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Appendix 1: Predictive Variance Decomposition

Let Θ = (α, β,Σ) represent all the fixed parameters in the model defined in (1). Using basic properties

of expectations and variances, the predictive variance in (3), can be written as:

Var (rT,T+k|DT ) = E {Var(rT,T+k|µT ,Θ, DT )}+ Var {E(rT,T+k|µT ,Θ, DT )} (1)

= E {Var(rT,T+k|µT ,Θ, DT )}

+ E {Var(E(rT,T+k|µT ,Θ, DT )}+ Var {E [E(rT,T+k|µT ,Θ, DT )]} . (2)

where µT is the last expected return, at time T .

The first term of the right hand side can now be expanded by using the properties of a MA(∞)

process as described in the Appendix section of ? and it takes the following form:

Var (rT,T+k|µT ,Θ, DT ) = kσ2
u

[
1 + 2d̄ρuwA(k) + d̄2B(k)

]
(3)

where

A(k) = 1 +
1

k

(
−1− β 1− βk−1

1− β

)
, (4)

B(k) = 1 +
1

k

(
−1− 2β

1− βk−1

1− β
+ β21− β2(k−1)

1− β2

)
, (5)

d̄2 =
1 + β

1− β
R2

1−R2
, (6)

R2 =
σ2
w

σ2
u(1− β2) + σ2

w

. (7)
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The remaining terms follow directly from the forecast function of a state-space model and depend

upon the posterior mean (mT ) and variance (CT ) of µT given DT , and can be written as:

VarµT {E(rT,T+k|µT ,Θ, DT )} =

(
1− βk

1− β

)2

CT , (8)

EµT [E(rT,T+k|µT ,Θ, DT )] = k
α

1− β
+

1− βk

1− β

(
mT −

α

1− β

)
. (9)

Therefore we can decompose the predictive variance into 5 interpretable components following the

nomenclature of ?:

Var (rT,T+k|DT ) = E
{
kσ2

u|DT

}
(i.i.d uncertainty) (10)

+E
{
kσ2

u2d̄ρuwA(k)|DT

}
(mean reversion) (11)

+E
{
kσ2

ud̄
2B(k)|DT

}
(future µ uncertainty) (12)

+E

{(
1− βk

1− β

)2

CT |DT

}
(current µ uncertainty) (13)

+Var

{
k

α

1− β
+

1− βk

1− β

(
mT −

α

1− β

)
|DT

}
(estimation risk) (14)

Each of the terms are evaluated via Monte Carlo taking as inputs the values of mT , CT and Θ in

each step of the MCMC used for model fitting.

Appendix 2: Time-Varying Σt: Posterior Sampling Details

From Section 2.2 , we have the observation equations:

(ut, wt)
′ ∼ N(0,Σ(θt)), θt = (θt,1, θt,2, θt,3)

ut = exp

(
θt,1
2

)
Zt1

wt = θt,3 ut + exp

(
θt,2
2

)
Zt2,
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state equation

p(θt |θt−1) ∝ q(θt | θt−1) f(θt), (15)

and initial state prior

p(θ0) ∝ q(θ0)f(θ0).

As discussed in Section 2.2 , q(θt | θt−1) and q(θ0) represent a “standard” specification and the function

f(θt) is used to inject prior beliefs about θt.

While this approach makes the prior specification relatively straightforward, it complicates posterior

draws since evaluation of the transition distribution involves the normalizing constant in 15. Recall

that the AR(1) parameters in q(θt,i | θt−1,i) are denoted by (ai, bi, ci). Let (a, b, c) = {(ai, bi, ci), i =

1, 2, 3}. Making (a, b, c) explicit in the above, we have:

p(θt |θt−1, a, b, c) ∝ q(θt | θt−1, a, b, c) f(θt)

= q(θt | θt−1, a, b, c) f(θt) K(θt−1, a, b, c)

where K denotes the normalizing constant. This normalizing constant will be present in draws of

the states {θt} given (a, b, c) and draws of (a, b, c) given the states using the usual Gibbs sampler

approach conditional on everything else.

Our approach is to discretize each of the three states so that θti ∈ Gi = {gi1, gi2, . . . , gini
}, i = 1, 2, 3,

giving a three dimensional grid of possible θt vectors. While three dimensional grids are large, we

have found that be carefully keeping track of what has been already computed and using parallel

computation of K when needed (using openmp in C++) we can get draws in a reasonable amount

of time. For each i, we draw the sequence {θti} conditional on the other two state sequences and

(a, b, c) using the forward filtering backward sampling algorithm [??]. Notice this is possible because

the discretization of the state space enables us to do the forward filtering and backward sampling

exactly. Finally, we use a random walk Metropolis to draw (a, b, c) using joint proposals for (ai, bi, ci).
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Appendix 3: Time-Varying Σt: Simulation Study

To demonstrate the effectiveness of our prior specification strategy for ρt,uw we run a simple simulation

study where simulated data was generated from the model: ut+1

wt+1

 ∼ N(0,Σt),

where the path of Σt was chosen to mimic the time-varying relationship between annual returns in

the U.S. and U.K. markets. This was achieved by first computing the posterior for the time-varying

covariance matrix of U.S. and U.K. returns under the Cholesky model in Section 2 and using the

posterior mean to generate the time series for (u,w). This data is such that the path of ρt,uw tends

to be above 0.5.

We the proceed to fit two models for this data: (i) the Cholesky model with a very flat prior for

ρt,uw and (ii) the Cholesky model that uses the prior strategy described in Section 2.2, with ρ̄ = 0.7

and κ = 0.5. Draws from the priors and posteriors of ρt,12, σt,1 and σt,2 for both models are presented

in Figure 1 and 2. It is clear that using the information that the correlation is above 0.5 leads to

more precise estimates of the true path of ρt,12. It also has an impact on how precise variances are

estimated.

In summary, in the presence of relevant available information, the strategy proposed in Section

2.2 is an effective vehicle to bring the information to the analysis and generate more precise estimates

of the quantities of interest.

Appendix 4: Monthly and Quarterly Data

A number of previous studies that address the long term volatility of stocks do so using data on

different frequencies, either monthly or quarterly. For completeness of our presentation we re-run

the models in Section 3 for the U.S. returns on a monthly and quarterly basis. We use the same

prior specifications (adjusted for the change in time scale) and the results for the predictive standard

deviation are presented in Figure 3. In these frequencies, we achieve a very different conclusion as the

predictive variances tend to go up with the horizon. Looking at the monthly results (left panel) we

see a very clear agreement between all models and the unconditional, model-free line. The quarterly
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results are a little different but all lines have a similar shape with the time-varying Σt line starting

at a lower level as the return volatility in recent quarters of the dataset is lower than the stationary

level.

Figures 4 and 5 show priors and posteriors in for β (left panel) and ρ (right panel) for the “weak”

(top row) and “strong” (bottom row) prior settings. Figure 4 (monthly) shows that ρuw is inferred

to be not too negative while β very low. For the quarterly data in Figure 5, both quantities start

to look more like the result we see in the annual analysis: ρuw is inferred to be more negative and β

points to a more persistent dynamic behavior for µ.

These analyses show a nice progression from the monthly to quarterly to annual results and

indicates that in shorter frequencies the signal about the dependence structure in µt gets smaller

relative to the noise of the system. This overwhelms our ability to filter out the dynamics of expected

returns even in the presence of strong beliefs about ρuw.

In order to estimate the predictive variance of stocks in the long run, we need to be able to learn

about the dynamic behavior of expected returns. Only through the structure present in the annual

data we are able to get estimates of ρuw and β in ranges that imply a negative sloping predictive

variance as a function of the horizon.
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Appendix 5: Posterior Predictive Checks for International

Data

Figures 6 to 13 present the posterior predictive checks for the iid, “weak” and “strong” prior settings

in the U.K., Australia, Canada, Hong Kong, Europe, France, Germany and Japan.
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Figure 1: Priors (left) and posteriors (right) for ρt,uw under a flat (top row) and a strong prior (bottom
row). The solid red line in each plot represent the mean of each quantity while the two dashed lines
give the 2.5% and 97.5 % quantiles of the distributions. The blue lines are the true path of correlations.
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Figure 2: Posteriors (right) for σu (top row) and σw (bottom row) under a flat (left panels) and a
strong prior (right row). The solid red line in each plot represent the mean of each quantity while the
two dashed lines give the 2.5% and 97.5 % quantiles of the distributions. The blue lines are the true
path of correlations
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Figure 4: U.S. monthly returns: Top row: results for “weak prior”. Bottom row: results for the
“strong prior”. Left panels show boxplots for priors (red) and posterior (blue) for β. Right panel
shows prior (gray) and posterior (red) draws for ρuw.
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Figure 5: U.S. quarterly returns: Top row: results for “weak prior”. Bottom row: results for the
“strong prior”. Left panels show boxplots for priors (red) and posterior (blue) for β. Right panel
shows prior (gray) and posterior (red) draws for ρuw.
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Figure 6: U.K. annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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Figure 7: AUS annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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Figure 8: CAN annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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Figure 9: HK annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.

14



Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

0
10

20
30

40
50

60

Prior Predictive (iid model)

Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

5
10

15
20

25
30

35

Posterior Predictive (iid model)

Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Prior Predictive (weak prior)

Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

10
20

30
40

Posterior Predictive (weak prior)

Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Prior Predictive (strong prior)

Horizon (year)

V
ol

 (
%

 p
er

 y
ea

r)

0 10 20 30 40 50

10
20

30
40

50

Posterior Predictive (strong prior)

Figure 10: Europe annual returns. Prior (left panels) and posteriors (right panels) predictive simula-
tions for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines
are all the simulated draws. The blue line represents the statistic from the data, i.e., the “uncondi-
tional”, model-free computation of the volatility per period. The black lines in the right panels are a
subset of the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5%
and 97.5% quantiles of the gray draws. Green line is the predictive standard deviation per period
resulting from the model considered in the plot.
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Figure 11: FRA annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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Figure 12: GER annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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Figure 13: JPN annual returns. Prior (left panels) and posteriors (right panels) predictive simulations
for the iid (top row), “weak” (middle row) and “strong” prior settings (bottom row). Gray lines are
all the simulated draws. The blue line represents the statistic from the data, i.e., the “unconditional”,
model-free computation of the volatility per period. The black lines in the right panels are a subset of
the gray draws plotted here to emphasize their shape. Red dotted lines represent the 2.5% and 97.5%
quantiles of the gray draws. Green line is the predictive standard deviation per period resulting from
the model considered in the plot.
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