[bookmark: OLE_LINK22][bookmark: OLE_LINK23]Proofs for Propositions 1-3



Proposition 1: For any stocking  and sourcing  policy , the expected  number of backorders at Base i is ,

where  .
Proof:
By Palm’s Theorem, , is distributed as Poisson with mean equal to ., i.e .  Let  be the expected number of backorders at a location when its target stocking level is ,  (when appropriate we suppress the location subscript). The expected number of backorders at a location for any  is:

The incremental reduction in expected backorders is equal to,
 
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]When the central depot inventory is 0 then the expected number of backorders equals the number of systems in repair,  and
 . The expected number of backorders at the depot for any  is:  .
Next, let us use this result to derive the expression for the backorders at the bases.
[bookmark: OLE_LINK76]The expected delay for replenishment orders at the depot is the backorders delay time .  The effective lead time at any base is .
It follows that  , thus the expected number of backorders at a base is

[bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK8][bookmark: OLE_LINK9]
Place  and rearrange to receive the  final result.



Proposition 2: For stocking and sourcing policy , the partial derivative of expected backorders at Base i , with respect to  is,

.
Proof:
We start by differentiating  by  and receive
 
Let us open the following expressions:
 
 
In addition we’ll define A as 
Now we place B1 and B2 into A and receive 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Now we place A and  into the derivative to get the compact expression: 
 
Let us open the following expressions:
 
 
After placing B3 and B4 in the derivative, ordering and placing probabilities instead of their corresponding expressions we receive:
  
Placing A leads us to the following expression
 . 




Proposition 3: For stocking and sourcing policy , the partial derivative of the expected backorder at Base k, with respect to the allocation fraction  (whereas ) is,

.
Proposition 4
For any stocking solution , the partial derivative of expected backorders at the base , with respect to the allocation fraction  (whereas ) is,
[bookmark: _GoBack]
Proof:
We differentiate  by  and receive
 
We use the same expressions as used in Proposition 3:
 
 
In addition we define   
[bookmark: OLE_LINK62][bookmark: OLE_LINK64][bookmark: OLE_LINK65]Now we place B1 and B2 into A and receive
 
 
 
 
 
 
 
 
 
Now we place A and  into the derivatives and receive:
 
We use follow the approach that was used in Proposition 3:
 
 
After placing B3 and B4 in the derivative, ordering and placing probabilities instead of their corresponding expressions we receive:
 
 
 
 
 
Placing A leads us to the following expression
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