
Appendix

Description of statistical technique

Let Yj , j = 1, . . . , J , and Xi, i = 1, . . . , I, be the jth endpoint and ith variable, respectively.
Let k = 1, . . . , N be patient indexes. The observed data for the kth patient is represented as
(Yjk, X1k, . . . , X22k). In our case, J = 5, as there are a total of 5 endpoints, I = 22, corresponding
to all 22 variables and N = 269, the total number of patients in the cohort. The total number of
patients may be smaller for different endpoints, when an entry for some patients of the endpoint is
missing. Our goal is to find variables for all five endpoints, simultaneously, and to predict whether
a patient should be classified as a case or control.

As there are five endpoints, we must fit five regression models to assess the impact of each
variable on each endpoint. The endpoints Yj , j = 1, . . . , 5, are all binary, i.e., patients are either
classified as cases or controls. The standard approach is to fit a logistic regression model. It has
the form:

log
Pr(Yjk = 1|X1jk, . . . , XIjk)

Pr(Yjk = 0|X1jk, . . . , XIjk)
= θ0j +

I∑
i=1

θijXijk, (1)

where θ0j is the intercept of the jth endpoint and θij is the effect size of the ith variable of the jth
endpoint. The term Pr(Yjk = 1|Xijk, . . . , XIjk) is the probability that the kth patient, with respect
to the jth endpoint and given patient characteristics, is a case. However, instead of working with
effect sizes θij , it is often better to work with a standardized version, which is obtained by simply
dividing the effect sizes by their respective standard deviations (since the standard deviation is of
a parameter, it is referred as a standard error, se), i.e.,

βij = θij/se(θij).

With standardization, all coefficients are in the same magnitude and comparisons are more mean-
ingful.

Thus, if the expression in equation (1) is greater than zero, Pr(Yjk = 1|X1jk, . . . , XIjk) is greater
than Pr(Yjk = 0|X1jk, . . . , XIjk). In other words, when the model in equation (1) is used as a

classifier, θ0j +
∑I

i=1 θijXijk > 0, or in terms of the standardized coefficients, β0j +
∑I

i=1 βijXijk >
0 (known as the Fisher discriminant function), suggests that the kth patient should be classified
as a case, otherwise it should be classified as a control.

The parameters of interest θij (and thus βij), for i = 1, . . . , 22 and j = 1, . . . 5, are often esti-
mated by maximizing the loglikelihood associated to equation (1). This is the standard procedure
and inference is made based on the maximum likelihood estimates (MLEs), henceforth denoted as

θ̂
MLE

(and their standardized versions as β̂
MLE

).
Individual MLEs of a given variable can be further improved by using a combination of other

MLEs obtained for the same variable, but from different endpoints. That is, e.g., the estimate
β̂MLE
2,3 , which correspond to the effect size of the second variable (X2) for predicting the third

endpoint (Y3), can be improved by taking the other estimates β̂MLE
2,1 , β̂MLE

2,3 , β̂MLE
2,4 and β̂MLE

2,5 into
account. This seems controversial at first and it is known as Stein’s paradox [1]. James and Stein,
[2] showed that, when there are at least three parameters that are simultaneously estimated, a
better approach, in the sense that it has lower mean squared error (MSE), may be constructed.
This estimator will be called the James-Stein estimator (JSE). It was later shown that the JSE
may also lead to better predictions than those using MLEs, [3].

As the effect size of each variable was estimated five times (corresponding to the five endpoints),
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the James-Stein estimator β̂JSE
ij is directly applicable and may be constructed from the MLE as

β̂JSE
ij = λiβ̂

MLE
ij , with λi =

(
1− J − 2

Si

)
and Si =

J∑
j

(β̂MLE
ij )2. (2)

Where J corresponds to the number of endpoints (5, in our case). The parameter λi is the
shrinkage parameter corresponding to the ith variable, across all five endpoints. It is believed
that, the average effect size is zero, since it is likely that most variables have no effect on the
endpoint. Notice that the JSE estimator shrinks the MLEs towards zero (by multiplying the MLE
with λi), the average effect size, when the sum of squares Si is approximately equal to J−2. When
Si is large (Si � J − 2), there is almost no shrinkage of the MLEs towards zero suggesting that
the MLEs cannot benefit from their neighbours. Finally, when Si < J −2 the shrinkage parameter
λi becomes negative, in that case λ+ = max(λi, 0) is used instead of λi. Using λ+i when λi is
negative, sets effect sizes exactly to zero.

The correlations between the endpoints were investigated and no significant correlations were
found. Similarly, no significant correlation was seen among the variables. As a consequence, the
sum of squares Si can be used as a test statistic, which has a chi-squared distribution with J
degrees of freedom. With J = 5 and at a 5% significance level, the critical value is 11.07. Sum of
squares greater than 11.07 are significantly different from zero at a 5% significance level and their
corresponding p-values can be calculated.
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