
9 Supplementary Material: A Primer on Nonlinear Shrinkage

Nonlinear shrinkage estimation of the unconditional covariance matrix is a burgeoning field of

probability and statistics which may not be very accessible to applied researchers in economics

and finance. This supplementary material provides a self-contained introduction. It is intended

to be descriptive, qualitative, and as non-technical as the nature of the subject matter will

allow. It is not intended as a substitute for the rigorous treatment provided in Ledoit and Wolf

(2017a).

The exposition here is couched in terms of the covariance matrix, but in the DCC context

the described estimator should be applied to the devolatilized residuals. The resulting estimate

should then be renormalized as per Section 3.5 in order to generate a proper correlation matrix.

Σ denotes the population covariance matrix. YT denotes a stationary data set of dimension

T ×N with covariance matrix Σ. We assume mean zero for simplicity.

9.1 Importance of the Eigenvalues for Portfolio Selection

Following Markowitz (1952), if µ denotes a vector of expected returns, then the weights of the

tangency portfolio are

wTANGENCY = scalar× Σ−1µ . (9.1)

Inverting a matrix is not a particularly intuitive operation, and when an experienced

practitioner like Michaud (1989) warns that it leads to “error maximization”, it is hard to see

what is going wrong or how to fix it.

Fortunately, the covariance matrix is not just any matrix, it is a symmetric matrix. The

covariance of the return on Intel shares with Nike shares is the same as Nike with Intel by

definition. Symmetric matrices enjoy a very special property: they always admit a spectral

decomposition. This decomposition is given by

Σ =.. V

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1

τ2 0
. . .

0 . . .

τN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V ′ , (9.2)

where τ ..= (τ1, . . . , τN ) are the population eigenvalues and V is a rotation matrix, meaning

that V ′ = V −1. The ith column of V is the population eigenvector vi.
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The best way to interpret this decomposition is to look at the dimension N = 2. Figure 1

gives a graphical illustration.
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Figure 1: Decomposition into eigenvalues and eigenvectors in dimension N = 2.

On the left panel, the ellipsis represents all the portfolios that have the same variance (which

we can take as normalized to one). The fact that it bulges out into the northeast and southwest

quadrants is due to nonzero covariance between the two asset returns. What the eigenvectors

do is define a change of basis, a rotation of the axes, so that (when viewed from this new angle)

all quadrants look the same. This is shown on the right panel. One eigenvector corresponds

to the axis across which the ellipsis is narrowest, and another corresponds to the axis across

which the ellipsis is widest. The ellipsis is not a perfect circle because the two eigenvalues are

not equal to each other.

Economically, what this rotation does is to repackage the original menu of assets into

N funds whose returns are all mutually uncorrelated. The weights of each fund are given by

the corresponding eigenvector; and the corresponding eigenvalue is the variance of the return

on the fund. Since they represent fund return variances, all eigenvalues must be non-negative,

meaning that the covariance matrix is positive semi-definite.

The N funds span the same space of investment opportunities as the original assets,

therefore we can rewrite Equation (9.1) as

wTANGENCY = scalar×
N∑

i=1

v′iµ

τi
vi . (9.3)

Equation (9.3) demonstrates that the tangency portfolio is best viewed not as a combination of

theN original assets, but as a combination of theN uncorrelated eigenvector funds. The capital
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assigned to each fund is proportional to its expected return and inversely proportional to its

variance, which makes economic sense.

It is easy to justify that the spectral decomposition is important for portfolio selection.

Consider the hypothetical covariance matrix of monthly stock returns in Table 1.

Apple Boeing Disney IBM

Apple 0.2694 0.5714 0.2900 0.3080

Boeing 0.5714 1.3910 0.6674 0.6964

Disney 0.2900 0.6674 0.3275 0.3433

IBM 0.3080 0.6964 0.3433 0.4822

Table 1: Hypothetical covariance matrix between four US stocks.

To the naked eye, it looks fine. However, its eigenvalues are (0, 0.0299, 0.1072, 2.3329). Even

to the naked eye, the first eigenvalue looks wrong. The tangency portfolio does not exist when

an eigenvalue is equal to zero. This is why extracting eigenvalues and eigenvectors is called

the spectral decomposition: It enables us to penetrate right through the outer appearance of

the matrix into its inner structure.

In practice, we do not know the true covariance matrix Σ, therefore we must use some

estimator of it. It is known that the sample covariance matrix ST
..= Y ′

TYT /T is a consistent

estimator of Σ when the sample size T goes to infinity while the dimension N remains

fixed (an often overlooked yet crucial assumption, to which we will return later). Mirroring

Equation (9.2), define the spectral composition of ST as

ST =.. UT

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1,T

λ2,T 0
. . .

0 . . .

λN,T

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U ′
T , (9.4)

where λT
..= (λ1,T , . . . ,λN,T ) are the sample eigenvalues and UT is a rotation matrix

(U ′
T = U−1

T ) whose ith column is the sample eigenvector ui,T . An implementable version

of Equation (9.3) is

wTANGENCY = scalar×
N∑

i=1

u′i,Tµ

λi,T
ui,T . (9.5)
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This formulation leads to a fundamental insight: In the denominator, we have λi,T , which is

the in-sample variance of the ith eigenvector fund ui,T , whereas for investment purposes we

need its out-of-sample variance u′i,TΣui,T instead. The whole point of the procedure advocated

in this paper is to replace the former with (a consistent estimate of) the latter. Investment

decisions are always evaluated out of sample.

One little-known mathematical fact about the eigenvalues is that they are the most

dispersed diagonal elements that can be obtained through rotation; see Ledoit and Wolf (2004,

Section 2.3). Given that the group of rotations has dimensionality of order N2, the potential for

overfitting is tremendous when N is large. Overfitting causes excess dispersion: The smallest

sample eigenvalues are too small, leading to over-investment, and the largest sample eigenvalues

too large, leading to under-investment. The overall result is mal-investment. This insight goes

a long way towards explaining the observation by Michaud (1989) about “error maximization”.

However, to fix it requires a detour through multivariate statistics.

9.2 Importance of the Eigenvalues for Covariance Matrix Estimation

If we are going to look for estimators that improve upon the sample covariance matrix,

the first task is to decide where to look. We need to specify a class of eligible estimators,

and search within this class for one that beats the sample covariance matrix. In mathematics,

a standard way to approach this kind of problem is to say that we want estimators that

have certain appealing properties. One such property initially championed by Stein (1975)

and subsequently adopted by many other authors is called rotation equivariance. A covariance

matrix estimator Σ̂T (YT ) is said to be rotation-equivariant if and only if for any N -dimensional

rotation matrix W ,

Σ̂T (YTW ) = W ′ Σ̂T (YT )W . (9.6)

That is, the estimate based on the rotated data equals the rotation of the estimate based on

the original data. Absent any a priori knowledge about the orientation of the true eigenvectors,

it is natural to consider only covariance matrix estimators that are rotation-equivariant.

It can be proven that the class of rotation-equivariant estimators that are a function of the
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sample covariance matrix is the class of estimators of the form

Σ̂ΨT
..= UT

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1,T

ψ2,T 0
. . .

0 . . .

ψN,T

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U ′
T , (9.7)

where ΨT
..= (ψ1,T , . . . ,ψN,T ) can be any vector in [0,+∞)N ; for example, see Perlman

(2007, Section 5.4). Thus, we preserve the sample eigenvectors, but are free to modify

the sample eigenvalues in any way needed to improve upon the sample covariance matrix.

Given Section 9.1, the basic idea will be to set ψi,T equal to u′i,TΣui,T , or if it is unavailable

(the more likely scenario, given that it depends on the population covariance matrix, which is

unobservable), a consistent estimator thereof.

In summary, the key intuition is that we have to preserve the sample eigenvectors because

we lack a priori information about the orientation of the true eigenvectors, and the goal is

to modify the sample eigenvalues so we can beat the sample covariance matrix.

9.3 General Asymptotics

As mentioned before, the sample covariance matrix ST is a consistent estimator of the

population covariance matrix Σ when the sample size T goes to infinity while the dimension N

remains fixed. This is strange: why is T allowed to move but not N? When we have five years

of daily data (T = 1250) on the components of the Russell 1000 stock index (N = 1000), it is

easy to believe that T goes to infinity, as 1250 is a large number by any measure in statistics,

but who is to say that N is finite? Shouldn’t numbers that go to infinity be much bigger than

those that are assumed to remain finite?

The answer is to simply relax the constraining assumption that N is fixed and instead

allow the dimension to move along with the sample size: N ..= N(T ). This is called general

asymptotics, large-dimensional asymptotics, or Kolmogorov asymptotics. Notation-wise, this

kind of asymptotics requires appending the subscript T to the population covariance matrix,

and also its eigenvalues and eigenvectors, a convention that we will uphold from here onwards.

Given that the number of eigenvalues N goes to infinity, it is no longer possible to make

statements about individual eigenvalues. This is why it is necessary to introduce what is
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known as spectral distributions. The population and sample spectral distributions are defined

respectively as

∀x ∈ R HT (x) ..=
1

N

N∑

i=1

1{τi,T≤x} and (9.8)

∀x ∈ R FT (x) ..=
1

N

N∑

i=1

1{λi,T≤x} , (9.9)

where 1 denotes the indicator function. The spectral distribution can be interpreted as a cross-

sectional cumulative distribution function (c.d.f.): it is a nondecreasing function having values

between zero and one that returns the proportion of eigenvalues lower than its argument.

Two standard assumptions under general asymptotics are (i) that the population spectral

distribution converges to a well-defined limit H called the limiting spectral distribution and

(ii) that the ratio N/T converges to a finite limit c called the concentration:

HT (x) −→ H(x) at all points of continuity of H (9.10)

N

T
−→ c < +∞ . (9.11)

Along with other technical assumptions that can vary from author to author, these two

assumptions imply the fundamental result of general asymptotics, which is that the sample

spectral distribution converges to a nonrandom limit F called the limiting spectral distribution:

FT (x)
a.s.−→ F (x) at all points of continuity of F . (9.12)

Remark 9.1. The fact that the matrix is random but its eigenvalues are not is a

remarkable mathematical phenomenon first discovered by Wigner (1955) while investigating

the properties of the wave functions of complicated quantum mechanical systems; see Figure 2

for an illustration of this influential result.
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Figure 2: The eigenvalues of a large Wigner matrix follow Wigner’s semi-circular law. Wigner

matrices are random symmetric matrix with i.i.d. standard normal entries. (They are different

from covariance matrices, since they also have negative eigenvalues.) This picture does not

represent an average across Monte Carlo simulations: it is just the result of one single draw.

The limiting sample spectral distribution F is the key to knowing where the sample

eigenvalues lie. There are a few things we can immediately say about this important object:

(a) F is uniquely determined by H and c; see Silverstein and Choi (1995)

(b) F = H ⇐⇒ c = 0

(c)
∫ +∞
−∞ x dF (x) =

∫ +∞
−∞ x dH(x)

(d)
∫ +∞
−∞ x2 dF (x) =

∫ +∞
−∞ x2 dH(x) + c

[∫ +∞
−∞ x dH(x)

]2

Statement (b) confirms that finite-dimensional asymptotics are included as a special case of

general asymptotics. When N remains fixed and finite, N/T converges to zero as T goes

to infinity. In this case, the eigenvalues of the sample covariance matrix are consistent

estimators of their population counterparts. This remains true even if N goes to infinity

along with T , as long as it grows sufficiently slowly (say in log(T ) or
√
T ). When c = 0 or,

practically speaking, when N/T is minuscule, the sample covariance matrix works fine.

For five years of history on the Russell 1000, the ratio N/T is equal to 0.8, so it is

definitely not minuscule. c > 0 is the relevant case for all large covariance matrices, because
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when N is large it is very difficult to have a sample size such that the ratio is N/T minuscule.

In this case, the sample eigenvalues never get close to their population counterparts, so we

enter a qualitatively different regime where improvement over the sample covariance matrix

is possible.

Statement (c) means that the cross-sectional average of the sample eigenvalues is in the

right place even when c > 0: it never needs fixing. However, Statement (d) shows their

cross-sectional dispersion around the average is systematically inflated, and excess dispersion

increases in c; see Yin (1986, Equation (4.14)). This confirms formally the intuition developed

at the end of Section 9.1. To fix this problem, the filtering applied to sample eigenvalues will

have to ‘shrink’ their cross-sectional dispersion towards the center; see Ledoit and Wolf (2004).

9.4 Single Mass Point

One way to get information about the limiting sample spectral distribution is to study what

happens in the simplest case, when the population covariance matrix ΣT is equal to the identity

matrix. In this case, a closed-form solution exists: F is differentiable, and its derivative f , called

the limiting spectral density, follows the so-called Marčenko-Pastur Law:

∀x ∈ [a, b] f(x) ..=

√
(b− x)(x− a)

2πcx
,

where the bounds of the support of f are a ..= (1 −
√
c)2 and b ..= (1 +

√
c)2 respectively; see

Marčenko and Pastur (1967).
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Figure 3: Limiting cross-sectional density of sample eigenvalues for various concentration levels.
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Some lessons can be drawn, that reinforce and complement what we have learned from the first

two moments:

1. Sample eigenvalues are smudged to the left and the right of the population eigenvalues.

2. The amount of excess spread increases in the concentration ratio c.

3. The smallest sample eigenvalues are too small, the largest ones too large.

4. This systematic bias must be filtered out by shrinking the distribution of sample

eigenvalues towards the center.

5. The center (cross-sectional average) of the sample eigenvalues distribution is accurate:

it matches its population counterpart.

6. The density is right-skewed: there are many small sample eigenvalues and few large ones.

7. It is only in the limit c → 0 that sample eigenvalues start to conform with standard

(fixed-dimension) asymptotics.

The concentration c needs to be very close to 0 before concerns about excess dispersion can

be safely dismissed. For c = 1/10, meaning that we have 10 times more observations than

variables, which many people would deem sufficient, some sample eigenvalues are still less than

half their population counterparts. Even when c = 1/100, out-of-sample portfolio variances

can be under/overestimated by 20%, inducing over/under-allocation of risk capital by the same

percentage.

9.5 Two Mass Points

These seven observations carry over to the case where a fraction α of the population eigenvalues

are equal to one, while the rest are equal to some τ > 1. The behavior of the limiting spectral

density is pretty much as one would expect intuitively: There are two clusters formed around

each population eigenvalue. The clusters are either close to each other or distant, depending

on how far τ is from 1. This finding adds one more qualitative observation to the list:

8. The locations of clusters of sample eigenvalues match the locations of the underlying

population eigenvalues.

When one mass point in the distribution of population eigenvalues is heavier than the other,

the weights of the clusters of population eigenvalues adjust in proportion, as one would

intuitively expect. This finding yields yet one more common-sense observation:
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9. The weights of clusters of sample eigenvalues match the multiplicities of the underlying

population eigenvalues.

The only non-obvious mathematical phenomenon is a so-called “phase transition” that takes

place when two clusters merge with each other to form a single one. It happens either because

the underlying population eigenvalues are too close to each other, or the concentration c is

too high. This phenomenon is illustrated in Figure 4 for the case α = 1/2 and τ = 2.
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Figure 4: Phase transition: two clusters merge into one as the concentration ratio N/T

increases. In the left panel, the two original clusters centered around 1 and 2, respectively, have

already merged, but are still visually distinguishable from each other. In the right panel, the

concentration ratio has increased so much that the two clusters can no longer be distinguished

by visual inspection.

The tenth and final in our series of qualitative observations, which will all carry over to the

general case, is:

10. Clusters that are too close to one another merge for sufficiently high concentration ratios.

On the right panel, the merger of the two clusters is so complete that we no longer even have

a bimodal distribution. The naked eye cannot discern that half of the population eigenvalues

are equal to one, and the other half to two. Only a purpose-built estimation process resting

on advances in probability theory can. This estimation process is what Sections 9.6–9.8 detail.
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9.6 Limiting Sample Spectral Distribution

In what follows, we describe only the case 0 < c < 1. The case c = 0 is excluded because it is

trivial: The sample eigenvalues converge to their population counterparts, and the sample

covariance matrix is optimal. The case c ≥ 1 is excluded because it would render the

exposition less fluid, but it poses no great difficulty and can be dealt with just as effectively;

see Ledoit and Wolf (2017a). One convenience that the assumption 0 < c < 1 buys us is that

the limiting sample spectral distribution admits a countinuous derivative f .

In order to relate F to H quantitatively, a new mathematical object must be introduced:

the Stieltjes (1894) transform. The Stieltjes transform of the distribution function F is defined

on the half-plane of complex numbers with strictly positive imaginary part C+ by

∀z ∈ C
+ mF (z) ..=

∫ +∞

−∞

1

λ− z
dF (λ) . (9.13)

Although it is difficult to visualize a complex function, there is an important result valid

specifically for F that will help us gain an intuitive understanding of its Stieltjes transform.

Indeed, F is smooth enough for the limit

lim
z∈C+→x

mF (z) =.. m̆F (x) (9.14)

to exist for all x ∈ R. m̆F extends the Stieltjes transform from the upper half of the complex

plane onto the real line. Now m̆F , being a complex-valued function of real argument, is much

easier to comprehend. In particular, its imaginary part is simply the limiting spectral density f

divided by π. Thus, if we have m̆F , we get the density f and then also the distribution F

(by integration of f). The quantiles of F tell us where the sample eigenvalues are located in

the limit.

m̆F can be deduced from H in only one known way, which is the following. For all x ∈ R,

m ..= m̆F (x) is the unique solution in C+ to the equation

m =

∫ +∞

−∞

1

τ
[
1− c− c xm

]
− x

dH(τ) (9.15)

Equation (9.15) is the fundamental building block of all research in large-dimensional

covariance matrix estimation. Although it may look daunting, and indeed there is generally

no closed-form solution, it can be solved numerically in a matter of seconds for N = 1000

eigenvalues; see Ledoit and Wolf (2017b). This equation has been around for half a century

in some form or other, and all researchers in the field are fully confident that “it does
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exactly what it says on the tin”, even though it is difficult to provide intuitive insight; see

Marčenko and Pastur (1967), Silverstein and Bai (1995), Silverstein (1995), as well as the

authoritative monograph by Bai and Silverstein (2010).

F is smooth, it is more spread out than H, and the excess spread increases in c. In the

limit, as c → 0, we can recognize on the right-hand side the Stieltjes transform of H, so F

becomes identical to H, which was to be expected from finite-dimensional asymptotics. All ten

of the qualitative observations gathered from the study of simple cases in Sections 9.4–9.5 carry

over to the solution of Equation (9.15). Indeed they pretty much encompass all the intuition

that can be extracted from this equation. Figure 5 provides an illustration of the difference

between F and H.
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Figure 5: Three spectral distributions for N = 100 and T = 200. The

population spectral distribution is the Beta(0.1, 0.1) distribution shifted so the

support is [1, 2]. Circles show the sample spectral distribution from one Monte Carlo

simulation. One can observe that the sample eigenvalues are nowhere near their

population counterparts, but their location is well predicted by the limiting spectral

distribution F that comes out of Equation (9.15).

9.7 Discretization

Although Equation (9.15) theoretically solves the problem, it is not formulated in a directly

usable way, as it relates the limiting spectral distributions F and H, whereas ideally we

would want to relate the sample eigenvalues (λ1,T , . . . ,λN,T ) to their population counterparts

(τ1,T , . . . , τN,T ). A practical implementation is achieved through discretization.

Start from a family of N population eigenvalues τ ..= (τ1,T , . . . , τN,T ), which can be any
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vector in (0,+∞)N . Construct the population spectral distribution HT as per Equation (9.8)

and inject it into Equation (9.15), replacing c with the ratio N/T . A trivial simplification

shows that, for all x ∈ R, m ..= m̆F (x) is the unique solution in C+ to the equation

m =
1

N

N∑

i=1

1

τi,T

[
1−

N

T
−

N

T
xm

]
− x

. (9.16)

Having solved for the Stieltjes transform m̆F numerically, we multiply its imaginary part by π

to obtain the limiting sample spectral density f . Integration yields the limiting sample spectral

distribution F . Finally, we can invert the function F to compute the N distribution quantiles.

This is exactly how the QuEST function is constructed. It maps an N -dimensional vector τ

of population eigenvalues into another N -dimensional vector
(
q1N,T (τ ), q

2
N,T (τ ), . . . , q

N
N,T (τ )

)
,

which represents a deterministic equivalent of the sample eigenvalues, by discretizing Equation

(9.15). The output (quantiles of F ) can be interpreted as the expectation of the sample eigen-

values, although this correspondence is rigorous only in the large-dimensional asymptotic limit.

9.8 Recovering Population Eigenvalues

As can be gathered from the above exposition, it is more straightforward to go from population

to sample eigenvalues than the other way around. This is an intrinsic feature of Equation (9.15),

which is our only tractable hook into the underlying mathematical truth.

However, given that Equation (9.15) has been made more practical through discretization

inside the QuEST function as seen in Section 9.7, inverting it becomes a simple numerical

problem. Find the vector τ ∈ (0,+∞)N such that the function’s output
(
q1N,T (τ ), q

2
N,T (τ ), . . . ,

qNN,T (τ )
)
matches most closely the observed sample eigenvalues (λ1,T , . . . ,λN,T ). Any capable

off-the-shelf nonlinear optimizer can solve this problem. Two recommended optimizers are

Stanford Business Software’s SNOPT and Matlab’s fmincon; they both can easily handle

dimensions up to N = 1000 within a reasonable amount of time, a few minutes at most.

In a nutshell, the problem of recovering the population eigenvalues from the sample

eigenvalues has been resolved by numerically inverting the multivariate function that discretizes

Equation (9.15). Figure 6 illustrates the accuracy of this procedure.
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Figure 6: The matrix dimension is N = 1000 and the sample size is T = 3000. This graph

is based on a single Monte Carlo simulation. Numerically inverting the discretized version of

Equation (9.15) asymptotically recovers the population eigenvalues.

9.9 Nonlinear Shrinkage

At this juncture, it might be tempting to conclude that replacing the observed sample

eigenvalues with the estimated population eigenvalues that come from inverting the QuEST

function yields the optimal estimator of the covariance matrix. However this is not

the case. The population eigenvalues (or consistent estimators thereof) are only optimal when

recombined with the population eigenvectors. The latter are unobservable and, unlike the

eigenvalues, there is no hope of recovering them through some advanced mathematics. The

reason is that they live in a space of dimension N(N − 1)/2, which is infinitely too large given

that we only collect N × T noisy data points, T being of the same order of magnitude as N .

In the terminology of Section 9.1, we do not want λi,T , the in-sample variance of the sample

eigenvector ui,T ; but we also do not want τi,T , the out-sample variance of the population

eigenvector vi,T . This is because we do not have vi,T . What we want is a hybrid: u′i,TΣui,T ,

the out-sample variance of the sample eigenvector ui,T . This quantity is estimated consistently
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under general asymptotics by the following “nonlinear shrinkage” formula:

u′i,TΣui,T ≈
λi,T∣∣∣∣1−

N

T
−

N

T
λi,T m̆F (λi,T )

∣∣∣∣
2
, (9.17)

where | · | denotes the modulus of a complex number, and m̆F is the function defined in (9.16);

see Ledoit and Péché (2011, Theorem 3). Similar to Equation (9.15), it is hard to give intuition:

this is just what comes out of the underlying mathematics. We are fortunate to have any explicit

equation at all; it basically comes from a generalization of Equation (9.15). Extensive Monte

Carlo simulations confirm the accuracy of this formula; see Ledoit and Wolf (2012, Section 6).

One can see that when N/T is negligible, there is a negligible amount of shrinkage, as expected

from finite-dimensional asymptotics.

Calling the right-hand side ψi,T and injecting it into Equation (9.7) yields an estimator of

the covariance matrix that improves upon the sample covariance matrix when the dimension N

is not negligible with respect to the sample size T . A graphical illustration is given in Figure 7.
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Figure 7: Nonlinearly shrunk eigenvalues as a function of sample eigenvalues. The

population eigenvalues come from the Beta(0.1, 0.1) distribution, shifted so the

support is [1, 2]. The optimal shrinkage transformation is highly nonlinear. The

population eigenvalues are also plotted for reference as the dashed line. They are not

the same as the shrunk eigenvalues, and are more spread out.
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To summarize, the overall procedure consists of three consecutive steps:

Step 1 Given the sample eigenvalues (λ1,T , . . . ,λN,T ), invert the QuEST function defined in

Section 9.7 to obtain consistent estimates of the population eigenvalues;

Step 2 Plug the (estimated) population eigenvalues into Equation (9.16) to compute the

complex-valued function m̆F ;

Step 3 Replace the sample eigenvalues with the nonlinear shrinkage formula on the right-hand

side of Equation (9.17) while preserving the sample eigenvectors.

All of this is handled automatically by the QuEST software, available from the university

faculty website of Michael Wolf. Ledoit and Wolf (2017a) prove that the resulting covariance

matrix estimator is optimal for portfolio selection under general asymptotics within the

rotation-equivariant class.
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