
Appendices to “A Repelling-Attracting
Metropolis Algorithm for Multimodality”

Hyungsuk Tak
Statistical and Applied Mathematical Sciences Institute

Xiao-Li Meng
Department of Statistics, Harvard University

David A. van Dyk
Statistics Section, Department of Mathematics, Imperial College London

A The average number of density evaluations in Sec-

tion 3.1

Kou et al. (2006) implement the EE (equi-energy) sampler by running five parallel chains
under five different temperature levels. The chain under the highest temperature adopts
only MH transitions, and the other four chains use an EE jump with probability 0.1 and
an MH transition otherwise at each iteration. The EE sampler begins by running a chain
under the highest temperature for 75,000 iterations; the first 25,000 are burn-in iterations
and the next 50,000 iterations form an energy ring at the highest temperature. The first
chain uses only MH transitions. After running the first chain for 75,000 iterations, the
sampler initiates the next chain under the second highest temperature and runs it for
75,000 iterations; the first 25,000 are burn-in iterations and the next 50,000 iterations form
an energy ring at the second highest temperature. From the second chain, the sampler
adopts an EE jump with probability 0.1 and an MH transition otherwise at each iteration.
This process continues until the EE sampler finishes running the fifth chain under the
unit temperature for 75,000 iterations; the first 25,000 iterations are discarded. All chains
keep running until the end of the fifth chain, which means that the first chain runs for
5×75,000 iterations in total and the second one runs for 4×75,000 iterations, etc. Each EE
jump needs to evaluate the target density twice (with caching). Thus, the (expected) total
number of the density evaluations is 16×75,000 and that per iteration is 16.0.

Similarly, Kou et al. (2006) implement parallel tempering with five temperature levels
and propose four swaps with probability 0.1 at the end of each iteration. Five chains
under five different temperature levels are run simultaneously for 75,000 iterations, using
MH transitions. At the end of each iteration, four swaps occur with probability 0.1 and
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no swaps otherwise. Each swap requires two additional evaluations of the target (with
caching). Thus, the (expected) total number of the target density evaluations is 435,000
and the average number of the density evaluations per iteration is 5.8 (=435,000/75,000).

B Implementation details in Section 3.3

Tempered transitions require several tuning parameters, e.g., the number of rungs of
the temperature ladder and the temperature and jumping scale of each rung, and set-
ting these parameters is known to be challenging in practice (Behrens et al., 2012). At
each iteration, the tempered transitions ascend the temperature ladder to explore a flat-
ter surface where the modes are melted down, and then descend the ladder, accept-
ing the last candidate with a modified acceptance probability to maintain the station-
ary distribution (Neal, 1996). To sample π1 in (12) at iteration i, for example, suppose

π1j(x1) ∝ {π1(x1 | x(i−1)
2 , x

(i−1)
3 , x

(i−1)
4 , y, w)}1/Tj , where Tj is the temperature at rung j for

j = 1, . . . , J . The target density is π10(x1) and the ladder has J rungs with T0 = 1 <
T1 < · · · < TJ . Within each iteration i, starting from j = 1 to J , we generate x̂1j from

N2(x̂1,j−1,Σj), where x̂10 = x
(i−1)
1 , and accept it with probability min{1, π1j(x̂1j)/π1j(x̂1,j−1)}

and set x̂1j = x̂1,j−1 otherwise. Once we reach j = J , we reverse the process from j = J
to 1 and generate x̌1,j−1 from N2(x̌1j,Σj) where x̌1J = x̂1J , and accept it with probability
min{1, π1,j−1(x̌1,j−1)/π1,j−1(x̌1j)} and set x̌1,j−1 = x̌1j otherwise until we reach the bottom
of the temperature ladder, collecting x̌1,J−1, . . . , x̌10. After generating the last proposal x̌10,

we set x
(i)
1 = x̌10 with an MH acceptance probability of

min

{
1,

π11(x
(i−1)
1 )

π10(x
(i−1)
1 )

× · · · × π1J(x̂1,J−1)

π1,J−1(x̂1,J−1)

π1,J−1(x̌1,J−1)

π1J(x̌1,J−1)
× · · · × π10(x̌10)

π11(x̌10)

}
,

and set x
(i)
1 = x

(i−1)
1 otherwise.

To fit the simulated data, we set three rungs with temperature equal to 2j for the jth
rung. Because the longest observed distance between two sensors is about 0.9, we set the
jumping covariance matrix Σj = (0.9 × 1.2j−1)2 × I2 for each Metropolis update of the
tempered transitions for the jth rung. For Metropolis and RAM, we set Σ = 1.082 × I2.
This is the same as the jumping covariance matrix of tempered transitions at the middle
rung, i.e., Σ2. An initial value for each unknown location for each Markov chain is randomly
selected from the unit square, [0, 1]× [0, 1].

C The average number of π11 evaluations in Section 3.4

Since the kernels are used only to sample π11 in Step 1 of Table 5, the average number of
π11 evaluations at each iteration (Nπ11) is not proportional to the entire CPU time needed
for sampling the full posterior π in (18). For reference, NM

π11
= 2 (with either the Gaussian

or mixture proposal), NRAM
π11

= 8.76 (Nd = 1, Nu = 4.48, Nz = 1.28), and NTT
π11

= 11.
Each Metropolis transition evaluates π11 twice, once for the current state and once for the
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proposal at each iteration. Caching the density value of the current state does not help
reduce Nπ11 because the density of the current state changes according to the updates of
the other parameters in Steps 2 and 3 of Table 5.

References

Behrens, G., Friel, N., and Hurn, M. (2012). Tuning Tempered Transitions. Statistics and
Computing, 22(1):65–78.

Kou, S. C., Zhou, Q., and Wong, W. H. (2006). Discussion Paper: Equi-Energy Sampler
with Applications in Statistical Inference and Statistical Mechanics. The Annals of
Statistics, 34(4):1581–1619.

Neal, R. M. (1996). Sampling From Multimodal Distributions Using Tempered Transitions.
Statistics and Computing, 6(4):353–366.

3


