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lemma 1. Under the normal inverse model (1) in the article, let R(X) = TTAX.

Then R(X) is the minimal sufficient linear reduction.

The detailed proof of lemmall] has been given by Cook and Forzani (2008)[2]. The
goal consequently turns to estimate A7'Sp = {A7'z : z € S} under the CUPFC
model.

The proof of Proposition 3.1:

Proof. Under the CUPFC model the full parameter space is (u, S, 3, A). When we
derive the MLE of these parameters we set d fixed and the selection of d deserves
separate discussion.

Given a specific § € R as the parameter in the model for X,, we have the

conditional model

Xy =p+TB{I(y <y) - Pr(Y <y)} +e
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Then for specific y € Sy, use the centered f,; to stand for I(y < y) — Pr(Y < g)
and X, is presented as:
X, =pu+TIB;fy;+e.
Given a group of observed response S = (y1,¥2,..,Yn), the joint probability
density function of X, y € S is:

9(X, 1y € 8) =(2m) F|A[F exp { - %Z (X~ - rﬁgfy;g)T

y
AT (Xy —H— I‘ﬁﬂfy;ﬂ) }7

as X, for different ¥4, ..., y,, are independent but not identically distributed.
The full log likelihood for X, is

np n
Ly(p. Sr, B, A) = — —-log(2m) — 7 log [A

1 T (1)
D) Z (Xy —H— FBnyn?) A 1<Xy i Fﬁ?}fy@)‘
y
For fixed A and T, equation (1) is maximized over p by i = X. Brought in fit = X,
note a conversion technique that

Z (Xy — K- Fﬁz}fy;ZJ)TA_l (Xy K Fﬁﬂfu;@)

Y

_ trace{A_1/2 (X _ FgﬂgI‘T>T (X _ Fgﬁng>A_l/2},

where X is the n x p matrix with rows (X,, — X)T which is (X; — X)T actually, F;
is an n x 1 matrix with the kth element f,,.; (k =1,...,n) and B is a d x 1 matrix
whose elements only depend on the specific 3.
Then we have
n n
Ly, Sr, 8. A) = = log(2r) — S log |A|

1 T (2)
_ 5trw:{A—l/2 (X —F;87 I‘T> (X —F;87 I‘T> A—1/2}.
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For fixed A and T, equation is maximized over B; by Bg = FTPF(Afl)Bg,
where Pra-1) = T(TTA-T)'TTA! is the projection onto Sp in the A‘l inner
product and B; = XTF;(FIF;)~! with F;’s kth coordinate being f,,.;. Bj is obvi-
ously the coefficient matrix from the multivariate OLS regression of X on f; (Cook
& Forzani 2008)[2]. Pay attention that we usually set I' € RP*¢ an orthonormal
basis of St without loss of generality, so the MLE I‘Bg will be PF(A_1)BQ. We then
substitute g and By into the log likelihood Lj(p, Sr, B, A) to attain the MLE of Sy
and A.

Notice that

A T A
(X - F380T7) " (X — FyBIT") = X7X — Proa- X F;(FIF;) 'FIX,
and
Ail/QPF(A—l) = PA71/21—1A71/2,

where we write Pg = G(GTG)™!G7 for a full rank matrix G. We can easily obtain

that .
AL/? (X _ IE‘QBQTI‘T> <X _ Fg,égI‘T)A‘l/Q

=n <A_1/22A_1/2 _ PA—1/2I‘A_1/2{XTP[FZ;X/TL}A_I/2>,
and
n n
Li(Sr,A) = — 7plog(27r) -3 log |A|
— Strace{ ATIEAT2 P gy ap ATVHX Py, X /m} A2,

If y takes value from {71, 92, ..., Ym }, We can consider the integration of all the log

likelihood functions Ly, (Sp, A), ¢ = 1,...,m, to maximize the weighted average

1 m
SP7 = EZW yZ 8I‘7 )7



where w(-)/m is a nonnegative weight function with respect to g;. Then the goal is
to maximize
L(Sr, A) = = log(2m) — S log|A

n e 10 1 . _
— Etrace{A 125 A2 Pa-12rA UZE Z {w(yi)XTPFQiX/n} A 1/2}

i=1

=— %log@w) - glog |A|

— gtrace{A’lﬂﬁA’l/2 — PAfl/erfl/ZﬁcuAfl/z}_

Holding A fixed, the log likelihood is maximized by choosing P A -1/2p as the
projection onto the space span,(A =125, A~1/2), where span,(A) denotes the space
spanned by the first d eigenvectors of A. It means that the span of A™!T is the
span of A~1/2 times the first d eigenvectors of A125, A712 ) which is Si(A, f)cu)
exactly. The subspace S;(A, ﬁ]cu) can also be described as the span of A~! times
the first d eigenvectors of 3, (Adragni & Cook 2009)[1].

This leads to the final maximized log likelihood for A

L(A) = ——log(27r) — —log|A| — —trace{A 'S0} — Z MN(ATISL),
i=d+1
where 3,., = 3 — 3., and Ai(A) denotes the ith eigenvalue of A.

Thus the MLEs of all the dimension reduction parameters are i = X, A8 =
Si(A,2.), By = (TTA'T)'TTA'B;, where T' is any orthonormal basis for Sr,
and the A is obtained by maximizing L(A). ]

The detailed proof of Proposition 3.2 can be referred to Theorem 3.1 in Cook and
Forzani (2008)[2]. Their conclusion can be directly utilized here since the demonstra-

tion process concerns only the form of Lg(A) but not the specific form of ) it OF S
The L(A) in this article is as the same form as Ly(A) in Cook and Forzani (2008)[2].

The proof of Proposition 3.3:



~

Proof. From the development of Proposition 3.1, the MLE of A™Sp is Sd(A, ),

which establishes the second form.

To deduce the third form from the second form we need a lemma.

lemma 2. Let V = 3,0/°VMY2 where M = (I, + K)™*, with V and K as in
Proposition 3.2. Then AY2V are the normalized eigenvectors of A=Y28,, A=1/2,

The proof of Lemma 2 can be found in Cook and Forzani (2008)[2] which replaces
f]cu with 3 it but makes no difference because it concerns only the form of A but
not the specific form of 3 it OF ﬁlcu in the demonstration process. The form of A in
this article is the same as in Cook and Forzani (2008)[2].

Now, from the second form and Lemma , span of the first d columns of A=1/2A1/2V =
V is the MLE of A~'Sp. Since V = e 2VMY2 and M is diagonal full rank with
the first d elements equal to 1, the span of the first d columns of V is the same of the
first d columns of 3./*V. V are the eigenvectors of ) Sl QECuﬁﬁé/ 2, so the span of

the first d columns of 3>V is Sd(ims, icu), which proves the third form.

The proof of the fourth form follows from the third form and the fact that the

eigenvectors of X713, and 3 13, are identical, with corresponding eigenvalues

Ni/(L+N)and A, i =1,...,p.
Note that for symmetric matrices A and B, the eigenvalues and eigenvectors of

AB and AV2BAY? are identical. Thus with v; and ); as in Proposition 3.2 we have

~

Er_elsicu{’z - j\z‘}z = 5\;lgcu‘% - 2res{’*i
& (5\;1 + 1)2@\71- = (ﬁm + ﬁ:cu){,i =3,



The conclusion follows because 3,0 = 3 — 3., > 0 and \; /(1 + 5\1) is a strictly

monotonic function of \;.

The proof of the first form follows from the third form and the fact that the
eigenvectors of 313 and 3713, are identical, with corresponding eigenvalues

Tes Tes

(14+X)and A, i =1,....p.

~

271 ECU{Q = S\Z\A’l = 2;6182\71 = (Ip + ﬁ:;elsﬁlcu){’l = (1 + )\Z)\A’Z

Tes

The conclusion follows because 27063 = 2—2cu > 0 and (1+;\i) is a strictly monotonic

function of 5\1

]
The proof of Theorem 3.4:

Proof. We study consistency of the estimator Sd(ﬁl, ﬁ]cu) under the inverse model
(1) no matter what the real form of f, or the nature of € is. Since Sy(3, ) is the
span of 3! times the first d eigenvectors of 3., which equals the span of the first
d eigenvectors of 2‘12% it is sufficient to consider the property of DIRED I

Under the inverse model X, = pu + I'vy, + €, the covariance matrix of X € R?
is ¥ = I'VIT + A, where V = var(vy) is positive definite. Given pre-specified
U1, Y2, ---, Um, Define that

1 T
You = EEUQ (Corr(X, fvin), - Corr(X, fy;gm)> (Corr(X, Iy )s - Corr(X, fy;gm)) xi/2

where X € R? and fy,5, = [(Y <@;) — Pr(Y <g).
It is known that the sample covariance matrix 3 = XTX/n is a \/n-consistent

estimator of 3. Hence 37! is a y/n-consistent estimator of X' (Cook & Forzani



2008)[2]. Without loss of generality we assume that w(-) = 1, then

1 m m

) 1
B . B T T 1T
Sew = > {XTPy, X/} = — 5 {XTFy, (FLFy,) ' Fy X /n}

i1 i=1
1 i XTFy, (Fgng>1F;X
" m — n n n ’

As XTFy, /n is a y/n-consistent estimator of cov(X, fy,5) and (F} Fy /n)~" is a y/n-
consistent estimator of var(fy,), then (X"Fy, /n)(F} Fy, /n)~ (F} X/n) converges at
Vv rate to Y2Corr(X, fy.g,)Corr(X, fy.5,) X2 when n approaches oo (Cook &
Forzani 2008)[2].

Next we consider the convergence of i(XTIFQl/n) (FLFg, /n) " (FLX/n) = i 3,
As Ve > 0, Vi € {1,...,m}, - -

P(’ﬁg — 2Y2Corr(X, fyg)Corr(X, fyg) 22| < (—:) — 1,
we can conclude that
1 m R m
P(—‘ 3.~ SOSY2C0m (X, fy. X, fy. )T/ )
- ZZI i ZZI Corr(X, fy.5)Corr(X, fy.) <e€
1 .
> P(a Zl 3 — BY2Corr(X, fy.g)Corr(X, fyg) 23 < e)

ZP(W € {1, ...m}, |5 — BV2C0r(X, fyy)Corr(X, fyg) B2

<

IP(mde ‘Ey — =2Corr(X, frg)Corr(X, fy.g,) B2

<6>—>1,

as n — oo. Thus X, converges to 3., at rate not less than /n since X 1s /-
consistent.

Combined with model (2) in the article we have

COH(Xa fYﬂ:/i) :2_1/200"(“ +T'vy + €, fY%@i)Var<fY§§/i>_l/2
=%’ Cov(vy, fyg,)var(fyg,) "/
=120V 2Corr(vy, fyg,)-
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2*126u therefore converges to

DI I :lzflrvmccTVl/?rT
m

1
=—(I'VL + Ay 'rvi2cctvy2rt,
m

at not-less-than /n rate, and as a result the first d eigenvectors of 318, converge
at not-less-than /n rate to the corresponding eigenvectors of X7!X..,.

Now we focus on the relationship between X', and A~'Sr. Based on
CVIT+ A ' =At A TV I+ TTATD)'TTATY
we simplify X713, as
> 18, = lA—lr1<vl/2(3(3TV1/2rT,
m

where K = (V7I4+TTA™IT) "'V~ !is a full rank dxd matrix. Clearly span(X'X.,) C
A~'Sp with equality if and only if the rank of TKV/2CCTV'/2I'7 is equal to d.
Since I' € RP*? has full column rank and both K and V is a full rank matrix, the
rank of TKV'/2CCTV'/2TT is equal to d if and only if the rank of CC” is equal to
d, which requires that C has rank d. O
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