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S1 Proofs

S1.1 Theorem 2.1

Proof. For a fixed value of κ, the covariance matrix of u = (u(s1, u(s2), . . . , u(sn)) is
Σ(τ) = τ2Σ0, where Σ0 depends on the values of κ and ν and the locations at which the
process is observed. This means that u|τ, κ ∼ Nn(0, τ2Σ0), and we need to derive the
PC prior for the scale parameter of a multivariate Gaussian distribution with the base
model τ = 0.

This can be formulated as constructing the PC prior for a precision parameter, which
was done in Simpson et al. (2017, Appendix A.2), and a transformation to a scale pa-
rameter results in π(τ |κ) = λ exp(−λτ), for τ > 0, where λ > 0.

S1.2 Theorem 2.2

Proof. The marginal standard deviation is given by σ = τκ−νC−1, where

C =

√
Γ(ν + d/2)(4π)d/2

Γ(ν)
.

The probability P(σ > σ0|κ) = α is equivalent to P(τ > σ0κ
νC|κ) = α and under the

prior distribution this leads to

exp(−λσ0κ
νC) = α

λ = −κ−ν
√

Γ(ν)

Γ(ν + d/2)(4π)d/2
log(α)

σ0
.
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S1.3 Theorem 2.3

Proof. Restrict u to the subset [0, L]d ⊂ Rd and let κ = κ0 > 0 denote the base model.
Let 1/L = o(κ0), then the covariance function on [0, L]d is, for small κ0, well approxi-
mated by

c(s, t) =
∑

w∈ 2π
L
Zd
fν(w;κ, τ) exp (−ı〈w, s− t〉)

(
2π

L

)d
,

where fν(w;κ, τ) = (2π)−dτ2(κ2 + ||w||2)−(ν+d/2) is the spectral density of a Matérn
GRF on Rd with parameters τ , κ and ν (See Lindgren et al. (2011)). Further, the KLD
for the periodic approximation from κ0 to κ, for a fixed τ , is (based on Bogachev (1998,
Thm. 6.4.6))

KL(κ, κ0) =
1

2

∑
w∈ 2π

L
Zd

[
fν(w;κ, τ)

fν(w;κ0, τ)
− 1− log

fν(w;κ, τ)

fν(w;κ0, τ)

]

=
1

2

∑
w∈ 2π

L
Zd

[
(κ2

0 + ||w||2)α

(κ2 + ||w||2)α
− 1− log

(κ2
0 + ||w||2)α

(κ2 + ||w||2)α

]
,

where α = ν + d/2.
The sum can be divided in two parts: the zero frequency E0 and the other frequencies

E1. The zero frequency term is

E0 =
1

2

[(
κ2

0

κ2

)α
− 1− log

(
κ2

0

κ2

)α]
and the remaining terms are

E1 =
1

2

(
Lκ

2π

)d ∑
w∈ 2π

Lκ
Zd,w 6=0

[
((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α
− 1− log

((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α

](
2π

Lκ

)d

=
1

2

(
Lκ

2π

)d{∫
Rd

[
((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α
− 1− log

((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α

]
dw + o(1)

}
as κ0 → 0. For any fixed value of L, we may include (L/(2π))d in the hyperparameter λ
in the PC prior. Thus we consider the rescaled terms

Ẽ0 =
1

2

(
2π

L

)d [(κ2
0

κ

)α
− 1− log

(
κ2

0

κ

)α]
and

Ẽ1 =
1

2
κd
{∫

Rd

[
((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α
− 1− log

((κ0/κ)2 + ||w||2)α

(1 + ||w||2)α

]
dw + o(1)

}
.
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Let κ0 → 0 with 1/L = o(κ0), then Ẽ0 → 0 and, for d ≤ 3,

Ẽ1 →
1

2
κd
∫
Rd

[(
||w||2

(1 + ||w||2)

)α
− 1− log

(
||w||2

(1 + ||w||2)

)α]
dw =

1

2
Cακ

d,

where the finiteness of the integral is shown to hold in Section S8 of the Supplementary
Material, and Cα is a constant that depends on α and d.

The distance from the base model is ˜dist(κ) =
√

2 · 1
2Cακ

d, where we can absorb the

constants in the hyperparameter of the PC prior, so we choose the distance dist(κ) = κd/2.
The PC prior using an exponential distribution on the distance is then

π(κ) = λ exp(−λκd/2)
d

dκ
κd/2 =

dλ

2
κd/2−1 exp(−λκd/2), κ > 0.

S1.4 Theorem 2.4

Proof. The probability P(ρ < ρ0) = α is equivalent to P(κ >
√

8ν/ρ0) = α and under
the prior distribution we find

exp(−λ(
√

8ν/ρ0)d/2) = log(α)

λ = −
(

ρ0√
8ν

)d/2
log(α).

S1.5 Theorem 2.5

Proof. Using Theorems 2.1 and 2.3, we find the joint prior

π(κ, τ) = π(κ)π(τ |κ)

=
d

2
λ1κ

d/2−1 exp(−λ1κ
d/2)λ2 exp(−λ2τ)

=
d

2
λ1λ2κ

d/2−1 exp(−λ1κ
d/2 − λ2τ), τ > 0, κ > 0.

And Theorems 2.2 and 2.4 gives

λ1 = −
(

ρ0√
8ν

)d/2
log(α1) and λ2 = −κ−ν

√
Γ(ν)

Γ(ν + d/2)(4π)d/2
log(α2)

σ0
.
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S1.6 Theorem 2.6

Proof. Since there is no dependence of ρ on τ , the change of variables from (κ, τ) to
(ρ, σ) can be divided in two steps. First, ρ =

√
8ν/κ so we find

π(ρ) = π(κ =
√

8ν/ρ)

∣∣∣∣ d

dρ

√
8νρ−1

∣∣∣∣
=
d

2
λ1(
√

8ν)d/2−1ρ−d/2+1 exp(−λ1(
√

8ν)d/2ρ−d/2)
√

8νρ−2

=
d

2
λ̃1ρ
−d/2−1 exp(−λ̃1ρ

−d/2), ρ > 0,

where λ̃1 = − log(α1)ρ
d/2
0 .

Second, σ = τκ−νC−1, where

C =

√
Γ(ν + d/2)(4π)d/2

Γ(ν)
.

Note that conditioning on κ is equivalent to conditioning on ρ. So the density π(σ|ρ)
can be found by

π(σ|ρ) = π(σ|κ) = π(τ = σκνC|κ)

∣∣∣∣ ∂∂σσκνC
∣∣∣∣

= λ2 exp(−λ2σκ
νC)κνC

= λ̃2 exp(−λ̃2σ), σ > 0,

where λ̃2 = − log(α2)
σ0

. So the joint density is

π(ρ, σ) = π(ρ)π(σ|ρ) =
d

2
λ̃1λ̃2ρ

−d/2−1 exp(−λ̃1ρ
−d/2 − λ̃2σ), ρ > 0, σ > 0.

S2 Detailed discussion for bounded domains

The derivations in the main paper use the assumption that the size of the domain is
large compared to the range of the base model. This is a reasonable assumption if the
underlying GRF exists on a larger domain than the area on which observations have
been made since the prior should be based on the distribution of the GRF on the domain
where it is defined. However, if it is known that the GRF only exists on a bounded
domain, it would be reasonable to base the derivation instead on the bounded domain
and not a larger ambient domain.

When the parameter κ increases, the variance of the process increases, but the spread
of the observations relative to each other does not change. Since there is no larger ambient
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space in which this effect could be distinguished from adding an intercept to the model,
it is more meaningful to have a base model with finite range.

When the priors are derived based on bounded domains, there will typically not be
any analytic expressions available. One exception is the exponential covariance function
on the one-dimensional domain [0, L] where the exact expression for the distance between
the models specified by (κ, τ) and (κ0, τ) can be derived (see Section S3) and is given by

dist1D,exp(κ||κ0) =

√
κ0

κ
− 1− log

(κ0

κ

)
+ L

(
κ2

0

2κ
− κ0 +

κ

2

)
. (1)

In this case it is clear that the term log(κ) dominates when κ is small if
√

8ν/κ0 is of
the same order as L or larger. In the following example one can see how the prior for κ
calculated based on this distance differs from the one derived in the previous section

Example S2.1 (One-dimensional exponential covariance function). Let a GRF with an
exponential covariance function be observed on [0, 1]. There is a one-to-one correspon-
dence between κ and ρ, so the distance given in Equation (1) can be expressed in range
by

distρ0(ρ) =

√
ρ

ρ0
− 1− log

(
ρ

ρ0

)
+
√

8ν

(
ρ

2ρ2
0

− 1

ρ0
+

1

2ρ

)
,

where ρ0 is the range of the base model. This distance results in the prior

π1(ρ) = λ1 exp(−λ2distρ0(ρ))
1

2distρ0(ρ)

(
1

ρ
− 1

ρ0
+

√
8ν

2

[
1

ρ2
− 1

ρ2
0

])
, 0 < ρ < ρ0,

where λ1 = − log(α)/distρ0(R0) ensures that P(ρ < R0) = α.
For comparison, the prior for ρ based on an unbounded domain is

π2(ρ) =
λ2

2
ρ−3/2 exp(−λ2ρ

−1/2), ρ > 0,

where λ2 = − log(α)R
1/2
0 ensures that P(ρ < R0) = α.

The parameter values R0 = 0.05 and α = 0.05 are chosen, and the prior based on the
unbounded domain and the priors based on the bounded domain for ρ0 = 2 and ρ0 = 4
are shown in Figure S1. The figure shows that the two prior constructions are similar for
ρ < 0.25 for ρ = 2 and for ρ < 0.5 for ρ0 = 4. For higher values of range, π2 distributes
the probability mass over the entire positive line and has a faster decay than π1. The
priors will not correspond to each other in the case that ρ0 → ∞. In that case π1 will
have a decay of approximately 1/ρ whereas π2 has a decay of approximately ρ−3/2.

For other covariance functions and for bounded domains of dimension 2 and 3, the
analytic expressions for the distances are not known, but the priors can be approximated
numerically. The values of the prior on an interval κ ∈ [A,B] can be computed by se-
lecting a grid of sufficiently dense locations in the domain and then calculating the KLD
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(a) Base model ρ0 = 2
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(b) Base model ρ0 = 4

Figure S1: The PC prior based on the unbounded domain is shown as dashed lines in
each subfigure and the prior based on the bounded domain is shown as solid lines for
base model (a) ρ0 = 2 (b) ρ0 = 4. The prior based on the unbounded domain continues
to ρ =∞.

based on this finite set of locations. It would be possible to use a fully design-dependent
prior where the KLD is calculated based on the observation locations in the dataset of
interest, but this provides, potentially, undesired behaviour. Even for a bounded domain
one is interested in doing predictions outside the observed locations on a much higher res-
olution and in that case using a prior that ignores all properties of the higher resolution
process would not be advisable. If one wants to be able to do predictions at arbitrarily
high resolution, the prior should be constructed based on the infinite-dimensional GRF
defined on the full bounded domain. The following example demonstrates how calcula-
tions may be done in the two-dimensional case and the consequence of using a too low
resolution in the calculation of the prior.

Example S2.2 (Two-dimensional Matérn covariance function with ν = 3/2). Let a GRF
with a Matérn covariance function with smoothness ν = 1.5 be observed on [0, 1]2, and
let the base model be given by ρ0 = 4. We calculate priors π1, π2 and π3 for the range
based on a regular grid of 10× 10 points, 20× 20 points and 40× 40 points, respectively,
and prior π4, which is the prior calculated based on an unbounded domain. For each
prior the hyperparameter is set such that P (ρ < 0.05) = 0.05.

The calculated priors are shown in Figure S2 and demonstrate that the lower tail
behaviour varies strongly dependent on the number of locations used to calculate the PC
prior. One can see that the lower the resolution is, the higher the values of the prior
in the left-hand side tail. Intuitively, this is because the distance decreases more slowly
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(a) Original axes
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(b) Log-log axes

Figure S2: PC priors for range in a Matérn GRF observed on [0, 1]2 with smoothness
ν = 3/2. The prior based on the unbounded domain is shown as dash-dot-dashed line,
and the priors for the bounded domain based on 10×10 points, 20×20 points and 40×40
are shown as a solid line, a dashed line and a dotted line, respectively. For each of the
priors based on bounded domains the base model is ρ0 = 4.

as a function of range as range goes to zero the lower the resolution is, and this causes
more probability mass to be placed further out in the tail. This is because most of the
differences in the GRFs for low ranges cannot be detected when it is observed at lower
resolution. However, since the properties of the prior are used when making predictions
at higher resolutions, we suggest to use the prior based on the continuous process instead
of the discrete observation process.

As the resolution of the grid used to calculate the prior using the bounded domain goes
to infinity, the prior will agree better and better with the prior based on the unbounded
domain for low values of the range. In Example S2.1 the overlap for low values of range
is clear since the analytic expression for infinite resolution is used.

Even though there are cases in which the domain of the GRF is naturally limited to
the area on which the observations are made, the use of priors based on an unbounded
domain have many advantages. The priors based on the bounded domain are more
expensive to calculate and require the additional choice of a range for the base model,
but have the same lower tail behaviour as the prior based on the unbounded domain
and only the behaviour for higher ranges changes. Overall, we find that the unbounded
domain prior is most appealing.
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S3 Distance for exponential covariance function on bounded
one-dimensional domain

S3.1 Goal

Let uκ be a stationary GRF with the exponential covariance function,

c(d) =
1

2κ
e−κd, (2)

where κ > 0. This way of writing the exponential covariance function differs from the
traditional parametrization using the range and the marginal variance, and is chosen
because the KLD between the distributions described by different values κ > 0 is finite.
The parametrization describes how to move in the parameter space while keeping the
KLD finite. The goal of this appendix is to calculate the KLD between the distributions
of uκ and uκ0 on the interval [0, L]

S3.2 Discretization

The direct computations for the interval [0, L] are difficult. So we first consider the KLD
for the distributions of uκ and uκ0 at the observation points ti = i∆t, for i = 0, 1, . . . , N ,
where ∆t = L/N . The spatial field uκ can be described as a stationary solution of the
stochastic differential equation

duκ(t) = −κuκ(t)dt+ dW (t),

where W is a standard Wiener processes, and written explicitly as

uκ(t) =

∫ t

−∞
e−κ(t−s) dW (s).

This expression shows that

uκ(ti+1)|uκ(ti) ∼ N (e−κ∆tuκ(ti), σ
2
κ),

where

σ2
κ = Var[uκ(t+ ∆t)|uκ(t)] =

∫ t+∆t

t
e−2κ(t+∆t−s) ds =

1− e−2κ∆t

2κ
.

This is an AR(1) process with initial condition uκ(t0) ∼ N (0, (2κ)−1), which means
that uκ = (uκ(t0), . . . , uκ(tN )) has a multivariate Gaussian distribution with mean 0 and
precision matrix

Qκ =
1

σ2
κ


1 −e−κ∆t

−e−κ∆t 1 + e−2κ∆t −e−κ∆t

. . . . . . . . .
−e−κ∆t 1 + e−2κ∆t −e−κ∆t

−e−κ∆t 1

 . (3)
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S3.3 Kullback-Leibler divergence

The vectors uκ0 and uκ have multivariate Gaussian distributions and the KLD from the
distribution described by κ0 to the distribution described by κ is

KL(κ, κ0) =
1

2

[
tr(Qκ0Q

−1
κ )− (N + 1)− log

(
|Qκ0 |
|Qκ|

)]
.

We are interested in taking the limit ∆t→ 0 to find the value corresponding to the KLD
from uκ0 to uκ. This is done in two steps: first we consider the trace and the N +1 term,
and then we consider the log-determinant term.

S3.3.1 Step 1

Let fκ = 1/σ2
κ, then the trace term can be written as

tr(Qκ0Σκ)

= fκ0

[
2cκ(0) +

N−1∑
i=1

(1 + e−2κ0∆t)cκ(0)− 2

N∑
i=1

e−κ0∆tcκ(∆t)

]
= fκ0

[
2cκ(0) + (N − 1)(1 + e−2κ0∆t)cκ(0)− 2Ne−κ0∆tcκ(∆t)

]
.

We extract the first summand and parts of the last summand, and combine with 2 from
the N + 1 term, to find the limit

2fκ0 [cκ(0)− e−κ0∆tcκ(∆t)]− 2 = 2fκ0
1− e−(κ+κ0)∆t

2κ
− 2

=
κ+ κ0

κ

fκ0/∆t

fκ+κ0/∆t
− 2

→ κ0 − κ
κ

.
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For the remaining summands and the remaining N − 1 from the N + 1 term, we can
simplify the expression as

S3(∆t)

= (N − 1)fκ0
[(

1 + e−2κ0∆t
)
cκ(0)− 2e−κ0∆tcκ(∆t)

]
− (N − 1)

= (N − 1)fκ0

[(
1 + e−2κ0∆t

) 1

2κ
− 2

e−(κ0+κ)∆t

2κ

]
− (N − 1)

= (N − 1)fκ0
1

2κ

[
1 + (1− 2κ0∆t+

4κ2
0(∆t)2

2
)

− 2(1− (κ0 + κ)∆t+
(κ0 + κ)2(∆t)2

2
) + o((∆t)2)

]
− (N − 1)

= (N − 1)fκ0
1

2κ

[
(−2κ0 + 2(κ0 + κ))∆t

+ (2κ2
0 − (κ0 + κ)2)(∆t)2 + o((∆t)2)

]
− (N − 1)

= (N − 1)fκ0

[
∆t+

2κ2
0 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]
− (N − 1)

=

(
L

∆t
− 1

)(
1

∆t
+ κ0 + o(1)

)[
∆t

+
2κ2

0 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]
−
(
L

∆t
− 1

)
,

and see that the products involving o(1) tend to zero

S3(∆t) = L

[
1

∆t
+

2κ2
0 − (κ0 + κ)2

2κ
− 1

∆t

]
+ Lκ0 − [1 + o(1)] + 1

= L
4κ2

0 − (κ0 + κ)2

2κ
+ Lκ0 + o(1)

= L

(
κ0 +

κ2
0

2κ
− κ0 −

κ

2

)
+ o(1).

Thus the limit is

tr(Qκ0Σκ)− (N + 1)→ κ0

κ
− 1 + L

(
κ2

0

2κ
− κ

2

)
.

S3.3.2 Step 2

The determinant of the matrix in Equation (3) can be found by summing rows upwards,
and we see that

|Q| = σ−2(N+1)(1− e−2κ∆t) = 2κσ−2N .
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Note that in the limit κ → 0, f → ∆t so the determinant behaves asymptotically as κ.
This means that

log

(
|Qκ0 |
|Qκ|

)
= log

(
2κ0f

N
κ0

2κfNκ

)

= log
(κ0

κ

)
+N log

(
fκ0
fκ

)
and we need to find the limit of the second part,

N log

(
fκ0
fκ

)
=

L

∆t

[
log

1

fκ
− log

1

fκ0

]
=

L

∆t

[
log

(
1

2κ

(
1− e−2κ∆t

))
− log

(
1

2κ0

(
1− e−2κ0∆t

))]
=

L

∆t

[
log
(
∆t− κ(∆t)2 + o((∆t)2)

)
− log

(
∆t− κ0(∆t)2 + o((∆t)2)

)]
=

L

∆t
[log (1− κ∆t+ o(∆t))− log (1− κ0∆t+ o(∆t))]

=
L

∆t
[−κ∆t+ κ0∆t+ o(∆t)]

Thus the limit is
log

(
|Qκ0 |
|Qκ|

)
→ log

(κ0

κ

)
+ L(κ0 − κ)

S3.4 Full KLD

The combination of the limits from the two steps gives the full KLD,

KL(κ, κ0) =
1

2

[
κ0

κ
− 1 + L

(
κ2

0

2κ
− κ

2

)
− log

(κ0

κ

)
− L(κ0 − κ)

]
=

1

2

[
κ0

κ
− 1− log

(κ0

κ

)
+ L

(
κ2

0

2κ
− κ0 +

κ

2

)]
. (4)

S4 Details for the simulation study

In this section we present a small simulation study of the frequentist coverage of the
credible intervals for the range and the marginal variance, and the behaviour of the joint
posterior when using the PC prior, the Jeffreys’ rule prior, and the Jeffreys prior for
variance combined with a bounded uniform prior on range and a bounded uniform prior
on the logarithm of range.
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Figure S3: Spatial design for the simulation study.

S4.1 Study setup

We choose the observation domain [0, 1]2 ⊂ R2 and select the 25 observation loca-
tions, s1, s2, . . . , s25, shown in Figure S3 at random. Then we simulate observations,
u = (u(s1), u(s2), . . . , u(s25)), for these observation locations for a GRF with an expo-
nential covariance function c(r) = exp(−2r/R0) for R0 = 0.1 and R0 = 1. We generate
1000 realizations of the observations for R0 = 0.1 and R0 = 1 and collect them in
datasets Data1 and Data2 , respectively. Additionally, for each of the 1000 realizations
in Data1 a third dataset (Data3) is generated by simulating yi|pi ∼ Binomial(20, pi),
where probit(pi) = ui, for i = 1, 2, . . . , 25.

Two models are used to fit the data: a spatial regression model (Model1) and a
spatial logistic regression model (Model2). In Model1 observations are modelled as yi =
u(si), for i = 1, 2, . . . , 25, where u is an exponential GRF with the covariance function,
c(r) = σ2 exp(−2r/ρ), where σ2 is the marginal variance and ρ is the range, and in Model
2 the observations are modelled as yi|pi ∼ Binomial(20, pi), where probit(pi) = u(si),
for i = 1, 2, . . . , 25, where u is an exponential GRF with covariance function, c(r) =
σ2 exp(−2r/ρ), where σ2 is the marginal variance and ρ is the range.

Four different priors are used for the parameters: the PC prior (PriorPC), the Jeffreys’
rule prior (PriorJe), a uniform prior on range on a bounded interval combined with the
Jeffreys’ prior for variance (PriorUn1) and a uniform prior on the log-range on a bounded
interval combined with the Jeffreys’ prior for variance (PriorUn2). The full expressions
for the priors are given in Table S1.
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Table S1: The four different priors used in the simulation study. The Jeffreys’ rule prior
uses the spatial design of the problem through U = ( ∂∂ρΣ)Σ−1, where Σ is the correlation
matrix of the observations (See Berger et al. (2001)).

Prior Expression Parameters

PriorPC π1(ρ, σ) = λ1λ2ρ
−2 exp

(
−λ1ρ

−1 − λ2σ
) ρ, σ > 0

Hyperparameters:
αρ, ρ0, ασ, σ0

PriorJe π2(ρ, σ) = σ−1

(
tr(U2)− 1

n
tr(U)2

)1/2 ρ, σ > 0
Hyperparameters:
None

PriorUn1 π3(ρ, σ) ∝ σ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B

PriorUn2 π4(ρ, σ) ∝ σ−1 · ρ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B
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S4.2 Frequentist coverage

The series of papers on reference priors for GRFs starting with Berger et al. (2001)
evaluated the priors by studying frequentist properties of the resulting Bayesian inference.
A prior intended for use as a default prior should lead to good frequentist properties
such as frequentist coverage of the equal-tailed 100(1 − α)% Bayesian credible intervals
that is close to the nominal 100(1 − α)%. In this paper, the study is replicated with
one key difference: no covariates are included. This choice is made because the PC
prior is derived for a zero-mean GRF, and if a mean were desired, it would be handled
by extending the hierarchical model with another latent component that had its own,
separate prior. Without covariates the reference prior approach results in the Jeffreys’
rule prior as there are no nuisance parameters to integrate out when constructing the
spatial reference prior. Furthermore, we compute the 100(1 − α)% highest posterior
density (HPD) credible intervals (Chen and Shao, 1999) since the resulting posteriors
will be highly skewed and the HPD intervals may differ substantially from the quantile-
based intervals.

In this section Model1 is combined with PriorJe, PriorPC, PriorUn1 and PriorUn2.
Data1 and Data2 each contains 1000 realizations and the frequentist coverage is estimated
for the equal-tailed 95% credible intervals and the HPD 95% credible intervals for the
range and the marginal variance by counting how many times the true parameter value
is included in the credible intervals. The equal-tailed intervals are calculated based on
the quantiles of the samples from an MCMC chain and the HPD intervals are calculated
using the BOA package (Smith et al., 2007). We split the presentation of the results for
the quantile-based credible intervals and the HPD credible intervals: in this section we
discuss the quantile-based intervals and their associated results, and in the next section
we discuss the results for the HPD credible intervals and differences from the results for
the quantile-based intervals.

PriorJe has no hyperparameters, but PriorPC, PriorUn1 and PriorUn2 each has hy-
perparameters that need to be set before using the priors. For PriorUn1 and PriorUn2
it is hard to give guidelines about which values should be selected since the main pur-
pose of limiting the prior distributions to a bounded interval is to avoid an improper
posterior and the choice tends to be ad-hoc. For PriorPC, on the other hand, there is
an interpretable statement for selecting the hyperparameters, which helps give an idea
about which prior assumptions the chosen hyperparameters are expressing.

For PriorPC we need to make an a priori decision about the scales of the range
and the marginal variance. The prior is set through four hyperparameters that describe
our prior beliefs about the spatial field. We use P(ρ < ρ0) = 0.05 for ρ0 = 0.025ρT,
ρ0 = 0.1ρT, ρ0 = 0.4ρT and ρ0 = 1.6ρT, where ρT is the true range. This covers a prior
where ρ0 is much smaller than the true range, two priors where ρ0 is smaller than the
true range, but not far away, and one prior where ρ0 is higher than the true range. For
the marginal variance we use P(σ2 > σ2

0) = 0.05, for σ0 = 0.625, σ0 = 2.5, σ0 = 10 and
σ0 = 40. We follow the same logic as for range and cover too small and too large σ0 and
two reasonable values. For PriorUn1 and PriorUn2, we set the lower and upper limits
for the nominal range according to the values A = 0.05, A = 0.005 and A = 0.0005, and
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Table S2: Frequentist coverage of the 95% credible intervals for the range and the
marginal variance when the true range is ρT = 0.1 using PriorPC. The average lengths
of the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.0025 0.755 [0.24] 0.776 [0.22] 0.760 [0.20] 0.709 [0.18]
0.01 0.969 [0.33] 0.970 [0.32] 0.958 [0.28] 0.924 [0.21]
0.04 0.988 [0.46] 0.990 [0.41] 0.991 [0.33] 0.990 [0.25]
0.16 0.723 [0.99] 0.685 [0.82] 0.733 [0.55] 0.798 [0.34]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.0025 0.960 [1.5] 0.943 [1.4] 0.946 [1.3] 0.898 [0.97]
0.01 0.934 [1.6] 0.966 [1.6] 0.960 [1.4] 0.923 [0.99]
0.04 0.949 [2.0] 0.945 [1.8] 0.953 [1.5] 0.941 [1.1]
0.16 0.895 [3.8] 0.905 [3.2] 0.947 [2.2] 0.977 [1.3]

B = 2, B = 20 and B = 200. Some of the values are intentionally extreme to see the
effect of misspecification.

The results for PriorPC are given in Tables S2 and S3 for the true ranges ρT = 0.1
and ρT = 1, respectively, and the tables for PriorUn1 and PriorUn2 are given in Section
S5. PriorJe resulted in 98.3% coverage with average length of the credible intervals
of 0.78 for range and 96.7% coverage and average length of the credible intervals of
2.6 for marginal variance for ρT = 0.1, and 95.6% coverage with average length of the
credible intervals of 376 for range and 95.6% coverage with average length of the credible
intervals of 295 for variance for ρT = 1. The tables show that for PriorPC, PriorUn1
and PriorUn2 the coverage and the length of the credible intervals are sensitive to the
choice of hyperparameters. The lengths of the credible intervals are, in general, more
well-behaved for ρT = 0.1 than for ρT = 1 because there is more information about the
range available in the domain when the range is shorter.

The results verifies the observations by Berger et al. (2001) that the inference is
overly sensitive to the hyperparameters for PriorUn1. The coverage and the length of
the credible intervals are strongly dependent on the upper limit of the prior. For PriorUn2
the coverage is good in both the short range and long range case, but the length of the
credible intervals are sensitive to the upper limit of the prior. For PriorJe the coverage
is good, but the credible intervals are excessively long and the prior is computationally
expensive and only computationally feasible for a low number of observation locations.
The average length of the credible intervals for ρT = 1 for marginal variance is 295, which
imply unreasonably high standard deviations. The high standard deviations do not seem
consistent with observations drawn with true marginal variance equal to 1.

Further, the results show that the coverage for PriorPC is stable when a too low
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Table S3: Frequentist coverage of the 95% credible intervals for the range and the
marginal variance when the true range is ρT = 1 using PriorPC. The average lengths of
the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.025 0.957 [12] 0.947 [7.3] 0.921 [3.3] 0.782 [1.4]
0.1 0.977 [14] 0.967 [8.5] 0.962 [3.5] 0.861 [1.5]
0.4 0.963 [25] 0.970 [13] 0.988 [5.2] 0.980 [1.9]
1.6 0.63 [73] 0.301 [32] 0.711 [11] 0.945 [3.3]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.025 0.956 [11] 0.949 [6.5] 0.927 [2.8] 0.771 [1.1]
0.1 0.964 [13] 0.966 [7.5] 0.950 [3.1] 0.848 [1.2]
0.4 0.953 [22] 0.964 [12] 0.980 [4.5] 0.965 [1.5]
1.6 0.435 [69] 0.549 [29] 0.804 [9.1] 0.988 [2.5]

lower limit for range or a too high upper limit for marginal variance is specified, but
that specifying a too high lower limit for the range or a too low upper limit for variance
produces large changes in the coverage. This is not unreasonable as the prior is then
explicitly stating that the true value for range or variance is unlikely. The average length
of the credible intervals are more sensitive to the hyperparameters than the coverages,
but we see less extreme sizes for the credible intervals than for PriorJe.

With respect to computation time and ease of use versus coverage and length of
credible intervals PriorUn2 and PriorPC appear to be the best choices. If coverage is the
only concern, PriorUn2 performs the best, but if one also wants to control the length of
the credible intervals by disallowing unreasonably high variances, PriorPC offers the most
interpretable alternative. In a realistic situation it is highly likely that the researcher has
prior knowledge, for example, that the spatial effect should not be greater than, say
4, and by encoding this information in PriorPC one can limit the upper limits of the
credible intervals both for range and marginal variance.

S4.3 Differences in results between equal-tailed and HPD credible in-
tervals

For each case discussed in the previous section, we also calculated the 95% credible
intervals using HPD intervals and the results and tables are found in Section S6. In
general, the average length of the credible intervals are significantly shorter for HPD
credible intervals than for quantile-based credbile intervals, and the most substantial
decrease is seen for true range equal to 1.0 using PriorJe, where the average length of
the credible interval decreases from 376 to 95 for range and from 295 to 75 for marginal
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variance. However, the conclusions in the previous section on differences in average
lengths of credible intervals between priors and between true range equal to 0.1 and
1.0 remain valid since the relative differences remain similar. In particular, the average
length of the HPD credible intervals for marginal variance for PriorJe with true range
equal to 1.0 is around 95, which is still unreasonably high when prior knowledge about
the marginal standard deviation is available.

The coverage of the credible intervals constructed using HPD intervals differ from
the quantile-based intervals. For PriorPC, the coverage of the HPD intervals is more
sensitive to the hyperparameters and if ρ0 = 0.4ρT the coverage of the HPD intervals for
range are almost 100%. Further, the coverage of the HPD intervals for marginal variance
are excessively high when σ0 = 40 or σ0 = 10, and there is no recommendation for
hyperparameters that perform consistently well in both true range equal to 0.1 and 1.0
and for both range and marginal variance. Similarly, the coverage of the credible interval
for range is almost 100% when the true range is 0.1 with PriorJe. This contrasts the
quantile-based credible intervals where PriorJe performs well with respect to coverage for
both true range equal to 0.1 and 1.0. For PriorUn1 and PriorUn2 the coverage of the HPD
credible intervals are less sensitive to hyperparameters than the quantile-based credible
intervals, but the the HPD intervals tend to have higher coverage than the nominal level.

We use the equal-tailed 95% credible intervals in what follows since the 95% HPD
credible intervals are further away from nominal level and more sensitive to hyperparam-
eters than equal-tailed 95% credible intervals for the PC prior.

S4.4 Behaviour of the joint posterior

In the previous section we only studied the marginal properties of the posterior, but these
do not tell the entire story because there is strong dependence between the range and
the marginal variance in the posterior distribution. We study this dependence using one
realization from Data2 where the true range is 1 and the observed values lie in the range
−1 to 3. An MCMC sampler is used to draw samples from the posterior of the marginal
standard deviation and the range. Model1 is combined with PriorJe, and PriorPC with
hyperparameters αρ = 0.05, ρ0 = 0.1, ασ = 0.05 and σ0 = 10.

Figure S4 shows the strong posterior dependence between the marginal standard
deviation and the range in the tail of the distribution. The long tails are not a major
concern for predictions since the asymptotic predictions are the same along the ridge,
but they pose a concern for the interpretability of the range and the marginal variance.
Since the values of the observations lie within the range −1 to 3, it is unlikely that the
true standard deviation should be on the order of 20.

As seen in Figure S5, the heavier upper tail for the joint posterior when using PriorJe
compared to using PriorPC results in heavier tails also for the marginal posteriors. The
lower endpoints of the equal-tailed credible intervals are similar using both priors, but
there is a large difference in the upper endpoints. The PC prior for range has a heavy
upper tail and the upper tail of the posterior for the range is controlled through the prior
on the marginal variance. The light upper tail of the prior on marginal variance restricts
the joint posterior from moving far along the ridge in the likelihood.
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Figure S4: Samples from the joint posterior of range and marginal standard deviation.
The red circles are samples using the PC-prior and the black circles are samples using
the Jeffreys’ rule prior.
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Figure S5: Marginal posteriors of the logarithms of range and marginal standard devi-
ation. The dashed lines corresponds to the PC prior and the solid corresponds to the
Jeffreys’ rule prior. Equal-tailed 95% credible intervals are shown as vertical lines.
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Intrinsic models have a place in statistics, but the results show that PriorJe favors
intrinsic GRFs with large marginal standard deviations and ranges even though they
might not be physically reasonable for the application. PriorPc offers a way to introduce
prior belief about the size of the marginal standard deviations, and thus a way to reduce
the preference for the intrinsic GRFs and limit the size of the credible intervals according
to knowledge about the process.

S4.5 Example: Spatial logistic regression

A clear weakness of the reference priors is that they must be re-derived when components
are added to the model or the observation process is changed. The PC prior can be used
in any model since its derivation is observation-process agnostic and results in a prior for
the model component itself and not the whole model. The frequentist coverage resulting
from using Model2 with PriorPC for 500 of the realizations in Data3 is estimated similarly
as in Section S4.2.

The experiment is repeated for 64 different settings of the prior: the hyperparameter
ρ0 varies over ρ0 = 0.0025, 0.01, 0.04, 0.16 and the hyperparameter σ0 varies over σ0 =
40, 10, 2.5, 0.625. This covers a broad range of values from too small to too large. The
values in Table S4 are similar to the values in Table S2 except that the equal-tailed
credible intervals are slightly longer. The longer credible intervals are reasonable since the
binomial likelihood gives less information about the spatial field than direct observations.
The coverage for the marginal variance is good even for grossly miscalibrated priors,
but the coverage for range is sensitive to bad calibration for range and the coverage is
somewhat higher than nominal for the well-calibrated priors. This is a feature also seen
in the directly observed case in Section S4.2. For completeness, the corresponding 95%
HPD credible intervals are shown in Table S15. The table shows that the coverage for
range is too low for ρ0 = 0.0025 and ρ0 = 0.01 and that the coverage is too high for
ρ0 = 0.04 and ρ0 = 0.16. This was also the case for Gaussian observations, and the
HPD intervals are more sensitivity to the hyperparameters than the equal-tailed credible
intervals for PriorPC.

S5 Additional tables for simulation study using quantile-
based credible intervals

The simulation study in Section S4 was run with four different priors: the PC prior (Pri-
orPC), the Jeffreys’ rule prior (PriorJe), a uniform prior on range on a bounded interval
combined with the Jeffreys’ prior for variance (PriorUn1) and a uniform prior on the log-
range on a bounded interval combined with the Jeffreys’ prior for variance (PriorUn2).
For each prior a selection of hyperparameters were tested on datasets generated from
true ranges ρT = 0.1 and ρT = 1.0, and the frequentist coverages of the 95% credible
intervals and the lengths of the credible intervals were estimated. For ρT = 0.1, PriorJe
gave 98.3% coverage with average length 0.78 for range and 96.7% coverage with average
length 2.6 for marginal variance, and for ρT = 1.0, PriorJe gave 95.6% coverage with
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Table S4: Frequentist coverage of the 95% credible intervals for range and marginal
variance when the true range is 0.1 and true marginal variance is 1, where the average
length of the credible intervals are given in brackets, for the spatial logistic regression
example.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.0025 0.790 [0.32] 0.775 [0.25] 0.760 [0.22] 0.720 [0.19]
0.01 0.982 [0.42] 0.981 [0.37] 0.974 [0.30] 0.960 [0.25]
0.04 0.990 [0.65] 0.987 [0.53] 0.995 [0.40] 0.985 [0.30]
0.16 0.621 [1.6] 0.638 [1.2] 0.682 [0.71] 0.779 [0.43]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.0025 0.953 [2.1] 0.936 [1.9] 0.941 [1.7] 0.913 [1.2]
0.01 0.952 [2.2] 0.949 [2.1] 0.954 [1.7] 0.931 [1.2]
0.04 0.949 [2.7] 0.942 [2.5] 0.960 [1.9] 0.923 [1.3]
0.16 0.906 [5.5] 0.923 [4.2] 0.961 [2.7] 0.972 [1.5]

average length 376 for range and 95.6% coverage with average length of 295 for marginal
variance. The results for PriorPC is given in Section S4 and the results for the two other
priors are collected in the tables:

Prior ρT = 0.1 ρT = 1.0

PriorUn1 Table S5 Table S7
PriorUn2 Table S6 Table S8

S6 Results of simulation study using HPD credible intervals

The simulation study in Section S4 was run with four different priors: the PC prior (Pri-
orPC), the Jeffreys’ rule prior (PriorJe), a uniform prior on range on a bounded interval
combined with the Jeffreys’ prior for variance (PriorUn1) and a uniform prior on the log-
range on a bounded interval combined with the Jeffreys’ prior for variance (PriorUn2).
For each prior a selection of hyperparameters were tested on datasets generated from
true ranges ρT = 0.1 and ρT = 1.0, and the frequentist coverages of the 95% highest
posterior density (HPD) credible intervals and the average lengths of the HPD credible
intervals were estimated. For ρT = 0.1, PriorJe gave 99.9% coverage with average length
0.46 for range and 98.2% coverage with average length 1.8 for marginal variance, and for
ρT = 1.0, PriorJe gave 95.7% coverage with average length 95 for range and 96.5% cov-
erage with average length of 75 for marginal variance. The results for PriorPC, PriorUn1
and PriorUn2 are given in the tables:
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Table S5: Frequentist coverage of 95% credible intervals for range and marginal variance
when the true range ρT = 0.1 using PriorUn1, where the average lengths of the credible
intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.920 [0.93] 0.886 [8.5] 0.840 [119]
5 · 10−3 0.937 [0.94] 0.910 [8.1] 0.866 [104]
5 · 10−4 0.937 [0.91] 0.925 [8.0] 0.864 [108]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.941 [3.5] 0.937 [30] 0.900 [443]
5 · 10−3 0.934 [3.4] 0.924 [27] 0.924 [383]
5 · 10−4 0.934 [3.3] 0.945 [27] 0.922 [388]

Table S6: Frequentist coverage of 95% credible intervals for range and marginal variance
when the true range ρT = 0.1 using PriorUn2, where the average lengths of the credible
intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.987 [0.44] 0.983 [0.72] 0.985 [1.1]
5 · 10−3 0.959 [0.43] 0.972 [0.74] 0.965 [1.3]
5 · 10−4 0.923 [0.39] 0.944 [0.68] 0.933 [1.1]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.954 [1.9] 0.954 [2.7] 0.961 [3.5]
5 · 10−3 0.957 [1.7] 0.957 [2.4] 0.950 [3.8]
5 · 10−4 0.947 [1.6] 0.954 [2.3] 0.939 [3.2]
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Table S7: Frequentist coverage of 95% credible intervals for range and marginal variance
when the true range ρT = 1 using PriorUn1, where the average lengths of the credible
intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.995 [1.5] 0.840 [18] 0.562 [188]
5 · 10−3 0.997 [1.5] 0.831 [18] 0.560 [188]
5 · 10−4 0.993 [1.5] 0.823 [18] 0.550 [188]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.975 [2.0] 0.848 [20] 0.574 [205]
5 · 10−3 0.978 [2.0] 0.822 [21] 0.600 [203]
5 · 10−4 0.983 [2.0] 0.837 [20] 0.564 [206]

Table S8: Frequentist coverage of 95% credible intervals for range and marginal variance
when the true range ρT = 1 using PriorUn2, where the average lengths of the credible
intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.978 [1.5] 0.965 [13] 0.963 [69]
5 · 10−3 0.969 [1.5] 0.951 [12] 0.944 [67]
5 · 10−4 0.978 [1.5] 0.957 [13] 0.947 [68]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.964 [1.8] 0.961 [12] 0.949 [61]
5 · 10−3 0.957 [1.8] 0.953 [11] 0.934 [60]
5 · 10−4 0.958 [1.8] 0.945 [12] 0.941 [59]
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Table S9: Frequentist coverage of the 95% HPD credible intervals for the range and the
marginal variance when the true range is ρT = 0.1 using PriorPC. The average lengths
of the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.0025 0.571 [0.17] 0.586 [0.17] 0.584 [0.16] 0.535 [0.14]
0.01 0.903 [0.25] 0.912 [0.25] 0.900 [0.23] 0.841 [0.18]
0.04 1.000 [0.35] 0.999 [0.33] 0.999 [0.28] 0.998 [0.22]
0.16 0.990 [0.67] 0.992 [0.60] 0.980 [0.45] 0.957 [0.31]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.0025 0.961 [1.3] 0.947 [1.3] 0.947 [1.2] 0.857 [0.92]
0.01 0.959 [1.4] 0.969 [1.4] 0.958 [1.2] 0.882 [0.93]
0.04 0.980 [1.7] 0.967 [1.6] 0.961 [1.3] 0.908 [1.0]
0.16 0.991 [2.8] 0.988 [2.5] 0.990 [1.9] 0.962 [1.2]

Prior ρT = 0.1 ρT = 1.0

PriorPC Table S9 Table S12
PriorUn1 Table S10 Table S13
PriorUn2 Table S11 Table S14
PriorPC and logistic regression Table S15 N/A

S7 Prior for extra flexibility in the covariance structure

Lindgren et al. (2011) represented Matérn GRFs as the stationary solutions to the
stochastic partial differential equation (SPDE)

[κ2 −∆]α/2(τu(s)) =W(s), s ∈ Rd, (5)

where κ > 0 and τ > 0 are parameters, α is connected to the smoothness ν through α =
ν+d/2, ∆ is the Laplacian, andW is standard Gaussian white noise. Ingebrigtsen et al.
(2014) allowed the parameters of the SPDE to be spatially varying functions, log(κ(·))
and log(τ(·)), through low-dimensional bases using a small number of covariates, and
used independent Gaussian priors for the extra parameters. However, they experienced
numerical problems and prior sensitivity, and Ingebrigtsen et al. (2015) developed an
improved scheme for selecting the hyperparameters of the priors based on the properties of
the resulting spatially varying local ranges and marginal variances. However, the inherent
problem of their specification is that κ(·) affects both the correlation structure and the
marginal variances of the spatial field. This makes it challenging to set priors on κ(·)
and τ(·), and we aim to improve their procedure by first improving the parametrization
of the non-stationarity, and then developing a prior using the improved parametrization.
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Table S10: Frequentist coverage of 95% HPD credible intervals for range and marginal
variance when the true range ρT = 0.1 using PriorUn1, where the average lengths of the
credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.977 [0.71] 0.992 [5.7] 0.989 [92]
5 · 10−3 0.977 [0.74] 0.994 [5.6] 0.990 [78]
5 · 10−4 0.970 [0.71] 0.988 [5.4] 0.993 [82]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.991 [2.7] 0.993 [19] 1.00 [312]
5 · 10−3 0.985 [2.7] 0.993 [18] 0.993 [263]
5 · 10−4 0.981 [2.6] 0.989 [18] 0.993 [270]

Table S11: Frequentist coverage of 95% HPD credible intervals for range and marginal
variance when the true range ρT = 0.1 using PriorUn2, where the average lengths of the
credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.998 [0.34] 0.999 [0.45] 1.000 [0.54]
5 · 10−3 0.922 [0.33] 0.936 [0.46] 0.922 [0.62]
5 · 10−4 0.831 [0.30] 0.866 [0.42] 0.864 [0.54]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.978 [1.6] 0.977 [2.0] 0.976 [2.1]
5 · 10−3 0.957 [1.5] 0.974 [1.8] 0.960 [2.2]
5 · 10−4 0.949 [1.4] 0.966 [1.7] 0.958 [2.0]
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Table S12: Frequentist coverage of the 95% HPD credible intervals for the range and the
marginal variance when the true range is ρT = 1 using PriorPC. The average lengths of
the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.025 0.927 [7.2] 0.915 [4.8] 0.869 [2.5] 0.690 [1.2]
0.1 0.973 [8.2] 0.961 [5.6] 0.924 [2.7] 0.783 [1.3]
0.4 1.000 [14] 1.000 [8.6] 0.997 [4.0] 0.949 [1.6]
1.6 0.993 [44] 0.994 [22] 0.992 [8.3] 0.990 [2.9]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.025 0.946 [6.5] 0.936 [4.3] 0.889 [2.2] 0.666 [0.95]
0.1 0.975 [7.5] 0.980 [4.9] 0.940 [2.4] 0.754 [1.1]
0.4 1.000 [13] 1.000 [7.8] 0.998 [3.4] 0.912 [1.3]
1.6 0.996 [41] 0.986 [20] 0.984 [7.3] 0.999 [2.2]

Table S13: Frequentist coverage of 95% HPD credible intervals for range and marginal
variance when the true range ρT = 1 using PriorUn1, where the average lengths of the
credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.980 [1.5] 0.946 [17] 0.979 [179]
5 · 10−3 0.989 [1.5] 0.938 [17] 0.967 [178]
5 · 10−4 0.979 [1.5] 0.931 [17] 0.967 [178]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.977 [1.8] 0.989 [17] 0.996 [176]
5 · 10−3 0.979 [1.8] 0.985 [18] 0.991 [175]
5 · 10−4 0.979 [1.8] 0.983 [17] 0.987 [177]
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Table S14: Frequentist coverage of 95% HPD credible intervals for range and marginal
variance when the true range ρT = 1 using PriorUn2, where the average lengths of the
credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.945 [1.4] 0.974 [9.8] 0.985 [40]
5 · 10−3 0.936 [1.4] 0.959 [9.6] 0.973 [39]
5 · 10−4 0.954 [1.4] 0.961 [9.5] 0.966 [39]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.936 [1.6] 0.983 [8.7] 0.987 [35]
5 · 10−3 0.933 [1.6] 0.971 [8.6] 0.980 [34]
5 · 10−4 0.937 [1.6] 0.969 [8.7] 0.968 [33]

Table S15: Frequentist coverage of the 95% HPD credible intervals for range and marginal
variance when the true range is 0.1 and true marginal variance is 1, where the average
length of the credible intervals are given in brackets, for the spatial logistic regression
example.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.0025 0.582 [0.22] 0.575 [0.18] 0.577 [0.17] 0.539 [0.15]
0.01 0.922 [0.30] 0.925 [0.28] 0.906 [0.24] 0.883 [0.21]
0.04 0.999 [0.46] 0.999 [0.40] 1.000 [0.33] 0.998 [0.27]
0.16 0.994 [1.0] 0.995 [0.8] 0.983 [0.57] 0.972 [0.38]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.0025 0.968 [1.8] 0.945 [1.7] 0.944 [1.6] 0.867 [1.1]
0.01 0.973 [1.9] 0.961 [1.8] 0.954 [1.6] 0.885 [1.1]
0.04 0.982 [2.2] 0.978 [2.1] 0.961 [1.7] 0.893 [1.2]
0.16 0.993 [3.9] 0.991 [3.3] 0.991 [2.3] 0.950 [1.4]
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S7.1 Parametrizing the extra flexibility

Instead of adding spatial variation to the coefficients of the SPDE in Equation (5), κ and
τ , one can vary the geometry of the space in a similar way as the deformation method
(Sampson and Guttorp, 1992). If E is the Euclidean space R2, the simple SPDE

(1−∆E)u(s) =
√

4πWE(s), s ∈ E, (6)

generates a stationary Matérn GRF with range ρ =
√

8, marginal variance σ2 = 1, and
smoothness ν = 1. We introduce spatially varying distances in the space by giving the
space geometric structure according to the metric tensor g(s) = R(s)−2I2, where R(·) is
a strictly positive scalar function. This locally scales distances by a factor R(s)−1,

dσ2 =
[
ds1 ds2

]
g(s)

[
ds1

ds2

]
= R(s)−2(ds2

1 + ds2
2), (7)

where dσ is the line element, and s1 and s2 are the two coordinates of E = R2.
The non-stationarity in the correlation structure is then described through the spa-

tially varying geometry in Equation (7), which results in a curved two-dimensional mani-
fold that must be embedded in a space with dimension higher than 2 to exist in Euclidean
space. The resulting spatial field does not have exactly constant marginal variance be-
cause the curvature of the space is non-constant unless R(·) does not vary in space,
but there will be less interaction between R(·) and the marginal variance than between
κ(·) and the marginal variance. And when R(·) varies slowly, the variation in marginal
variances is small.

We can relate the Laplace-Beltrami operator in E to the usual Laplacian in R2

through

∆E =
1√

det(g)
∇R2 · (

√
det(g)g−1∇R2) = R(s)2∆R2 ,

and the Gaussian standard white noise in E to the Gaussian standard white noise in R2

through
WE(s) = det(g)1/4WR2(s) = R(s)−1WR2(s).

Thus the equivalent SPDE in R2 can be written as

R(s)−2
[
1−R(s)2∆R2

]
u(s) = R(s)−1

√
4πWR2(s), s ∈ R2,

where the first factor is needed because the volume element dVE =
√

det(g)dVR2 . The
SPDE can be written as

(R(s)−2 −∆R2)u(s) =
√

4πR(s)−1WR2 , s ∈ R2, (8)

in Euclidean space, but we can interpret the non-stationarity through the implied metric
tensor. The procedure is similar to the simple reparametrization κ(·) = R(·)−1, but the
extra factor on the right-hand side of the equation reduces the variability of the marginal
variances due to changes in κ(·).
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Figure S6: Half cylinder deformed according to the spatially varying metric tensor. The
lines formed a regular grid on the half cylinder before deformation.

For example, the space [0, 9]× [0, 3] with the Euclidean distance metric can be visu-
alized as a rectangle, which exists in R2, or as a half cylinder with radius 3/π and height
9, which exists in R3, but if the space is given the spatially varying metric tensor defined
by the local range function

R(s1, s2) =


1 0 ≤ s1 < 3, 0 ≤ s2 ≤ π,
(s1 − 2) 3 ≤ s1 < 6, 0 ≤ s2 ≤ π,
4 6 ≤ s1 ≤ 9, 0 ≤ s2 ≤ π,

(9)

the space cannot be embedded in R2. With this metric tensor, the space is no longer flat,
and must be embedded in R3 as, for example, the deformed cylinder shown in Figure S6.
Thus, solving Equation (8) with the spatially varying coefficient is the same as solving
Equation (6) on the deformed space. This means that unlike the deformation method, a
spatially varying R(·) does not correspond to a deformation of R2 to R2, but rather from
R2 to a higher-dimensional space.

Since the variation in the marginal variances due to variations in the local ranges
is small if R(·) does not vary too much, we introduce a separate function S(·) that
controls the marginal standard deviations of the process and limit the SPDE to a region
of interest, D, with Neumann boundary conditions,

(R(s)−2 −∆R2)

(
u(s)

S(s)

)
=
√

4πR(s)−1WR2(s), s ∈ D.

This introduces boundary effects as was discussed in the paper by Lindgren et al. (2011),
but we will not discuss the effects of the boundary in this paper.

This SPDE allows for greater separation of the parameters that affect correlation
structure and the parameters that affect marginal standard deviations than the previous
approach, and demonstrates the usefulness of careful consideration of how the spatially
varying behaviour is introduced and parametrized. The SPDE derived based on the
metric tensor allows for separate priors for correlation structure and marginal standard
deviations through expansions of log(R(·)) and log(S(·)) into bases.
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S7.2 Setting priors on the parameters

There are two sources of non-stationarity in the flexible extension from stationarity: a
function R(·) that controls local range and a function S(·) that controls the marginal
standard deviation. The degree of flexibility in each of these sources of non-stationarity
must be controlled to limit the risk of overfitting. Due to the issues of singular and
equivalent Gaussian measures discussed in the main paper, we will not follow the PC
prior framework, but instead use a construction motivated by the principles of the PC
priors to make the non-stationary model contract towards a base model of stationarity.
Denote by θ the extra parameters added to the GRF that move the model away from the
base model of stationarity, θ = 0. The prior on θ will be constructed conditionally on
the parameters of the stationary GRF, ρ and σ2, and for each choice of these parameters,
θ should shrink towards 0.

We parametrize the local distance, R(·), and the approximate marginal standard
deviations, S(·), through

log(R(s)) = log

(
ρ√
8

)
+

n1∑
i=1

θ1,if1,i(s), s ∈ D,

log(S(s)) = log(σ) +

n2∑
i=1

θ2,if2,i(s), s ∈ D,
(10)

where {f1,i} is a set of basis functions for the local range centred such that 〈f1,i, 1〉D = 0,
for i = 1, 2, . . . , n1, and {f2,i} is a set of basis functions for the marginal standard
deviations centred such that 〈f2,i, 1〉D = 0 for i = 1, 2, . . . , n2. We collect the parameters
in vectors θ1 = (θ1,1, . . . , θ1,n1) and θ2 = (θ2,1, . . . , θ2,n2) such that θ1 controls the
non-stationarity in the correlation structure and θ2 controls the non-stationarity in the
marginal standard deviations.

We want the prior for each source of non-stationarity to be invariant to scaling of the
covariates and to handle linear dependencies between the covariates in a reasonable way,
and we follow the basic idea of the g-priors (Zellner, 1986) (with g = 1),

θ1|τ1 ∼ N (0, τ−1
1 S−1

1 ) and θ2|τ2 ∼ N (0, τ−1
2 S−1

2 ),

where S1 is the Gramian,

S1,i,j =
〈f1,i, f1,j〉D
〈1, 1〉D

, for i, j = 1, 2, . . . , n1,

and S2 is similarly the Gramian based on {f2,i}. In this set-up the Gramians account for
the structure in the basis functions and the strictness of the priors are controlled by two
precisions parameters τ1 and τ2. If the precision parameters are fixed hyperparameters,
the resulting priors are Gaussian. However, the Gaussian probability density is flat at
zero due to the infinite differentiability of the density function, and we prefer a prior that
has a spike at zero.
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This can be achieved by selecting the hyperpriors to be the PC prior for the precision
parameter in a Gaussian distribution (Simpson et al., 2017), which is designed to shrink
towards a base model of zero variance. We combine the selection for the hyperpriors
with an a priori ansatz that the independence between the correlation structure and
the marginal variance in the prior for the stationary model also can be applied to the
non-stationarity,

π(τ1) =
λ1

2
τ
−3/2
1 exp

(
−λτ−1/2

1

)
and π(τ2) =

λ2

2
τ
−3/2
2 exp

(
−λ2τ

−1/2
2

)
.

These hyperpriors for the precision parameters have so heavy tails that integrating them
out will introduce infinite spikes in the marginal priors for θ1 and θ2 at zero.

The hyperparameters λ1 and λ2 control the spread of the priors and can be selected
either based on expert knowledge or on frequentist properties. The parameters θ1 and θ2

give multiplicative effects to local range and marginal standard deviations, respectively,
and one possibility is to control the size of the multiplicative effect through

Prob
(

max
s∈D

∣∣∣∣log

(
R(s)

ρ/
√

8

)∣∣∣∣ > C1

∣∣∣∣ρ, σ2

)
= Prob

(
max
s∈D

∣∣∣∣log

(
R(s)

ρ/
√

8

)∣∣∣∣ > C1

)
= α1,

Prob
(

max
s∈D

∣∣∣∣log

(
S(s)

σ2

)∣∣∣∣ > C2

∣∣∣∣ρ, σ2

)
= Prob

(
max
s∈D

∣∣∣∣log

(
S(s)

σ2

)∣∣∣∣ > C2

)
= α2.

One can see from Equation (10) that the relative differences do not depend on the parame-
ters of the stationary model, and the full prior factors as π(ρ, σ2,θ) = π(ρ)π(σ2)π(θ1)π(θ2).

In practice, it is difficult to have an informed, a priori opinion on the non-stationary
part of the model, but the hyperparameters λ1 and λ2 can be chosen in such a way
that they give a conservative prior. Since stationarity is our base model and the non-
stationarity is provided as extra flexibility, we will require that the hyperparameters
are set such that the inference behaves well when the true data-generating distribu-
tion is stationary. We propose to set the hyperparameter by first fitting the stationary
model, using the maximum aposteriori estimate of the parameters to make multiple sim-
ulated datasets from the stationary GRF and nugget effect, fit the non-stationary GRF
with a nugget effect to each dataset, and calculate the frequentist coverage of the non-
stationarity parameters. The hyperparameters can then be set such that the coverage
of the credible intervals of the non-stationary parameters is close to nominal coverage.
This ensures that the prior provides enough regularization that each posterior marginal
for the non-stationarity parameters do not suggest non-stationarity when a stationary
data-generating function is used.

S7.3 Supplementary details for example on precipitation

The example is described in the main paper and this section provides extra figures and
details that supplements the presentation in the main paper.

In the SPDE approach the spatial field is defined on a triangular mesh and the values
of the spatial field within the triangles are defined through linear interpolation based on
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Figure S7: Mesh used for the SPDE approach.

the values on the nodes of the mesh. This means that the elevation covariate in the first-
order structure is only needed at each observation location, but that the elevation and
gradient covariates in the second-order structure are needed at every location within the
triangulation. We use the mesh shown in Figure S7 and project elevation and gradient
values from the high resolution digital elevation map GLOBE (Hastings et al., 1999) onto
the mesh. The projection is piece-wice linear on each triangle of the mesh and minimizes
the integrated square deviation over the domain covered by the mesh. This results in the
piece-wise linear covariates shown in Figure S8.

The coefficients, θ1, of the two linear covariates in log(R(·)) are given the prior

θ1|τ1 ∼ N (0, S1/
√
τ1)

τ1 ∼
λ1

2
τ
−3/2
1 e−λ1/

√
τ1

as described in the previous section, and the coefficients, θ2, of the two linear covariates
in log(S(·)) are given a similar prior, but with hyperparameter λ2. The non-stationary
model is more difficult to fit in the INLA framework than the stationary model because
the priors for θ1 and θ2 have infinite spikes in 0 that makes the posteriors non-Gaussian
in the area around the origin. The optimization can be improved by reparametrizing as
θ′1 = θ1

√
τ1 and θ′2 = θ2

√
τ2, but the marginal posteriors will not be sufficiently peaked

at the origin and will miss the multimodality that should be present when there is a mode
close to zero. However, we still use INLA as a fast approximation for the repeated fitting
of the datasets needed for selecting the hyperparameters of the prior for non-stationarity.

The non-stationary model was fitted using an MCMC sampler and the resulting
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(a) Elevation (km) (b) Magnitude of gradient (100m/km)

Figure S8: The covariates (a) elevation and (b) magnitude of the gradient used for the
covariance structure.

posterior means of the range and the standard deviation are shown in Figure S9. From
Figure S10 one can see that the spatially varying range and standard deviation leads
to non-stationarity in the correlation structure and the marginal standard deviations of
the spatial effect. However, the effect in standard deviations appear to be stronger than
the effect of the spatially varying range. The posteriors for the multiplicative effects
on the stationary range and standard deviation for the western location in Figure S10a
shown in Figure S11 shows that the effects are significant in that location. The posterior
probabilities for the effects to be less than 1 and greater than 1 are 99% and 99%,
respectively. This shows that the the more flexible non-stationary model is preferring to
move away from the stationary model even under a conservatively selected prior.

S8 Additional theorem

In the proof of the main result in the paper it is necessary to show that the integral used
to calculate the KLD is finite. The following theorem shows that this holds in dimensions
d = 1, d = 2 and d = 3.

Theorem S8.1. The definite integral

Id =

∫
Rd

[(
||w||2

(1 + ||w||2)

)α
− 1− log

(
||w||2

(1 + ||w||2)

)α]
dw,

where α > 0, is finite for d ≤ 3.

Proof. The definite integral can be expressed an an integral in d-dimensional spherical
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(a) Range (b) Standard deviation

Figure S9: Posterior mean of (a) range and (b) standard deviation.
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(a) Level curves of correlations (b) Marginal standard deviations

Figure S10: Covariance structure described through (a) 0.90, 0.57, 0.36 and 0.22 level
curves of correlation with respect to the two locations marked with red crosses and (b)
marginal standard deviations.
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Figure S11: Posteriors of the multiplicative effect on the stationary (a) range and (b)
standard deviation at the western location in Figure S10a.

coordinates,

Id = Cd

∫ ∞
0

[(
r2

1 + r2

)α
− 1− log

(
r2

1 + r2

)α]
rd−1dr, (11)

where Cd is a finite constant that varies with dimension. There are two issues: the
behaviour for small r and the behaviour for large r. For d = 1,

0 ≤ Id ≤ −C1α

∫ ∞
0

log
r2

1 + r2
dr = παC1 <∞,

and the definite integral is finite for d = 1. Furthermore, the factor rd−1 makes the value
of the integrand smaller close to 0 for larger d and we can conclude that the behaviour
around 0 is not a problem for any d ≥ 1.

The behaviour of the integrand for large r can be studied through an expansion of the
integrand in (1 + r2)−1. The part between the square brackets in Equation (11) behaves
as

α2

2

1

(1 + r2)2
+O

(
1

(1 + r2)3

)
.

This means that there exists a 0 < r0 <∞ such that∫ ∞
0

[(
r2

1 + r2

)α
− 1− log

(
r2

1 + r2

)α]
rd−1dr

≤ C1 +

∫ ∞
r0

[
α2

2

1

(1 + r2)2
+

C2

(1 + r2)3

]
rd−1dr,

where |C1| ≤ ∞ due to the finiteness for d = 1, and C2 is a constant. For d ≤ 3 both
terms on the right hand side are finite. Thus Id is finite for d ≤ 3.
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