comprehensive measure of aggregate wealth relative to the stock market. In the process of

developing our proxy, we use information about the values and returns of the asset classes that may

contain measurement error. We include an analysis of the robustness of our results to alternative

proxies in Appendix E. In this appendix, we take a different approach by analyzing the potential

effect of measurement error in our aggregate wealth proxy on the bias in the estimated risk-return

coefficients from our tests.

Defining the true aggregate wealth portfolio return as Raw,t, the returns of our aggregate wealth

proxy (Rp,t) can be expressed as

Rp,t = Raw,t + νp,t. (D1)

In this setting, νp,t captures all forms of measurement error in our proxy, including error that

results from misestimated weights, mismeasured returns, and omitted asset classes. We argue

in the paper that using the stock market as a proxy for aggregate wealth is likely to produce a

substantial downward bias in the estimated risk aversion coefficient. In this appendix, we compare

the potential magnitude of the bias using stocks to the bias produced by potential measurement

error in our aggregate wealth proxy.

Equation (12) of the paper implies that the bias in the estimated coefficient of relative risk

aversion using stocks is

Bias(Stocks) =

(
ρ
σaw
σs
− 1

)
γ, (D2)

where ρ is the correlation between the returns on the stock market and aggregate wealth, and

σs and σaw are the unconditional standard deviations of the stock market and aggregate wealth

portfolios, respectively. The bias in the coefficient of relative risk aversion estimate associated with

our aggregate wealth proxy is

Bias(Proxy) =

(
ρp,aw

σaw
σp
− 1

)
γ, (D3)

where ρp,aw is the correlation between our aggregate wealth proxy and the true aggregate wealth

portfolio and σp is the standard deviation of our aggregate wealth proxy. Given equations (D2)

and (D3), the absolute magnitude of the bias in the risk-return coefficient estimate will be smaller
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using our proxy compared to stocks if

ρp,aw
σaw
σp

+ ρ
σaw
σs

< 2. (D4)

We first assess the characteristics of the measurement error term νp,t that are required to make

our proxy perform worse than stocks in terms of bias in the estimated risk-return coefficient. In

particular, we investigate combinations of the standard deviation of νp,t and the correlation between

Raw,t and νp,t that may produce a larger bias for our measure relative to stocks. The true aggregate

wealth portfolio is unobservable, but the correlation between the returns of our proxy and the stock

market of 0.92 produces a correlation inequality,

ρp,awρ−
√

(1− ρ2
p,aw)(1− ρ2) ≤ 0.92 ≤ ρp,awρ+

√
(1− ρ2

p,aw)(1− ρ2). (D5)

This inequality, along with the following equations,

V ar(Rp,t) = V ar(Raw,t) + V ar(νp,t) + 2ρν,awσ(Raw,t)σ(νp,t) (D6)

and

Cov(Rp,t, Raw,t) = V ar(Raw,t) + 2ρν,awσ(Raw,t)σ(νp,t), (D7)

allow us to find all feasible combinations of σ(νp,t) and ρν,aw that satisfy the necessary conditions.

Specifically, we first form a grid over ρ, ρν,aw, and σ(νp,t). We then calculate σ(Raw,t) and ρp,aw

using equations (D6) and (D7). If ρp,aw satisfies the correlation inequality in equation (D5), we

calculate the bias condition in equation (D4). Finally, for each value of ρν,aw, we record the

smallest value of σ(νp,t) for which the bias is larger with our measure compared to stocks (i.e.,

ρp,aw
σaw
σp

+ ρσawσs > 2) for some value of ρ.

Figure D.1 plots the lower bound on σ(νp,t) as a function of ρν,aw. Our aggregate wealth

proxy produces a smaller bias than stocks for all combinations of parameters when ρν,aw > −0.799,

so the graph shows the lower bound for σ(νp,t) over a range of ρν,aw from −1.000 to −0.799.

The smallest values of the lower bound occur for near-perfect negative correlations between the

aggregate wealth portfolio returns and measurement error, and the bound achieves a minimum of

0.81% per month when ρν,aw = −0.996. Thus, our proxy will always outperform stocks in estimating

the risk-return coefficient as long as the monthly standard deviation of measurement error is less

than 0.81% when measurement error and the true aggregate wealth portfolio are nearly perfectly
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negatively correlated. For higher values of σ(νp,t), other parameters determine whether stocks or

our proxy would produce a smaller bias in the estimate of γ. The lower bound on σ(νp,t) increases

as ρν,aw becomes less negative, and all correlations above −0.875 require the standard deviation

of measurement error to exceed 1.00% per month in order for stocks to be a better aggregate

wealth measure compared to our proxy. Thus, our aggregate wealth proxy is better than stocks

for estimating γ unless measurement error is relatively large and highly negatively correlated with

aggregate wealth portfolio returns.

We can also cast these results in terms of the true characteristics of the aggregate wealth

portfolio. We use equations (D5) to (D7) and find the combinations of ρ and σ(Raw,t) for which

either our proxy or stocks dominate the alternative measure in terms of producing the smallest bias

in the estimated coefficient of relative risk aversion. Figure D.2 shows the regions for which our

proxy outperforms (gray), the stock market outperforms (black), and either proxy may perform

better depending on other parameters (white). Our proxy is always superior when σ(Raw,t) is

less than 2.7% per month. The region in which the stock market works better is concentrated

in high values of σ(Raw,t) and ρ, such that the true aggregate wealth portfolio must be highly

volatile and highly correlated with stocks in order for stocks to be a better aggregate wealth proxy

compared to our measure. Estimates from the prior literature (e.g., Stambaugh (1982) and Lustig,

Van Nieuwerburgh, and Verdelhan (2013)) are located in the gray region of the graph, in which our

aggregate wealth proxy produces a smaller bias compared to stocks.

18



Figure D.1: Properties of Error in Our Proxy that Ensure Lower Bias than Stocks.
The figure plots the smallest value of the monthly standard deviation of measurement error in our aggregate
wealth proxy for which it is possible that using the stock market in risk-return tests could produce a lower
magnitude of bias in the estimated coefficient of relative risk aversion. The lower bound of the standard
deviation of measurement error is shown as a function of the correlation between the measurement error
term and the return on the true aggregate wealth portfolio. Our proxy produces a smaller magnitude of bias
for any standard deviation of measurement error below the plotted line and for any ρν,aw above −0.799. The
plotted lower bound is the smallest σ(νp,t) for which stocks can produce a lower magnitude of bias for some
value of the correlation between the returns of the stock market and aggregate wealth portfolios.
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Figure D.2: Comparison of Magnitude of Bias for Our Proxy and Stocks across Ag-
gregate Wealth Characteristics.
The figure shows the regions of the parameter space for which either our proxy or the stock market dominates
the alternative measure in terms of producing the smallest magnitude of bias in the estimated coefficient of
relative risk aversion. The parameter space is given by the monthly standard deviation of returns on the
true aggregate wealth portfolio and the correlation between the returns of the stock market and the true
aggregate wealth portfolio. Our proxy produces a smaller bias compared to stocks for any combination of
aggregate wealth parameters in the gray region, whereas stocks produce a smaller bias in the black region.
Results in the white region are mixed depending on the monthly standard deviation of measurement error
in our proxy and the correlation between measurement error and true aggregate wealth portfolio returns.
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E Robustness Tests

This appendix investigates the robustness of our empirical findings. Section E.1 considers

several modifications to the aggregate wealth portfolio used in our main empirical tests. Section

E.2 examines the impact of using alternative models to estimate market volatility on the relation

between market return and variance presented in Table 2 in the paper. Sections E.3 and E.4 examine

the robustness of our covariance-based tests reported in Tables 3 and 4, respectively. Section E.5

presents additional results to supplement our main asset pricing tests in Table 5.

E.1 Robustness of Results to Specification for Aggregate Wealth

An important theme of our paper is that researchers should be cognizant of the specification

for the aggregate wealth proxy used in time-series tests of the ICAPM. We outline our baseline

approach to estimating the returns for aggregate wealth in Section 4 in the paper but recognize

that other reasonable alternatives are possible. In this section, we examine the robustness of our

results to the specification of the market proxy. Table E.1 shows results corresponding to the risk-

return tests in Section 6 of the paper for 12 alternative aggregate wealth portfolios. For each proxy,

we report estimates of γ from the two-step regression using the conditional variance of aggregate

wealth returns (i.e., Panel B of Table 2 in the paper), the two-step regression using the conditional

covariance between stocks and aggregate wealth (i.e., Table 3), and the two-step regression using

the conditional covariance between individual asset classes and aggregate wealth (i.e., Table 4).

For the first two models, we also report the p-value associated with the one-sided test that the

risk-return coefficient is less than the corresponding risk-return coefficient estimated from stocks

(i.e., Panel A of Table 2). For brevity, we focus on the empirical specifications that include a lag

of the dependent variable as an explanatory variable.

Panel A of Table E.1 shows the estimates for our base case of aggregate wealth. These estimates

correspond to those in Tables 2 to 4 in the paper. In Panel B of Table E.1, we use alternative proxies

for the returns of various asset classes. Case 2 uses the CRSP value-weighted index as a proxy for

noncorporate equity returns. Moskowitz and Vissing-Jørgensen (2002) estimate private company

returns over the 1990 to 1998 period and find a similarity between private firm returns and stock

market returns, so we investigate the impact of using the CRSP index rather than small stocks

to proxy for noncorporate equity. In Case 3, we use the Ibbotson Long-Term Corporate bond

index as a proxy for defined-benefit pension returns rather than a weighted average of corporate

and Treasury bond returns. Cases 4 and 5 include alternative measures for real estate returns.
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Our base case uses CPI housing price data throughout the sample period. In Case 4, we begin to

measure real estate returns using percentage changes in the deseasonalized Case–Shiller Home Price

Index beginning in February 1987 when the data become available (http://us.spindices.com/index-

family/real-estate/sp-case-shiller). Case 5 uses the FTSE NAREIT US Real Estate Index series for

all real estate investment trusts (REITs) to proxy for real estate returns after the CPI reporting

methods change in July 1985 (http://www.reit.com/investing/index-data). The index is initially

available beginning in January 1972. The NAREIT index is about ten times more volatile than the

CPI real estate series, which may reflect the relatively high levels of leverage employed by many

REITs. To produce a comparable series, we form a portfolio of REITs and a 30-day Treasury bill

such that the variance of this portfolio is equal to the variance of the real estate returns calculated

from CPI data during the period of overlap in the two data samples. In particular, a portfolio that

invests 11.4% in the REIT index and 88.6% in the risk-free asset matches the monthly standard

deviation for the CPI return series of 0.65% over the period January 1972 to June 1985.

Panel C of Table E.1 includes aggregate wealth portfolio specifications in which the portfolio

weights or considered asset classes differ from the base case. Case 6 uses the gross real estate asset

value to weight real estate rather than the asset value net of mortgage liabilities. Cases 7 to 10 each

exclude one or more asset classes. Cases 7 and 8 exclude real estate and defined benefit pensions,

respectively, due to the relative difficulty of producing accurate monthly returns for these asset

classes, and Case 9 excludes both series. Case 10 removes deposits, Treasury debt, agency debt,

municipal debt, and corporate debt from the aggregate wealth portfolio. Some researchers have

suggested that certain types of debt may not contribute to net wealth (e.g., Barro (1974)), so we

investigate robustness to excluding all types of debt assets.

Case 11 in Panel D of Table E.1 is based on an aggregate wealth portfolio in which the portfolio

weights of component asset classes are lagged by one year relative to the base case. Several quarterly

figures from the Federal Reserve Flow of Funds tables are interpolated by the Federal Reserve based

on annual observations. Although the representative investor is presumed to know the true weights,

lagging all portfolio weights by one year eliminates any potential effects from lookahead bias induced

by this interpolation procedure.

Finally, Case 12 in Panel E incorporates human capital in the definition of aggregate wealth.

We base our measurement of monthly human capital returns on the method of Jagannathan and

Wang (1996). Specifically, we measure labor income as the difference in total personal income and

dividend income from Table 2.6 of the National Income and Product Accounts from the Bureau of
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Economic Analysis. We then calculate the labor return using the formula,

Rlabor
t = [Lt−1 + Lt−2]/[Lt−2 + Lt−3], (E1)

where Lt−1 is labor income for month t − 1. Return data are available beginning in April 1959.

In order to form the aggregate wealth portfolio, we also require an estimate of the aggregate

value of human capital at the beginning of each quarter to calculate portfolio weights. We follow

Jagannathan and Wang (1996) by making the assumption that labor income has both a constant

growth rate (g) and a constant discount rate (r). Given this assumption, the value of human capital

in month t is Lt/(r − g). The quantity (r − g) is unobservable, and we set it to 2.83%. Setting

(r − g) to this value causes the average weight of human capital in the aggregate wealth portfolio

to be equal to 2/3, which is a reasonable value according to Campbell (1996).

Throughout Table E.1, we generally find results that are consistent with our inferences from

the tests in Section 6 of the paper. The coefficient of relative risk aversion estimates exceed 4.20

in all cases, and 24 out of 36 coefficients are between seven and ten. The differences between the

risk-return coefficient estimates for aggregate wealth and stocks are economically large, and 20 out

of 24 are statistically significant at the 10% level. Overall, our inferences remain unchanged across

a wide variety of aggregate wealth specifications.

E.2 Alternative Variance Estimates

Our tests in Table 2 in the paper relate expected returns to conditional variance estimates from

a GARCH model using a two-step approach. Other studies (e.g., French, Schwert, and Stambaugh

(1987), Baillie and DeGennaro (1990), and Lundblad (2007)) have adopted a similar empirical

framework by testing the ICAPM’s predicted risk-return relation for stocks using a GARCH model

with mean effects (GARCH-M). Moreover, several alternatives to GARCH have been introduced

in the literature to capture various features of return volatility. Two representative models are

exponential GARCH (EGARCH) and fractionally integrated GARCH (FIGARCH). In this section,

we examine the robustness of our results to using GARCH-M, EGARCH, and FIGARCH models

of the volatility processes for stocks and aggregate wealth.

The GARCH-M model assumes that excess returns for market portfolio i follow

Ri,t = µ+ γσ2
i,t + λRi,t−1 + εi,t, εi,t ∼ N(0, σ2

i,t), (E2)

23



where the conditional variance σ2
i,t is given by

σ2
i,t = ω + αε2

i,t−1 + δσ2
i,t−1. (E3)

Equation (E2) allows the conditional expected portfolio return to depend on the conditional return

variance, which makes the GARCH-M model a natural candidate for testing ICAPM predictions.

As shown in equation (E3), conditional volatility evolves according to a GARCH(1,1) process.

EGARCH, introduced by Nelson (1991), is designed to allow for asymmetric responses of volatil-

ity to positive and negative return shocks. In particular, the log conditional variance is given by

the process

ln(σ2
i,t) = ω + α

[(∣∣∣∣ εi,t−1

σi,t−1

∣∣∣∣− E ∣∣∣∣ εi,t−1

σi,t−1

∣∣∣∣)+ θ
εi,t−1

σi,t−1

]
+ δ ln(σ2

i,t−1). (E4)

The α parameter governs the importance of return shocks on volatility, the θ parameter allows

volatility to respond differently to positive and negative shocks, and δ captures the persistent

nature of variance. The asymmetry in responses is often viewed as a desirable feature of volatility

models to help fit the “leverage effect,” which is the tendency for volatility to increase after negative

returns.

Baillie, Bollerslev, and Mikkelsen (1996) introduce FIGARCH to incorporate a long memory

into conditional variance estimates. Volatility in the FIGARCH model follows

σ2
i,t = ω + (1− βL− φL(1− L)d)ε2

i,t + βσ2
i,t−1, (E5)

where L is the lag operator. The current conditional volatility depends on lagged squared innova-

tions with the influence of each lag decaying at a slow hyperbolic rate rather than the exponential

decay implied by a standard GARCH model. The φ and d parameters govern the importance and

rate of decay of lags, and β produces persistence in volatility.

We estimate GARCH-M model parameters in one step using MLE. For the EGARCH and

FIGARCH models, we investigate the relations between expected returns and conditional volatility

using the two-step approach from Table 2 in the paper. That is, we first estimate conditional

variance σ̂2
i,t for each model using MLE and then regress returns on the conditional volatility

estimates.

Panel A of Table E.2 reports the GARCH-M estimates for the stock market and aggregate

wealth portfolios. The GARCH(1,1) process parameters for each portfolio are quite close to the

corresponding values in Table 2 in the paper. The risk-return coefficients for stocks in Cases 1 and 2
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are 2.80 and 2.94. These estimates are slightly smaller than the corresponding figures in Table 2 and

both are only marginally significant at the 10% level. As such, the statistical evidence for a positive

risk-return relation for the stock market is somewhat weaker in the GARCH-M model relative to

the two-step method in the paper. In contrast, evidence for a positive risk-return tradeoff for the

aggregate wealth portfolio is slightly stronger using the GARCH-M approach. The estimates of γ

in Cases 3 and 4 are 9.00 and 9.56, respectively, and each coefficient is significant at the 5% level.

Table E.2, Panel B examines the risk-return relation for the stock market and aggregate wealth

portfolios using EGARCH to estimate variance. The large negative θ parameters for each portfolio

imply that negative returns tend to produce larger increases in volatility compared to positive

returns. In the specifications with no lagged returns, returns appear to be virtually unrelated to

conditional variance estimates from the EGARCH model for stocks and insignificantly negatively

related to volatility for aggregate wealth. The risk-return coefficient for stocks is 0.12 (standard

error of 2.05), whereas the estimate of γ is −3.89 for aggregate wealth (standard error of 5.22).

Including a lagged return has a substantial effect on inferences, however. After the lagged return

is included, the risk-return coefficient for stocks is 1.79 (standard error of 2.01) with a p-value of

0.18. Aggregate wealth produces a γ estimate of 6.20 (standard error of 5.42) which is marginally

insignificant at the 10% level. Results for EGARCH are therefore somewhat mixed, but the observed

magnitudes of the risk-return coefficients are similar to those observed in Table 2 in the paper once

we account for nonsynchronous return measurement.

The estimated risk-return relations using FIGARCH conditional variance estimates are shown

in Panel C of Table E.2. The FIGARCH estimates for stocks indicate that volatility does not

have a long memory. Resulting estimates are similar to the GARCH specifications from Table

2 in the paper. With no lagged return, the risk-return coefficient is 3.00 (p-value of 0.01). The

aggregate wealth portfolio also has estimated variance parameters which do indicate long memory

in volatility. The γ estimates are 5.12 (p-value of 0.12) and 6.59 (p-value of 0.06) in the two

aggregate wealth specifications, so there is some evidence of a positive risk-return relation using

FIGARCH to estimate volatility. Overall, the results in Table E.2 show that tests of the ICAPM

have some sensitivity to the specification of volatility, which is consistent with the findings in prior

literature. However, the risk-return coefficient estimates from the aggregate wealth portfolio are

almost uniformly larger than the corresponding estimates from stocks which provides additional

support for our basic conclusions.
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E.3 Alternative Covariance Estimates: Stocks

In Section 6.2 in the paper, we examine the time-series relation between excess stock returns and

the conditional covariance between stocks and aggregate wealth. In the first stage of this analysis,

we model the conditional variance-covariance matrix of aggregate wealth returns and stock returns

using a diagonal BEKK bivariate GARCH model. In this section, we examine the robustness of

these results to using two alternative models of the conditional covariance process.

Our first approach is based on a scalar BEKK bivariate GARCH model for stocks and aggregate

wealth. This model is a restricted version of the model in equation (B2) in which the α and

δ parameters are scalars. Each element of the covariance matrix thus shares common GARCH

parameters.

Our second method for estimating conditional covariances is based on the dynamic conditional

correlation (DCC) model introduced by Engle (2002). DCC is a multivariate GARCH model which

specifies a dynamic process for the conditional correlation between two series while the variance

process for each series is GARCH. We model the conditional correlation between the stock market

and aggregate wealth portfolio as

ρs,aw,t = (1− φ− β)ρ̄s,aw + φ
εs,t−1

σs,t−1

εaw,t−1

σaw,t−1
+ βρs,aw,t−1, (E6)

and the GARCH parameter estimates for stocks and aggregate wealth are equal to those from Panel

A of Table 2 and Panel B of Table 2, respectively. Given the DCC model estimates, we compute

the conditional covariance as the product of conditional correlation and standard deviation terms,

σ̂s,aw,t = ρ̂s,aw,tσ̂s,tσ̂aw,t.

After computing first-stage estimates of the conditional covariance between stocks and aggregate

wealth using either the scalar BEKK GARCH or DCC method, we estimate the second-stage return

regression in equation (18) in the paper to assess the risk-return tradeoff in the stock market. These

results are provided in Table E.3. In each case, the estimates of the reward for risk are nearly

identical to those presented in Panel B of Table 3 based on the diagonal BEKK GARCH approach.

The estimates of γ in Table E.3 range from 6.98 to 7.75, and each coefficient is significantly greater

than zero at the 10% level. As such, our findings in Table 3 appear robust to alternative modeling

approaches for the conditional covariance process used to forecast stock market returns.
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E.4 Alternative Covariance Estimates: Multiple Assets

Our next set of robustness checks are related to the risk-return tests in Section 6.3 using a panel

of asset-class returns and covariances. For our primary results presented in Table 4 in the paper, we

estimate the conditional covariance between each asset class and aggregate wealth separately using

a diagonal BEKK bivariate GARCH model following equation (B2) and estimate the conditional

variance of aggregate wealth using a GARCH(1,1) model. We then estimate the risk-return tradeoff

via the panel regression in equation (20). In this section, we demonstrate the robustness of these

results to alternative methods for obtaining the first-stage covariance estimates. The results are

shown in Table E.4.

In Cases 1 and 2 (Cases 3 and 4), we estimate the conditional covariances between each as-

set class and the aggregate wealth portfolio jointly using a scalar (diagonal) BEKK multivariate

GARCH model. These models are estimated from the demeaned multivariate excess return series

for the aggregate wealth portfolio and the individual asset classes. We assume that the vector of

demeaned excess returns in month t has a multivariate normal distribution with mean zero and

variance-covariance matrix Σt. The BEKK GARCH model specifies that the conditional variance-

covariance matrix evolves according to

Σt = Ω + α(εt−1ε
′
t−1)α+ δΣt−1δ, (E7)

where Ω is a symmetric N × N matrix. The GARCH parameters α and δ are scalars in the

scalar BEKK GARCH model and N ×N diagonal matrices in the diagonal BEKK GARCH model.

Because the models used in Cases 1-4 involve the joint estimation of the variance-covariance matrix

across assets, we exclude the asset classes with return series that do not cover the full 1953 to

2013 sample period (i.e., agency debt and municipal debt) from these tests. In Cases 5 and 6, we

estimate the conditional covariance between each asset class and aggregate wealth separately using

the DCC model outlined in Section E.3.

Table E.4 shows that our findings in Table 4 are robust to these alternative approaches to

modeling conditional covariances across asset classes. The estimates of γ in Table E.4 range from

5.41 to 7.73, and five of the six coefficients are significant at the 5% level (the remaining coefficient

is significant at the 10% level).

As in Table 4, we also test the null hypothesis that the intercepts are jointly equal to zero in

each case. This test follows the double bootstrap design outlined in Section 6.3 of the paper, except

that the first-level and second-level bootstrap samples are based on 1,000 rather than 10,000 draws
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to reduce computational cost. The results from these tests are in line with those from Table 4.

We reject the null hypothesis of zero intercepts at the 5% level for the designs without a lagged

dependent variable in the second-stage regression (i.e., Cases 1, 3, and 5). However, we fail to reject

the null that the intercepts are jointly equal to zero in each of the remaining three cases.

E.5 Supplementary Asset Pricing Tests

Our main asset pricing results appear in Section 6.4 in the paper. We present a series of

additional tests below to highlight the portfolio choice and asset pricing implications of using a

broader proxy for aggregate wealth.

E.5.1 Portfolio Choice Applications

The primary empirical prediction of the CAPM regarding portfolio choice is that the market

portfolio is mean-variance efficient. Although this condition is unlikely to be exactly satisfied

in sample, time-series tests of the CAPM center around evaluating whether or not combining

a given test asset (or set of test assets) with the specified market proxy leads to a statistically

significant improvement in Sharpe ratio (e.g., Gibbons, Ross, and Shanken (1989)). In the paper,

we demonstrate that our more comprehensive proxy for the market portfolio achieves a higher

Sharpe ratio relative to the stock market proxy popular in prior literature. This result provides

initial evidence that our market proxy is likely to be superior for portfolio choice and asset pricing

applications.

Table E.5 formally evaluates whether or not individual assets classes are able to expand the

investment opportunity set relative to each of the two market proxies (i.e., stocks and aggregate

wealth) in the paper. We specifically estimate the following time-series regression using monthly

data on excess returns for each combination of asset class (j) and market proxy (i ∈ {s, aw}):

Rj,t = αj + βjRi,t + ej,t. (E8)

We estimate these regressions individually for each of the following seven asset classes: noncorporate

equity, Treasury debt, agency debt, municipal debt, corporate debt, pensions, and real estate. A

significant estimate of αj implies that the asset class on the left hand side of the regression expands

the investment opportunity set relative to a given market proxy, in contrast to the prediction

under the null hypotheses that αj = 0. We also consider regressions of each version of the market

portfolio on the other to assess wether a given proxy “spans” the investment opportunities under
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the alternative specification.

Panel A of Table E.5 reports regression results using stocks as the market proxy. In the first

column, we see that the aggregate wealth portfolio earns an alpha of 0.06% per month relative to

stocks, and this estimate is statistically significant at the 10% level (p-value of 0.05). Thus, our

more comprehensive measure of aggregate wealth expands the investment opportunity set relative

to the stocks-only proxy that is popular in most CAPM applications. In the regressions for the

seven individual asset classes, the intercepts are significantly different from zero at the 5% level in

five cases. As such, there is considerable evidence in Panel A that the stock market portfolio fails

to be mean-variance efficient in relation to the additional assets considered in the paper.

Panel B presents the corresponding regression estimates for the aggregate wealth market proxy.

In the spanning test, the stock market portfolio earns a statistically insignificant alpha of just

−0.02% per month (p-value of 0.73). In addition, only one alpha estimate across the seven individual

asset classes (i.e., the intercept for agency debt) is positive and statistically significant at the 5%

level. Taken as a whole, the results in Table E.5 suggest that the more comprehensive aggregate

wealth proxy introduced in the paper strongly outperforms the stock market in portfolio choice

applications.

E.5.2 Time-Series Tests

The tests in Table 5 in the paper apply a two-step, panel regression approach to examine

how the specification of aggregate wealth impacts the ICAPM’s ability to explain differences in

average returns across decile portfolios sorted on size, book-to-market equity, and prior stock returns

(i.e., momentum). In this section, we evaluate the performance of various models in pricing these

test assets using standard time-series regression methods. We are particularly interested in how

inferences might differ when we substitute our broader aggregate wealth portfolio return for the

stock market portfolio return as an explanatory variable in a given asset pricing model.

As in Section 6.4, we consider several combinations of asset pricing models and sets of test

portfolios. We specifically examine three alternative groups of value-weighted decile portfolios

formed on size, book-to-market ratio, and momentum. We compare the ability of the following

four asset pricing models to explain average returns for these test assets: (i) CAPM with stocks

as the market proxy, (ii) CAPM with aggregate wealth as the market proxy, (iii) Fama-French

(1993) three-factor model with stocks as the market proxy, and (iv) Fama-French (1993) three-

factor model with aggregate wealth as the market proxy. Specifications (i) and (iii) correspond to

how the CAPM and three-factor model are typically implemented in the literature, and comparing
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these specifications to models (ii) and (iv) highlights the asset pricing implications of our aggregate

wealth portfolio. The CAPM regressions are identical to equation (E8), where Rj,t now represents

the excess return for equity portfolio j in month t. The Fama-French regressions are given by

Rj,t = αj + βjRi,t + sjSMBt + hjHMLt + ej,t, (E9)

where SMBt and HMLt are the monthly excess returns for the size and value factors, respectively.

We estimate the time-series regressions separately for each decile portfolio. The primary pre-

diction for a well-specified asset pricing model is αj = 0. For a given model and set of test assets,

Panel A of Table E.6 reports the regression intercepts for the top and bottom decile portfolios.

We order the portfolios such that “decile 1” (“decile 10”) corresponds to the set of stocks with

lower (higher) expected alpha based on prior literature. Time-series tests commonly focus on the

ability of a given model to explain spreads in abnormal returns across portfolios, so we also examine

the alpha for a strategy that takes a long position in decile 10 and a short position in decile 1 in

each case. Panel B presents mean absolute regression intercepts across the ten decile portfolios,

bootstrap p-values for tests that the ten intercepts are jointly equal to zero, and average time-series

regression R2 values. The joint test is based on the following F statistic:

F =
T − n− k

n

[
1 + µ̂′kΩ̂

−1
k µ̂k

]−1
α̂′Ω̂−1α̂, (E10)

where T is the number of sample months, n = 10 is the number of test portfolios, k is the number

of factors, µ̂k is a k × 1 vector of factor mean returns, Ω̂k is the factor covariance matrix, α̂ is an

n × 1 vector of regression intercepts, and Ω̂ is the covariance matrix of regression residuals. We

compute F for our sample and compare it to the bootstrap distribution under the null hypothesis

of α = 0. To estimate this distribution, we impose αj = 0 for all j by jointly resampling monthly

adjusted excess portfolio returns and factor returns, where the adjusted excess return for portfolio

j is R∗j,t = Rj,t − α̂j . The p-value in Panel B reflects the likelihood of observing an F statistic in

the resamled data that exceeds the sample value of F .

The results in Table E.6 suggest that our aggregate wealth proxy positively impacts the CAPM’s

ability to explain returns on size-sorted portfolios. For example, the spread in alphas between the

top and bottom size deciles is 0.22% per month (p-value of 0.09) relative to the traditional version

of the CAPM in Case 1. In Panel B, the mean pricing error across the ten size portfolios is 0.12%

per month and the F test produces a rejection of the null hypothesis that the ten intercepts are
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jointly zero at the 1% level. Case 7 substitutes the aggregate wealth portfolio for the stock market

portfolio as the explanatory return in the CAPM tests. In contrast to Case 1, the high-minus-low

alpha spread is essentially zero with a p-value of 0.51. The average pricing error in this case is also

reduced to just 0.03% per month, and the corresponding p-value for the joint test is 0.88.

Introducing a broader market proxy in the time-series CAPM regressions also helps to account

for patterns in average returns associated with book-to-market equity. The spread in CAPM alphas

between value stocks and growth stocks in Case 3 is 0.39% per month (p-value of 0.01) relative to

the traditional CAPM. This difference is reduced in magnitude by 23% in Case 9, although the

alpha estimate of 0.30% per month remains statistically significant (p-value of 0.03). The mean

pricing error across the ten book-to-market deciles also drops from 0.15% per month in Case 3 to

0.12% in Case 9. Moreover, the F statistic from the joint test in Case 9 with the broader proxy for

aggregate wealth is only marginally significant (p-value just above 0.05).

In contrast, none of the four models considered exhibits particularly impressive performance in

explaining average returns for the momentum portfolios. Across Cases 5-6 (stock market proxy)

and 11-12 (aggregate wealth proxy), the high-minus-low portfolio alpha estimates are economically

large and strongly significant. The F tests also produce rejections of the null that alphas are jointly

zero for the momentum deciles, with p values of 0.00 in all four cases.

E.5.3 Cross-Sectional Tests

Table E.7 reports results from cross-sectional asset pricing tests for the same set of models con-

sidered in Table E.6. These tests provide additional perspective on the importance of the aggregate

wealth specification in asset pricing applications. Furthermore, the cross-sectional regressions also

allow us to evaluate the impact of including a broader market proxy on the explanatory power

of other asset pricing factors (e.g., Fama and French’s (1993) size and value factors, SMB and

HML).

We examine each model’s ability to capture variation in average return across the following

two sets of test assets: (i) ten size portfolios, ten book-to-market portfolios, and ten momentum

portfolios and (ii) ten size portfolios, 17 industry portfolios, and three bond portfolios. The size,

book-to-market, and momentum deciles in group (i) are identical to the value-weighted test assets

used in Table E.6. However, in the cross-sectional tests, we now require each model to price these

assets simultaneously. We also introduce the portfolios in group (ii) to address Lewellen, Nagel,

and Shanken’s (2010) critique of evaluating asset pricing models solely on their ability to explain

returns for anomaly-sorted portfolios in cross-sectional tests. This specific combination of test
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portfolios is similar in spirit to the one used in Campbell (1996). The 17 industry portfolios are

value weighted, and these return series are from Kenneth French’s website. Returns data for the

three industry portfolios are from the Ibbotson SBBI Classic Yearbook. We include the series

for long-term government bonds, intermediate-term government bonds, and long-term corporate

bonds. We convert all returns in the asset pricing tests to excess returns by subtracting the 30-day

Government Bond index return from Ibbotson.

The cross-sectional regression model is given by

R̄j = λ0 + λ1β̂j + λ2ŝj + λ3ĥj + uj , (E11)

where R̄j is the average excess return for portfolio j and β̂j , ŝj , and ĥj are portfolio j’s estimated

factor loadings for the market, size, and value factors, respectively. We consider two models—the

CAPM and the Fama-French three-factor model. In each case, we compare the performance of

these models with stocks and aggregate wealth as the market proxy. The factor loadings for each

portfolio are estimated using time-series regressions over the full sample period.

Panel A of Table E.7 reports parameter estimates for each model, including the zero beta rate

(i.e., λ0) and factor prices of risk (i.e., λ1, λ2, and λ3). A well-specified model should have an

estimate of λ0 that is statistically insignificant and economically small, estimated risk prices that

are in line with theoretical predictions, and pricing errors (i.e., uj for j = 1, ..., n) near zero. In

Panel B, we compare pricing errors across models by considering the cross-sectional regression R2

and mean absolute pricing error (MAPE). The latter is given by

MAPE =
1

n

n∑
j=1

|ûj |. (E12)

Following Goyal (2012), we also consider a joint test of whether all the pricing errors are zero. In

our application, the factors are all traded portfolios, and the test statistic is

T (1 + λ̂′Ω̂−1
k λ̂)û′Ω̂−1û ∼ χ2

n−k, (E13)

where λ̂ is a vector of the factor risk prices, Ω̂k is the factor covariance matrix, û is the vec-

tor of pricing errors, and Ω̂ is the covariance matrix of residuals from the first-stage, time-series

regressions.

Cases 1-4 in Table E.7 examine the ability of the models to price size, book-to-market, and
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momentum portfolios. Prior literature suggests that the CAPM performs poorly in explaining dif-

ferences in average returns across these test assets, and we see additional evidence of this conclusion

in Case 1. The estimated zero-beta rate is 1.02% per month, and the point estimate for the price of

market risk is actually negative. Moreover, the pricing errors are large as evidenced by the MAPE

of 0.17% per month and the low cross-sectional R2 value of 3.09%. Case 3 presents CAPM results

using the broader aggregate wealth proxy. This version of the model performs somewhat better

than the traditional CAPM specification in Case 1. The cross-sectional regression intercept falls to

0.62% per month, the price of market risk turns positive (but remains statistically insignificant),

and the MAPE is lower at 0.16% per month. Cases 2 and 4 add the size and value factors to the

specifications in Cases 1 and 3, respectively. Not surprisingly, incorporating these factors leads to

meaningful increases in R2 values and large drops in MAPE. The risk prices for SMB and HML

are both positive, and the estimates for the size factor are statistically significant. These models

still appear somewhat misspecified, however, as the zero-beta rate exceeds 2% per month in each

case. For all four models, the χ2 test leads to a rejection of the null hypothesis that the pricing

errors are jointly equal to zero across test assets.

Cases 5-8 show results for the size, industry, and bond portfolios. Both versions of the CAPM

(i.e., Cases 5 and 7) appear to explain patterns in returns for these test assets. The price of market

risk is positive and statistically significant in each case, and each of these two models produces an

economically reasonable estimate for the zero-beta rate of 0.22% per month. However, the model

in Case 7 using our broader definition of aggregate wealth delivers superior pricing performance

relative to the traditional CAPM specification in Case 5. For example, the cross-sectional R2 value

is 63.1% in Case 7 versus 61.3% in Case 5, and the MAPE is also better at 0.08% versus 0.09%.

The MAPE in Case 7 is actually slightly lower than the average absolute pricing errors produced by

the two versions of the three-factor model (i.e., Cases 6 and 8) among these test portfolios. Finally,

although the aggregate wealth version of the CAPM in Case 7 is formally rejected in the χ2 test,

the χ2 value of 52.4 is substantially lower than the values produced by the models in Cases 5, 6,

and 8.
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Table E.1: Robustness Tests for the Specification of the Aggregate Wealth Portfolio,
1953–2013.
The table demonstrates the robustness of our results to the definition of aggregate wealth. The table
presents results corresponding to the two-step regressions using the conditional variance of aggregate wealth
returns (i.e., Panel B of Table 2), the two-step regressions using the conditional covariance between stocks
and aggregate wealth (i.e., Table 3), and the two-step regressions using the conditional covariance between
individual asset classes and aggregate wealth (i.e., Table 4). All of the empirical specifications include
a return lag for the dependent variable. The table presents estimates of γ and the associated standard
errors (in parentheses) using the various approaches. For each of the first two methods, the table also
shows a bootstrap p-value (p(γ ≤ γs)) for the one-sided test that the the risk-return coefficient is less
than the corresponding risk-return coefficient estimated from stocks. For comparison, Panel A reports
results corresponding to our original specification of the aggregate wealth portfolio. Panel B presents results
corresponding to aggregate wealth portfolios with alternative proxies for individual component returns.
Panel C provides results corresponding to aggregate wealth portfolios with modified estimates of asset-class
weights. Panel D shows results corresponding to the original specification of the aggregate wealth portfolio
with asset-class weights lagged by 12 months to account for reporting delays and interpolation in the Federal
Reserve Flow of Funds data. Panel E reports results corresponding to a measure of aggregate wealth that
accounts for human capital.

σ2
aw,t σj,aw,t, Stocks σj,aw,t, All

Case Aggregate wealth modification γ p(γ ≤ γs) γ p(γ ≤ γs) γ

Panel A: Base specification for aggregat wealth

(1) Base case 8.523 0.066 7.628 0.072 7.534
(4.435) (4.636) (3.946)

Panel B: Modifications to return proxies

(2) Noncorporate equity: CRSP 8.359 0.112 6.325 0.095 8.828
value-weighted index (5.679) (4.081) (4.108)

(3) DB pensions: Ibbotson 7.502 0.099 7.314 0.092 7.205
long-term corporate bonds (4.280) (4.739) (3.857)

(4) Real estate: Case-Shiller 8.160 0.080 7.645 0.079 7.480
index returns (4.468) (4.754) (3.935)

(5) Real estate: NAREIT index 8.967 0.058 7.951 0.064 7.761
returns (4.649) (4.754) (3.957)

Panel C: Modifications to portfolio weights

(6) Gross real estate holdings 8.843 0.073 8.255 0.073 7.928
(4.732) (5.073) (4.186)

(7) Exclude real estate 7.163 0.066 6.140 0.074 6.034
(3.424) (3.628) (3.041)

(8) Exclude DB pensions 7.468 0.056 5.424 0.112 5.953
(3.673) (3.372) (3.004)

(9) Exclude real estate and 6.004 0.063 4.210 0.180 4.636
DB pensions (2.691) (2.542) (2.241)

(10) Exclude deposits and debt 7.609 0.043 6.084 0.062 6.305
securities (3.499) (3.444) (3.069)

Panel D: Lagged portfolio weights

(11) Base case with weights 7.783 0.065 7.091 0.075 7.259
lagged by 12 months (4.057) (4.337) (3.716)

Panel E: Account for human capital

(12) Add human capital returns 9.877 0.379 29.507 0.071 24.389
(21.583) (19.071) (14.893)
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Table E.2: The Risk-Return Tradeoff with Alternative Volatility Specifications, 1953–
2013.
The table presents evidence on the relation between excess return and volatility for the stock market portfolio
and the aggregate wealth portfolio using a GARCH-M specification (Panel A) and two-step estimation
approach (Panels B and C). For Panel A, we estimate the GARCH-M parameters using maximum likelihood
estimation (MLE). We report standard errors in parentheses and a p-value for the one-sided test of the
null hypothesis that the-risk-return parameter is less than zero in brackets. The R2 value in each case is
the total R2 for the GARCH-M model. The first-stage results in Panel B (Panel C) are EGARCH(1,1)
(FIGARCH(1,1)) parameter estimates for each portfolio using demeaned excess returns. We estimate the
EGARCH(1,1) and FIGARCH(1,1) parameters using MLE. The second-stage return regression for stocks
(aggregate wealth) is given by Rs,t = µ + γsσ̂

2
s,t + λRs,t−1 + ηs,t (Raw,t = µ + γσ̂2

aw,t + λRaw,t−1 + ηaw,t).
For these regressions, we report bootstrap standard errors in parentheses and a bootstrap p-value for the
one-sided test of the null hypothesis that the-risk-return parameter is less than zero in brackets. The R2

value in each case is the second-stage regression R2.

Panel A: GARCH-M specification

GARCH(1,1) parameters Return regression parameters

Case ω × 104 α δ µ× 102 γ λ R2 (%)

Stock market portfolio
(1) 0.997 0.114 0.838 0.217 2.800 0.34

(0.411) (0.027) (0.032) (0.385) (2.168)
[0.098]

(2) 0.955 0.113 0.841 0.154 2.938 0.076 1.12
(0.394) (0.027) (0.031) (0.397) (2.291) (0.045)

[0.100]
Aggregate wealth portfolio

(3) 0.264 0.110 0.822 0.029 8.996 0.24
(0.094) (0.026) (0.040) (0.170) (4.776)

[0.030]
(4) 0.239 0.112 0.826 −0.034 9.556 0.194 3.33

(0.087) (0.026) (0.039) (0.167) (4.925) (0.042)
[0.026]

Panel B: EGARCH(1,1) specification

First-stage Second-stage
EGARCH(1,1) parameters return regression parameters

Case ω α δ θ µ× 102 γ λ R2

Stock market portfolio
(5) −0.817 0.199 0.872 −0.856 0.556 0.117 0.00

(0.238) (0.071) (0.037) (0.346) (0.371) (2.049)
[0.478]

(6) 0.173 1.791 0.109 0.96
(0.385) (2.011) (0.043)

[0.182]
Aggregate wealth portfolio

(7) −1.130 0.145 0.858 −1.021 0.437 −3.886 0.13
(0.132) (0.045) (0.017) (0.338) (0.181) (5.220)

[0.773]
(8) 0.002 6.198 0.202 3.33

(0.199) (5.417) (0.044)
[0.126]

(continued)
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Table E.2—Continued

Panel C: FIGARCH(1,1) specification

First-stage Second-stage
FIGARCH(1,1) parameters return regression parameters

Case ω × 104 φ d β µ× 102 γ λ R2

Stock market portfolio
(9) 2.543 0.000 0.810 0.738 −0.058 2.997 0.89

(0.905) (0.000) (0.151) (0.137) (0.288) (1.339)
[0.014]

(10) −0.092 2.930 0.084 1.60
(0.287) (1.341) (0.045)

[0.016]
Aggregate wealth portfolio

(11) 0.583 0.316 0.369 0.553 0.092 5.124 0.25
(0.324) (0.135) (0.213) (0.198) (0.164) (4.369)

[0.121]
(12) −0.020 6.591 0.180 3.47

(0.158) (4.168) (0.042)
[0.056]

36



Table E.3: Robustness Tests for the Risk-Return Tradeoff for the Stock Market Port-
folio: Covariance Approach, 1953–2013.
The table presents evidence on the relation between stock market portfolio return and conditional covari-
ance between stock returns and aggregate wealth returns using a two-step estimation approach. Each panel
shows results from the following second-stage regression of stock market excess return, Rs,t, on the con-
ditional covariance between stock returns and aggregate wealth returns, σ̂s,aw,t, and lagged excess stock
returns, Rs,t−1: Rs,t = µ + γσ̂s,aw,t + λRs,t−1 + ηs,t. We report bootstrap standard errors in parentheses
and a bootstrap p-value for the one-sided test of the null hypothesis that γ ≤ 0 in brackets. The R2 value
in each case is the second-stage regression R2. In Panel A, the conditional covariance estimates are from
a scalar BEKK GARCH model. We estimate these parameters using the demeaned bivariate excess return
series for the aggregate wealth portfolio and the stock market portfolio. We assume that the vector of
demeaned excess returns in month t, [Raw,t − R̄aw Rs,t − R̄s]′, has a bivariate normal distribution with
mean zero and variance-covariance matrix Σt. The conditional variance-covariance matrix evolves according
to Σt = Ω + α(εt−1ε

′
t−1)α + δΣt−1δ, where Ω is a symmetric 2 × 2 matrix and α and δ are scalars. In

Panel B, the conditional covariance estimates are from a dynamic conditional correlation (DCC) model for
the stock market and aggregate wealth. The conditional correlation between these two series is given by
ρs,aw,t = (1− φ− β)ρ̄s,aw + φ

εs,t−1

σs,t−1

εaw,t−1

σaw,t−1
+ βρs,aw,t−1. The conditional covariance estimate is given by the

product of the conditional correlation and standard deviation terms, σ̂s,aw,t = ρ̂s,aw,tσ̂s,tσ̂aw,t, where the
standard deviations are estimated from GARCH(1,1) models.

Return regression parameters

Case µ× 102 γ λ R2 (%)

Panel A: Scalar BEKK GARCH approach

(1) 0.010 7.012 0.41
(0.373) (4.726)

[0.071]
(2) −0.081 7.501 0.090 1.22

(0.362) (4.539) (0.045)
[0.050]

Panel B: DCC approach

(3) 0.022 6.978 0.37
(0.401) (5.171)

[0.090]
(4) −0.091 7.745 0.092 1.21

(0.384) (4.900) (0.044)
[0.057]
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Table E.4: Robustness Tests for the Risk-Return Tradeoff Across Asset Classes: Co-
variance Approach, 1953–2013.
The table presents evidence on the risk-return relation across asset classes using a two-step estimation
approach. In each case, the second-stage regression of excess returns for individual asset classes and the
aggregate wealth portfolio on the conditional covariance between asset-class returns and aggregate wealth
returns and lagged excess returns is given by Rj,t = µj +γσ̂j,aw,t+λjRj,t−1 +ηj,t. In Cases 1 and 2 (Cases 3
and 4), the conditional covariance estimates are from a scalar (diagonal) BEKK multivariate GARCH model.
In Cases 5 and 6, the conditional covariance estimates are from pairwise dynamic conditional correlation
(DCC) models for each asset class and aggregate wealth. For each model, we also estimate the conditional
variance for the aggregate wealth portfolio using the GARCH(1,1) model in Panel B of Table 2. In Panel
A, we report intercepts for each asset class, and the corresponding bootstrap standard errors are shown
in parentheses. For each model, Panel B presents an estimate of the risk-reward coefficient, γ, with the
corresponding bootstrap standard error in parentheses. A bootstrap p-value for the one-sided test of the null
hypothesis that γ ≤ 0 is given in brackets. Panel B also provides a bootstrap p-value, p(µ1 = · · · = µ9 = 0),
for a test of the null hypothesis that the intercepts are jointly equal to zero. The R2 value in each case is
the second-stage regression R2. We exclude agency debt and municipal debt from the analyses in Cases 1-4
as these return series do not cover the full 1953 to 2013 sample period.

Scalar Diagonal
BEKK-GARCH BEKK-GARCH Pairwise DCC

approach approach approach

Case (1) (2) (3) (4) (5) (6)

Panel A: Intercepts from second-stage return regressions

µj × 102

Corporate equity 0.154 0.096 0.154 0.097 0.011 −0.089
(0.250) (0.251) (0.250) (0.250) (0.350) (0.339)

Noncorporate equity 0.228 0.009 0.222 0.003 0.043 −0.236
(0.344) (0.335) (0.347) (0.338) (0.476) (0.454)

Treasury debt 0.101 0.081 0.102 0.082 0.110 0.088
(0.063) (0.062) (0.063) (0.061) (0.062) (0.061)

Agency debt n/a n/a n/a n/a 0.160 0.118
(0.067) (0.067)

Municipal debt n/a n/a n/a n/a 0.190 0.170
(0.094) (0.095)

Corporate debt 0.084 0.059 0.084 0.059 0.077 0.044
(0.101) (0.097) (0.101) (0.097) (0.106) (0.101)

DB pensions 0.160 0.134 0.160 0.134 0.162 0.136
(0.060) (0.060) (0.060) (0.060) (0.061) (0.060)

Real estate −0.098 −0.077 −0.098 −0.077 −0.092 −0.075
(0.037) (0.035) (0.037) (0.034) (0.037) (0.034)

Aggregate wealth 0.081 0.024 0.081 0.024 0.021 −0.057
(0.118) (0.116) (0.118) (0.116) (0.162) (0.156)

Panel B: Additional details for second-stage return regressions

Risk aversion coefficient
γ 5.410 5.503 5.513 5.598 7.107 7.725

(3.012) (2.919) (3.063) (2.967) (4.412) (4.213)
[0.037] [0.029] [0.037] [0.030] [0.056] [0.033]

Joint test of intercepts
p(µ1 = · · · = µ9 = 0) 0.023 0.170 0.022 0.168 0.028 0.201

Model fit
R2 (%) 1.11 4.92 1.11 4.92 1.06 4.87

Control for lagged returns
Include Rj,t−1? No Yes No Yes No Yes
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Chan, K.C., G. Andrew Karolyi, and René M. Stulz, 1992, Global financial markets and the risk
premium on U.S. equity, Journal of Financial Economics 32, 137–167.

Engle, Robert, 2002, Dynamic conditional correlation: A simple class of multivariate generalized
autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statis-
tics 20, 339–350.

Engle, Robert, and Kenneth F. Kroner, 1995, Multivariate simultaneous GARCH, Econometric
Theory 11, 122–150.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on bonds and
stocks, Journal of Financial Economics 33, 3–53.

Fama, Eugene F., and G. William Schwert, 1977a, Asset returns and inflation, Journal of Financial
Economics 5, 115–146.

, 1977b, Human capital and capital market equilibrium, Journal of Financial Economics 4,
95–125.

French, Kenneth R., G. William Schwert, and Robert F. Stambaugh, 1987, Expected stock returns
and volatility, Journal of Financial Economics 19, 3–29.

Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A test of the efficiency of a given
portfolio, Econometrica 87, 1121–1152.

Goyal, Amit, 2012, Empirical cross-sectional asset pricing: A survey, Financial Markets and Port-
folio Management 26, 3–38.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of
expected returns, Journal of Finance 51, 3–53.

Lewellen, Jonathan, Stefan Nagel, and Jay Shanken, 2010, A skeptical appraisal of asset-pricing
tests, Journal of Financial Economics 96, 175–194.

42



Lundblad, Christian, 2007, The risk return tradeoff in the long run: 1836-2003, Journal of Financial
Economics 85, 123–150.

Lustig, Hanno, and Stijn Van Nieuwerburgh, 2008, The returns on human capital: Good news on
Wall Street is bad news on Main Street, Review of Financial Studies 21, 2097–2137.

Lustig, Hanno, Stijn Van Nieuwerburgh, and Adrien Verdelhan, 2013, The wealth-consumption
ratio, Review of Asset Pricing Studies 3, 38–94.

Moskowitz, Tobias J., and Annette Vissing-Jørgensen, 2002, The returns to entrepreneurial invest-
ment: A private equity premium puzzle?, American Economic Review 92, 745–778.

Nelson, Daniel B., 1991, Conditional heteroskedasticity in asset returns: A new approach, Econo-
metrica 59, 347–370.
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