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lemma 1. Under the normal inverse model (1) in the article, let R(X) = ΓT∆−1X.

Then R(X) is the minimal sufficient linear reduction.

The detailed proof of lemma 1 has been given by Cook and Forzani (2008)[2]. The
goal consequently turns to estimate ∆−1SΓ = {∆−1z : z ∈ SΓ} under the CUPFC
model.

The proof of Proposition 3.1:

Proof. Under the CUPFC model the full parameter space is (µ,SΓ,β,∆). When we

derive the MLE of these parameters we set d fixed and the selection of d deserves

separate discussion.

Given a specific ỹ ∈ R as the parameter in the model for Xy, we have the

conditional model

Xy = µ+ Γβỹ{I(y ≤ ỹ)− Pr(Y ≤ ỹ)}+ ε.
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Then for specific y ∈ SY , use the centered fy;ỹ to stand for I(y ≤ ỹ) − Pr(Y ≤ ỹ)

and Xy is presented as:

Xy = µ+ Γβỹfy;ỹ + ε.

Given a group of observed response S = (y1, y2, ..., yn), the joint probability

density function of Xy, y ∈ S is:

g(Xy : y ∈ S) =(2π)−
np
2 |∆|−

n
2 exp

{
− 1

2

∑
y

(
Xy − µ− Γβỹfy;ỹ

)T
·∆−1

(
Xy − µ− Γβỹfy;ỹ

)}
,

as Xy for different y1, ..., yn are independent but not identically distributed.

The full log likelihood for Xy is

Lỹ(µ,SΓ,β,∆) =− np

2
log(2π)− n

2
log |∆|

− 1

2

∑
y

(
Xy − µ− Γβỹfy;ỹ

)T
∆−1

(
Xy − µ− Γβỹfy;ỹ

)
.

(1)

For fixed ∆ and Γ, equation (1) is maximized over µ by µ̂ = X̄. Brought in µ̂ = X̄,

note a conversion technique that∑
y

(
Xy − µ− Γβỹfy;ỹ

)T
∆−1

(
Xy − µ− Γβỹfy;ỹ

)
= trace

{
∆−1/2

(
X− Fỹβ

T
ỹ ΓT

)T(
X− Fỹβ

T
ỹ ΓT

)
∆−1/2

}
,

where X is the n× p matrix with rows (Xyi − X̄)T which is (Xi − X̄)T actually, Fỹ

is an n× 1 matrix with the kth element fyk;ỹ (k = 1, ..., n) and βỹ is a d× 1 matrix

whose elements only depend on the specific ỹ.

Then we have

Lỹ(µ,SΓ,β,∆) =− np

2
log(2π)− n

2
log |∆|

− 1

2
trace

{
∆−1/2

(
X− Fỹβ

T
ỹ ΓT

)T(
X− Fỹβ

T
ỹ ΓT

)
∆−1/2

}
.

(2)
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For fixed ∆ and Γ, equation (2) is maximized over βỹ by β̂ỹ = ΓTPΓ(∆−1)B̂ỹ,

where PΓ(∆−1) = Γ(ΓT∆−1Γ)−1ΓT∆−1 is the projection onto SΓ in the ∆−1 inner

product and B̂ỹ = XTFỹ(FT
ỹ Fỹ)

−1 with Fỹ’s kth coordinate being fyk;ỹ. B̂ỹ is obvi-

ously the coefficient matrix from the multivariate OLS regression of X on fỹ (Cook

& Forzani 2008)[2]. Pay attention that we usually set Γ ∈ Rp×d an orthonormal

basis of SΓ without loss of generality, so the MLE Γβ̂ỹ will be PΓ(∆−1)B̂ỹ. We then

substitute µ̂ and β̂ỹ into the log likelihood Lỹ(µ,SΓ,β,∆) to attain the MLE of SΓ

and ∆.

Notice that(
X− Fỹβ̂

T
ỹ ΓT

)T(
X− Fỹβ̂

T
ỹ ΓT

)
= XTX−PΓ(∆−1)XTFỹ(FT

ỹ Fỹ)
−1FT

ỹX,

and

∆−1/2PΓ(∆−1) = P∆−1/2Γ∆−1/2,

where we write PG = G(GTG)−1GT for a full rank matrix G. We can easily obtain

that

∆−1/2
(
X− Fỹβ̂

T
ỹ ΓT

)T(
X− Fỹβ̂

T
ỹ ΓT

)
∆−1/2

=n
(
∆−1/2Σ̂∆−1/2 −P∆−1/2Γ∆−1/2{XTPFỹ

X/n}∆−1/2
)
,

and

Lỹ(SΓ,∆) =− np

2
log(2π)− n

2
log |∆|

− n

2
trace

{
∆−1/2Σ̂∆−1/2 −P∆−1/2Γ∆−1/2{XTPFỹ

X/n}∆−1/2
}
.

If ỹ takes value from {ỹ1, ỹ2, ..., ỹm}, we can consider the integration of all the log

likelihood functions Lỹi(SΓ,∆), i = 1, ...,m, to maximize the weighted average

L̄(SΓ,∆) =
1

m

m∑
i=1

ω(ỹi)Lỹi(SΓ,∆),
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where ω(·)/m is a nonnegative weight function with respect to ỹi. Then the goal is

to maximize

L̄(SΓ,∆) =− np

2
log(2π)− n

2
log |∆|

− n

2
trace

{
∆−1/2Σ̂∆−1/2 −P∆−1/2Γ∆−1/2 1

m

m∑
i=1

{
ω(ỹi)XTPFỹi

X/n
}

∆−1/2
}

=− np

2
log(2π)− n

2
log |∆|

− n

2
trace

{
∆−1/2Σ̂∆−1/2 −P∆−1/2Γ∆−1/2Σ̂cu∆

−1/2
}
.

Holding ∆ fixed, the log likelihood is maximized by choosing P∆−1/2Γ as the

projection onto the space spand(∆
−1/2Σ̂cu∆

−1/2), where spand(A) denotes the space

spanned by the first d eigenvectors of A. It means that the span of ∆−1Γ is the

span of ∆−1/2 times the first d eigenvectors of ∆−1/2Σ̂cu∆
−1/2, which is Sd(∆, Σ̂cu)

exactly. The subspace Sd(∆, Σ̂cu) can also be described as the span of ∆−1 times

the first d eigenvectors of Σ̂cu (Adragni & Cook 2009)[1].

This leads to the final maximized log likelihood for ∆

L̄(∆) = −np
2

log(2π)− n

2
log |∆| − n

2
trace{∆−1Σ̂res} −

n

2

p∑
i=d+1

λi(∆
−1Σ̂cu),

where Σ̂res = Σ̂− Σ̂cu and λi(A) denotes the ith eigenvalue of A.

Thus the MLEs of all the dimension reduction parameters are µ̂ = X̄, ∆̂−1ŜΓ =

Sd(∆̂, Σ̂cu), β̂ỹ = (Γ̂T∆̂−1Γ̂)−1Γ̂T∆̂−1B̂ỹ, where Γ̂ is any orthonormal basis for ŜΓ,

and the ∆̂ is obtained by maximizing L̄(∆).

The detailed proof of Proposition 3.2 can be referred to Theorem 3.1 in Cook and
Forzani (2008)[2]. Their conclusion can be directly utilized here since the demonstra-
tion process concerns only the form of Ld(∆) but not the specific form of Σ̂fit or Σ̂cu.
The L̄(∆) in this article is as the same form as Ld(∆) in Cook and Forzani (2008)[2].

The proof of Proposition 3.3:
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Proof. From the development of Proposition 3.1, the MLE of ∆−1SΓ is Sd(∆̂, Σ̂cu),

which establishes the second form.

To deduce the third form from the second form we need a lemma.

lemma 2. Let Ṽ = Σ̂
−1/2
res V̂M1/2, where M = (Ip + K̂)−1, with V̂ and K̂ as in

Proposition 3.2. Then ∆̂1/2Ṽ are the normalized eigenvectors of ∆̂−1/2Σ̂cu∆̂
−1/2.

The proof of Lemma 2 can be found in Cook and Forzani (2008)[2] which replaces

Σ̂cu with Σ̂fit but makes no difference because it concerns only the form of ∆̂ but

not the specific form of Σ̂fit or Σ̂cu in the demonstration process. The form of ∆̂ in

this article is the same as in Cook and Forzani (2008)[2].

Now, from the second form and Lemma 2, span of the first d columns of ∆̂−1/2∆̂1/2Ṽ =

Ṽ is the MLE of ∆−1SΓ. Since Ṽ = Σ̂
−1/2
res V̂M1/2 and M is diagonal full rank with

the first d elements equal to 1, the span of the first d columns of Ṽ is the same of the

first d columns of Σ̂
−1/2
res V̂. V̂ are the eigenvectors of Σ̂

−1/2
res Σ̂cuΣ̂

−1/2
res , so the span of

the first d columns of Σ̂
−1/2
res V̂ is Sd(Σ̂res, Σ̂cu), which proves the third form.

The proof of the fourth form follows from the third form and the fact that the

eigenvectors of Σ̂−1Σ̂cu and Σ̂−1
resΣ̂cu are identical, with corresponding eigenvalues

λ̂i/(1 + λ̂i) and λ̂i, i = 1, ..., p.

Note that for symmetric matrices A and B, the eigenvalues and eigenvectors of

AB and A1/2BA1/2 are identical. Thus with v̂i and λ̂i as in Proposition 3.2 we have

Σ̂−1
resΣ̂cuv̂i = λ̂iv̂i ⇔ λ̂−1

i Σ̂cuv̂i = Σ̂resv̂i

⇔ (λ̂−1
i + 1)Σ̂cuv̂i = (Σ̂res + Σ̂cu)v̂i = Σ̂v̂i

⇔ Σ̂−1Σ̂cuv̂i = λ̂i/(1 + λ̂i)v̂i.
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The conclusion follows because Σ̂res = Σ̂ − Σ̂cu > 0 and λ̂i/(1 + λ̂i) is a strictly

monotonic function of λ̂i.

The proof of the first form follows from the third form and the fact that the

eigenvectors of Σ̂−1
resΣ̂ and Σ̂−1

resΣ̂cu are identical, with corresponding eigenvalues

(1 + λ̂i) and λ̂i, i = 1, ..., p.

Σ̂−1
resΣ̂cuv̂i = λ̂iv̂i ⇔ Σ̂−1

resΣ̂v̂i = (Ip + Σ̂−1
resΣ̂cu)v̂i = (1 + λ̂i)v̂i

The conclusion follows because Σ̂res = Σ̂−Σ̂cu > 0 and (1+λ̂i) is a strictly monotonic

function of λ̂i.

The proof of Theorem 3.4:

Proof. We study consistency of the estimator Sd(Σ̂, Σ̂cu) under the inverse model

(1) no matter what the real form of fy or the nature of ε is. Since Sd(Σ̂, Σ̂cu) is the

span of Σ̂−1 times the first d eigenvectors of Σ̂cu, which equals the span of the first

d eigenvectors of Σ̂−1Σ̂cu, it is sufficient to consider the property of Σ̂−1Σ̂cu.

Under the inverse model Xy = µ + Γνy + ε, the covariance matrix of X ∈ Rp

is Σ = ΓVΓT + ∆, where V = var(νY ) is positive definite. Given pre-specified

ỹ1, ỹ2, ..., ỹm, Define that

Σcu =
1

m
Σ1/2

(
Corr(X, fY ;ỹ1), ...,Corr(X, fY ;ỹm)

)(
Corr(X, fY ;ỹ1), ...,Corr(X, fY ;ỹm)

)T
Σ1/2,

where X ∈ Rp and fY ;ỹi = I(Y ≤ ỹi)− Pr(Y ≤ ỹi).

It is known that the sample covariance matrix Σ̂ = XTX/n is a
√
n-consistent

estimator of Σ. Hence Σ̂−1 is a
√
n-consistent estimator of Σ−1 (Cook & Forzani
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2008)[2]. Without loss of generality we assume that ω(·) = 1, then

Σ̂cu =
1

m

m∑
i=1

{XTPFỹi
X/n} =

1

m

m∑
i=1

{XTFỹi(FT
ỹi
Fỹi)

−1FT
ỹi
X/n}

=
1

m

m∑
i=1

{
XTFỹi

n

(FT
ỹi
Fỹi

n

)−1FT
ỹi
X
n

}
.

As XTFỹi/n is a
√
n-consistent estimator of cov(X, fY ;ỹi) and (FT

ỹi
Fỹi/n)−1 is a

√
n-

consistent estimator of var(fY ;ỹi), then (XTFỹi/n)(FT
ỹi
Fỹi/n)−1(FT

ỹi
X/n) converges at

√
n rate to Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)

TΣ1/2 when n approaches ∞ (Cook &

Forzani 2008)[2].

Next we consider the convergence of
m∑
i=1

(XTFỹi/n)(FT
ỹi
Fỹi/n)−1(FT

ỹi
X/n) =

m∑
i=1

Σ̂ỹi .

As ∀ε > 0, ∀i ∈ {1, ...,m},

P
(∣∣∣Σ̂ỹi −Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)

TΣ1/2
∣∣∣ < ε

)
→ 1,

we can conclude that

P
( 1

m

∣∣∣ m∑
i=1

Σ̂ỹi −
m∑
i=1

Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)
TΣ1/2

∣∣∣ < ε
)

≥P
( 1

m

m∑
i=1

∣∣∣Σ̂ỹi −Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)
TΣ1/2

∣∣∣ < ε
)

≥P
(
∀i ∈ {1, ...,m},

∣∣∣Σ̂ỹi −Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)
TΣ1/2

∣∣∣ < ε
)

=P
(

max
i

∣∣∣Σ̂ỹi −Σ1/2Corr(X, fY ;ỹi)Corr(X, fY ;ỹi)
TΣ1/2

∣∣∣ < ε
)
→ 1,

as n → ∞. Thus Σ̂cu converges to Σcu at rate not less than
√
n since Σỹi is

√
n-

consistent.

Combined with model (2) in the article we have

corr(X, fY ;ỹi) =Σ−1/2Cov(µ+ ΓνY + ε, fY ;ỹi)var(fY ;ỹi)
−1/2

=Σ−1/2ΓCov(νY , fY ;ỹi)var(fY ;ỹi)
−1/2

=Σ−1/2ΓV1/2Corr(νY , fY ;ỹi).
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Σ̂−1Σ̂cu therefore converges to

Σ−1Σcu =
1

m
Σ−1ΓV1/2CCTV1/2ΓT

=
1

m
(ΓVΓ + ∆)−1ΓV1/2CCTV1/2ΓT .

at not-less-than
√
n rate, and as a result the first d eigenvectors of Σ̂−1Σ̂cu converge

at not-less-than
√
n rate to the corresponding eigenvectors of Σ−1Σcu.

Now we focus on the relationship between Σ−1Σcu and ∆−1SΓ. Based on

(ΓVΓT + ∆)−1 = ∆−1 −∆−1Γ(V−1 + ΓT∆−1Γ)−1ΓT∆−1,

we simplify Σ−1Σcu as

Σ−1Σcu =
1

m
∆−1ΓKV1/2CCTV1/2ΓT ,

where K = (V−1+ΓT∆−1Γ)−1V−1 is a full rank d×dmatrix. Clearly span(Σ−1Σcu) ⊆
∆−1SΓ with equality if and only if the rank of ΓKV1/2CCTV1/2ΓT is equal to d.

Since Γ ∈ Rp×d has full column rank and both K and V is a full rank matrix, the

rank of ΓKV1/2CCTV1/2ΓT is equal to d if and only if the rank of CCT is equal to

d, which requires that C has rank d.
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