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A Proof of Proposition 1
It follows from the Taylor series expansion (9) that
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where we inserted εi = yi − µ
(
wT

i β
0
)
in the first step, we used the triangle inequality in the second step,

we inserted the left bound in (7) in the third step, and finally used the generalized triangle inequality. Next,
we have
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where we used Hölder’s inequality in the first step and the assumption (5) that the covariates are standardized
to have mean zero and unit variance in the second step. We now note that the last term above is the `2-norm
‖v‖2 of a vector v ∈ Rn with elements
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where we used the triangle inequality in the first step, Hölder’s inequality in the second step, and finally
used the right bound in (7) in the second last step.

Putting the pieces together, it follows that
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for j = 1, . . . , p, which proves that β0 ∈ Θ.

B Any Fixed Point of Algorithm 1 Solves (10)

Consider a fixed point of the Algorithm 1. At a fixed point, β(k+1) = β(k). It follows that
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Inserting this into the constraint set in (15), we get for the left-hand side
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For the right-hand side of the inequality in (15), we get
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It follows that at any fixed point of Algorithm 1,
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Thus, any fixed point of Algorithm 1 is a solution to the original problem (10).

C Computing the Solution to (15)
We can simplify the computation of (15) by introducing the auxiliary variable u ∈ Rp (see, e.g., Candes and
Tao (2007, eq. (1.9)) or Boyd and Vandenberghe (2004, p. 617)). We then get the equivalent problem
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When R = 1, (15) is thus equivalent to the linear program
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which can be solved by standard software.

D Coordinate Descent Algorithm for GMUL
We describe here the coordinate descent algorithm used to solve (21). Our goal is to find a β minimizing
the function
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where τj = 1 if βj > 0, τj = −1 if βj < 0, and τj ∈ [−1, 1] if βj = 0. Setting ∂f/∂βj = 0, we find the
analytical solution to (21),
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for j = 1, . . . , p. Since τ is implicitly defined, we compute β iteratively using the coordinate descent updates
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for j = 1, . . . , p, 1, . . . until convergence (Friedman et al., 2007). S(a, b) is the soft-thresholding operator
(24). On convergence, we set β(k+1) = β̂.

E Elbow Rule
Supplementary Figure S1 shows the elbow plot for the GMUL with σu = 0.2 as well as both GMUL and
GMUS with σu = 0.5 in the logistic regression experiment. Comparing the top left plot to Figure 2 (left) in
the main paper, we see that the elbow was less well defined for the GMUL compared to the GMUS. Studying
the plots for σu = 0.5, we also see that the GMUS had the most well defined elbow.

Supplementary Figure S2 shows the elbow plots for Poisson regression. Both the curves decreased sharply
when δ become nonzero, and we chose the δ values where the decline began to level off.
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Supplementary Figure S1: Elbow rule with logistic regression.
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Supplementary Figure S2: Elbow rule with Poisson regression.
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Supplementary Figure S3: a) Proportion of true non-zero coefficients among the estimated non-zero coeffi-
cients as function of the dimension p for lasso and GMUL, both with λ̂min and λ̂se. b) Proportion of true
non-zero coefficients among the estimated non-zero coefficients as function of the dimension p for GDS and
GMUS, with both λ̂min and λ̂se.

F Simulations with High-Dimensional Data
This section presents further simulation experiments comparing GMUL and GMUS to the naive lasso and
GDS, respectively, in particular investigating the impact of the dimensionality p, the sample size n, and the
size of the active set s. The simulations follow the setup of logistic regression given in Section 6: the matrix
X had i.i.d. entries xij ∼ N(0, 1) and the matrix W had i.i.d. entries wij = xij + uij with uij ∼ N(0, σu),
for i = 1, . . . , n and j = 1, . . . , p. Outcomes yi were binomially distributed with mean {1 + exp(−xT

i β
0)}−1

and non-zero regression coefficients set to β0
j = 1 for j = 1, . . . , s.

As earlier the GDS and lasso were computed via ten-fold cross-validation with both λ̂min and λ̂se, and
the solutions of the GMUL and GMUS were computed over a grid of δs with λ fixed to λ̂min or λ̂se. Each
setup of parameters p, n and s was simulated in 100 independent Monte Carlo experiments, and the elbow
rule was applied to the average number of non-zero coefficients over the 100 simulations to select the optimal
δ. The Rglpk package (Theussl and Hornik, 2013) used for computing the linear programming part of the
GDS and GMUS turned out to be inefficient for problems with p in the order of thousands. Hence, the linear
programming part of the algorithms was instead implemented using the IBM CPLEX Optimizer, available
through the IBM Academic Initiative 1. The Rcplex package (Bravo et al., 2016) was used as an R interface
to this solver.

In the first simulation setup, the sample size, the measurement error variance and the size of the active set
were fixed to n = 200, σu = 0.2 and s = 10, while the dimension varied with p set to 300, 500, 1000, 2000 and
5000 for GMUL and 300, 500, 1000 and 2000 for GMUS. Performance of each method was measured by the
precision averaged over the 100 simulations. Supplementary Figure S3a) shows, for increasing dimension, the
average precision of the lasso and GMUL, both with λ̂min and λ̂se. The precision of all methods decreased
with increasing dimension, but the decrease was relatively small. The GMUL always had a higher precision
than the standard lasso, and the estimators using λ̂se had a higher precision than the estimators using λ̂min.

Supplementary Figure S3b) shows, for increasing dimension, the average precision of the GDS and GMUS,
1https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Supplementary Figure S4: a) Proportion of true non-zero coefficients among the estimated non-zero coeffi-
cients as function of the sample size n for lasso and GMUL, both with λ̂min and λ̂se. b) Proportion of true
non-zero coefficients among the estimated non-zero coefficients as function of the sample size n for GDS and
GMUS, both with λ̂min and λ̂se.

both with λ̂min and λ̂se. The precision decreased with increasing dimension, but the decrease was relatively
small. The GMUS always had a higher precision than the GDS, and we see the same behavior as with GMUL,
where the estimators using λ̂se had a higher precision than the estimators using λ̂min. Since λ̂se ≥ λ̂min

by construction, the estimates obtained using λ̂se have a smaller number of non-zero coefficients. As long
as the true non-zero coefficients are retained, these make up a larger proportion of the estimated active as
the penalization increases, thus increasing the precision. The tables S1 to S5 show detailed results for the
simulations for p = 300, 500, 1000, 2000, and 5000.

Note that the parameter settings for the simulations described in Table S2 were identical to those of
Table 1 (top) in the main text. The results are in good agreement between the two tables, but not identical.
The reason for this is that the results were obtained in two independent simulation experiments; Table S2 is
part of the simulations with high-dimensional data of Section F, whereas Table 1 is part of the simulations in
Section 6. Thus, the choices of δ1 and δ2 based on the elbow rule were different, and accordingly the results
in Table 1 (top) and Table S2 are not in exact agreement.

In the second simulation setup, the dimension, the measurement error variance, and the size of the active
set were fixed to p = 1000, σu = 0.2, and s = 10, while the sample size varied with n set to 100, 200 and
400.

Supplementary Figure S4a) shows, for increasing sample size, the average precision of the lasso and
GMUL with λ̂min and λ̂se. For GMUL, the precision increased with the sample size, whereas the lasso
instead had a relatively small decrease in the precision with increasing sample size. Also in this setting, the
estimators using λ̂se always had a higher precision than the estimators using λ̂min.

Supplementary Figure S4b) shows, for increasing sample size, the average precision of the GDS and
GMUS with λ̂min and λ̂se. The overall picture is as in Figure S4a), but the decrease in precision with
sample size was smaller for the GDS than for the lasso. The GMUS always had a higher precision than
the GDS, and the difference increased with increasing sample size. The estimators using λ̂se had a higher
precision than the estimators using λ̂min. The Supplementary Tables S6 to S8 show detailed results for the
simulations, for n = 100, 200, and 400.
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Supplementary Figure S5: a) Proportion of true non-zero coefficients among the estimated non-zero coeffi-
cients as function of the active set s for lasso and GMUL, both with λ̂min and λ̂se. b) Proportion of true
non-zero coefficients among the estimated non-zero coefficients as function of the active set s for GDS and
GMUS, both with λ̂min and λ̂se.

In the third simulation setup, the dimension, sample size and measurement error variance were fixed to
p = 500, n = 200, and σu = 0.2, while the active set was given as s = 5 and s = 10.

Supplementary Figures S5a) and S5b) show the average precision of the GMUL and the lasso, and the
GMUS and the GDS, respectively, with the size of the active set equal to 5 or 10. The GMUL always
performed better than the lasso, and the GMUS always performed better than the GDS. For all methods
using λmin, the precision was slightly higher with s = 10 than with s = 5, while the opposite was true
with λ1se. With λmin, too many covariates were selected in general, so with increasing s, the proportion of
correctly selected variables increased, thus increasing the precision. Using λ1se, on the other hand, yielded
a sparser solution. With increasing s, a larger proportion of the relevant covariates were not selected, thus
decreasing the precision. The Supplementary Tables S9 and S10 show detailed results for the simulations
for s = 5 and s = 10.

Supplementary Figures S6 and S7 show the average time until the stopping criterion was met, as a
function of the number of covariates. The sample size, number of relevent covariates, and measurement error
standard deviation were set to n = 200, s = 10, and σu = 0.2, respectively. The linearity of the logarithmic
plots to the right in both figures show that the time until meeting the stopping criterion is a polynomial
function of the number of covariates. We also note that the variants using λ̂se were faster than those using
λ̂min. This can be explained by the fact that the feasible set of the GMUS/GMUL is more constrained when
using λ̂se, and thus, the iterative reweighing procedure converges faster.
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Carlo simulations at the chosen values of λ and δ, for the case with n = 200, s = 10, and σu = 0.2.
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stopping criterion, as a function of the number of covariates p. Each point is an average over the 100 Monte
Carlo simulations at the chosen values of λ and δ, for the case with n = 200, s = 10, and σu = 0.2.

S10



#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 9.76 (0.05) 33.88 (1.34) 0.25 (0.01)

GMUL(λ̂min, δ1) 8.78 (0.12) 7.45 (0.36) 0.57 (0.01)
Lasso(λ̂se) 9.29 (0.11) 13.55 (0.84) 0.46 (0.02)

GMUL(λ̂se, δ2) 8.29 (0.13) 4.84 (0.31) 0.66 (0.01)
GDS(λ̂min) 9.87 (0.03) 35.93 (1.05) 0.23 (0.01)

GMUS(λ̂min, δ1) 9.27 (0.08) 8.84 (0.35) 0.53 (0.01)
GDS(λ̂se) 9.62 (0.06) 19.73 (0.92) 0.36 (0.01)

GMUS(λ̂se, δ2) 8.82 (0.11) 5.89 (0.34) 0.63 (0.02)

Supplementary Table S1: p = 300 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.1 GMUS: δ1 = 0.06
δ2 = 0.06

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 9.67 (0.07) 39.83 (1.43) 0.22 (0.01)

GMUL(λ̂min, δ1) 8.64 (0.16) 9.01 (0.39) 0.52 (0.01)
Lasso(λ̂se) 8.96 (0.13) 15.19 (0.92) 0.43 (0.02)

GMUL(λ̂se, δ2) 8.18 (0.15) 5.34 (0.32) 0.64 (0.01)
GDS(λ̂min) 9.58 (0.06) 40.19 (1.29) 0.21 (0.01)

GMUS(λ̂min, δ1) 8.33 (0.12) 8.14 (0.35) 0.53 (0.01)
GDS(λ̂se) 9.08 (0.11) 20.03 (1) 0.35 (0.01)

GMUS(λ̂se, δ2) 7.87 (0.14) 6.74 (0.36) 0.57 (0.01)

Supplementary Table S2: p = 500 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.08
δ2 = 0.06

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 9.1 (0.12) 39.55 (1.88) 0.22 (0.01)
GMUL(λ̂min 7.8 (0.17) 10.32 (0.52) 0.48 (0.02)

Lasso(λ̂se) 8 (0.19) 13.67 (1.06) 0.45 (0.02)
GMUL(λ̂se, δ2) 7 (0.18) 5.23 (0.39) 0.62 (0.02)

GDS(λ̂min) 9.2 (0.1) 43.97 (1.72) 0.2 (0.01)
GMUS(λ̂min, δ1) 8.02 (0.12) 10.21 (0.47) 0.47 (0.01)

GDS(λ̂se) 8.54 (0.13) 22.44 (1.45) 0.34 (0.01)
GMUS(λ̂se, δ2) 7.51 (0.15) 8.04 (0.52) 0.53 (0.02)

Supplementary Table S3: p = 1000 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.09
δ2 = 0.06
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#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 8.32 (0.15) 43.59 (2.09) 0.2 (0.01)
GMUL(λ̂min 6.28 (0.21) 8.99 (0.55) 0.47 (0.02)

Lasso(λ̂se) 6.91 (0.22) 15.46 (1.32) 0.41 (0.02)
GMUL(λ̂se, δ2) 6.05 (0.21) 7.09 (0.59) 0.54 (0.02)

GDS(λ̂min) 8.49 (0.15) 48.04 (2.3) 0.19 (0.01)
GMUS(λ̂min, δ1) 6.78 (0.16) 10.68 (0.57) 0.43 (0.02)

GDS(λ̂se) 7.57 (0.2) 25.09 (1.81) 0.32 (0.02)
GMUS(λ̂se, δ2) 6.33 (0.18) 8.09 (0.59) 0.51 (0.02)

Supplementary Table S4: p = 2000 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.1
δ2 = 0.09

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 7.13 (0.17) 40.74 (2.46) 0.2 (0.01)
GMUL(λ̂min 5.53 (0.18) 10.78 (0.63) 0.39 (0.02)

Lasso(λ̂se) 5.2 (0.24) 11.97 (1.15) 0.42 (0.03)
GMUL(λ̂se, δ2) 4.5 (0.22) 6.17 (0.59) 0.52 (0.03)

Supplementary Table S5: p = 5000 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.09
δ2 = 0.06, GMUS was not performed due to long calculation time

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 3.76 (0.23) 15.67 (1.32) 0.24 (0.02)

GMUL(λ̂min, δ1) 3.39 (0.21) 10.04 (0.85) 0.29 (0.02)
Lasso(λ̂se) 2.12 (0.22) 5.06 (0.77) 0.3 (0.03)

GMUL(λ̂se, δ2) 1.95 (0.21) 3.52 (0.51) 0.34 (0.03)
GDS(λ̂min) 4.68 (0.14) 21.25 (1.07) 0.2 (0.01)

GMUS(λ̂min, δ1) 3.65 (0.14) 11.49 (0.6) 0.26 (0.01)
GDS(λ̂se) 4.15 (0.12) 14.41 (0.63) 0.24 (0.01)

GMUS(λ̂se, δ2) 3.23 (0.12) 7.97 (0.37) 0.31 (0.01)

Supplementary Table S6: p = 1000 n = 100 s = 10 σu = 0.2, GMUL: δ1 = 0.12 δ2 = 0.1 GMUS: δ1 = 0.08
δ2 = 0.08

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 9.1 (0.12) 39.55 (1.88) 0.22 (0.01)

GMUL(λ̂min, δ1) 8.24 (0.15) 13.81 (0.68) 0.41 (0.01)
Lasso(λ̂se) 8 (0.19) 13.67 (1.06) 0.45 (0.02)

GMUL(λ̂se, δ2) 7.25 (0.18) 6.22 (0.45) 0.59 (0.02)
GDS(λ̂min) 9.2 (0.1) 43.97 (1.72) 0.2 (0.01)

GMUS(λ̂min, δ1) 8.31 (0.12) 14.32 (0.62) 0.4 (0.01)
GDS(λ̂se) 8.54 (0.13) 22.44 (1.45) 0.34 (0.01)

GMUS(λ̂se, δ2) 7.51 (0.15) 8.04 (0.52) 0.53 (0.02)

Supplementary Table S7: p = 1000 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.1 δ2 = 0.08 GMUS: δ1 = 0.06
δ2 = 0.06
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#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 10 (0) 66.23 (2.43) 0.15 (0.01)

GMUL(λ̂min, δ1) 9.99 (0.01) 9.15 (0.53) 0.56 (0.01)
Lasso(λ̂se) 10 (0) 23.66 (1.46) 0.35 (0.01)

GMUL(λ̂se, δ2) 9.97 (0.02) 6.04 (0.44) 0.67 (0.02)
GDS(λ̂min) 10 (0) 66.23 (2.43) 0.15 (0.01)

GMUS(λ̂min, δ1) 10 (0) 29.93 (1.25) 0.28 (0.01)
GDS(λ̂se) 10 (0) 23.66 (1.46) 0.35 (0.01)

GMUS(λ̂se, δ2) 9.99 (0.01) 10.89 (0.76) 0.54 (0.02)

Supplementary Table S8: p = 1000 n = 400 s = 10 σu = 0.2, GMUL: δ1 = 0.08 δ2 = 0.06 GMUS: δ2 = 0.04
δ2 = 0.04

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 4.96 (0.02) 28.76 (1.65) 0.19 (0.01)

GMUL(λ̂min, δ1) 4.9 (0.03) 8.29 (0.5) 0.43 (0.02)
Lasso(λ̂se) 4.84 (0.05) 9.05 (0.82) 0.46 (0.02)

GMUL(λ̂se, δ2) 4.78 (0.05) 3.56 (0.35) 0.66 (0.02)
GDS(λ̂min) 4.95 (0.02) 28.58 (1.49) 0.19 (0.01)

GMUS(λ̂min, δ1) 4.82 (0.04) 5.73 (0.36) 0.52 (0.02)
GDS(λ̂se) 4.88 (0.04) 10.78 (0.94) 0.42 (0.02)

GMUS(λ̂se, δ2) 4.69 (0.05) 3.8 (0.36) 0.63 (0.02)

Supplementary Table S9: p = 500 n = 200 s = 5 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.08
δ2 = 0.06

#TP #FP #TP/(#TP + #FP)
Lasso (λ̂min) 9.67 (0.07) 39.83 (1.43) 0.22 (0.01)

GMUL(λ̂min, δ1) 8.64 (0.16) 9.01 (0.39) 0.52 (0.01)
Lasso(λ̂se) 8.96 (0.13) 15.19 (0.92) 0.43 (0.02)

GMUL(λ̂se, δ2) 8.18 (0.15) 5.34 (0.32) 0.64 (0.01)
GDS(λ̂min) 9.58 (0.06) 40.19 (1.29) 0.21 (0.01)

GMUS(λ̂min, δ1) 8.33 (0.12) 8.14 (0.35) 0.53 (0.01)
GDS(λ̂se) 9.08 (0.11) 20.03 (1) 0.35 (0.01)

GMUS(λ̂se, δ2) 7.87 (0.14) 6.74 (0.36) 0.57 (0.01)

Supplementary Table S10: p = 500 n = 200 s = 10 σu = 0.2, GMUL: δ1 = 0.15 δ2 = 0.12 GMUS: δ1 = 0.08
δ2 = 0.06
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