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A. Additional modeling details

When considering selection of significant spline coefficients, generically denoted by α, con-
ventionally, we can assign a spike-and-slab prior,

α ∼ γN(0,Σ) + (1− γ)δ0

and update α and γ by blocked Gibbs sampler. Notice that each spline coefficient is a vec-
tor. This joint update step usually has low acceptance rate because whenever we propose
γ : 0 → 1, we also need to propose new values of vector α from an independent proposal
(e.g. its prior). It is difficult to propose a “good” candidate α if it is multidimensional and
therefore the mixing of the Markov chain is quite unsatisfactory. To improve the mixing,
we follow the treatment in Gelman et al. (2008) and Scheipl et al. (2012) to expand the
vector parameter α = ηξ and assign a spike-and-slab prior on the scalar parameter η.
Note that updating η and its spike-and-slab indicator γ is straightforward since γ is now
conditional independent of multidimensional vector α given η, which can be seen from the
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Markov blanket in Figure 2 of this Supplementary Material. Moreover, updating ξ is not
difficult either because (i) it is not updated jointly with indicator γ and therefore can be
updated with a random-walk proposal, which has a much higher acceptance rate than an
independent proposal and (ii) the dimension of ξ is small to moderate (usually around 10)
due to the spectral decomposition of our spline basis construction in Section 3 where we
retain only the first several eigenvectors and eigenvalues that explain most of the variability
of the splines.

We discuss three important factors that characterize the spline: (1) degree of the bases,
(2) number of the bases and (3) position of the knots.
(1) Degree r of the bases. In Section 3, we essentially decompose the nonlinear function

fjk(Gijk) = f 0
jk(Gijk) + fpenjk (Gijk) into a polynomial part (f 0

jk) and a nonlinear part (fpenjk ).
Since the degree of polynomial function f 0

jk(·) equals r − 2 (because the penalty matrix
K is rank-2 deficient), we choose the degree of the bases to be 3 so that the polynomial
function f 0

jk(Gijk) = Gijkα
0
jk is linear. This allows us to apply variable selection technique

separately to each part and to differentiate between linear trend and nonlinear trend. Set-
ting r = 2 or 4, however, would not allow us to differentiate between linear and nonlinear
parts anymore (Scheipl et al., 2012).
(2) Number b of spline bases. We choose a large b (e.g. 20) to flexibly capture the nonlin-
earity of fjk(·). To prevent overfitting, we penalize the spline coefficients by a roughness
penalty and only keep a few transformed bases (usually around 10) which explain most of
the variability of fjk(·) (Ruppert et al., 2003).
(3) Position of the knots. We place the knots on the quantiles of gene expressions so that
more bases are used to capture the local structure where there are more data points (Rup-
pert et al., 2003). Alternatively, we can also use equally spaced knots. The choice between
quantile or equally spaced knots does not appear to be an critical decision here due to the
large number of knots.

A key feature of the Bayesian hard-thresholding mechanism β = θI(|θ| > λ) is the ran-
domness in both θ and λ (i.e. they are both assigned prior distributions). For illustration,
we consider two toy examples: (1) θ ∼ N(0.2, 0.32) and (2) θ ∼ N(0.2, 1). In both cases, θ
has mean 0.2 but has very different variances, and λ ∼ Unif(0, 1). We perform Monte Carlo
simulation to evaluate p(β = 0) = p(|θ| < λ). Specifically, we draw θi and λi from their
respective distributions and approximate p(β = 0) ≈ 1

N

∑N
i=1 I(|θi| < λi) for i = 1, . . . , N

with N = 10, 000 samples. The resulting probability p(β = 0) equals 0.70 for case (1) v.s.
0.36 for case (2). Alternatively, if we fix the threshold at λ = 0.5 as depicted in Figure 1,
the probability p(β = 0|λ = 0.5) equals 0.93 for case (1) v.s. 0.38 for case (2). Therefore,
not only the magnitude but the variability of the coefficient β are taken into account in
the Bayesian thresholding mechanism.

Allowing for randomness in the threshold λ necessitates the elicitation of its prior distri-
bution. We find, in Section C, that BEHAVIOR is relatively insensitive to the hyperparam-
eter bλ of λ. Here we provide a general guidance of choosing bλ in practice. Researchers can
first choose a smallest effect size βmin, depending on the application, that they are willing
to consider to be significant and then center the uniform prior of the threshold at βmin (i.e.
setting bλ = 2βmin) since the threshold is interpreted as minimum effect size. Generally, bλ
should not be too small; otherwise the full model is strongly favored a priori. If the data
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Figure 1: Illustration of the Bayesian thresholding mechanism.

are properly scaled, we recommend to set bλ ≥ 1, as a reasonable default setting.
A schematic representation of the hierarchical model is shown in Figure 2.

i = 1, . . . , n and j = 1, . . . , p

Pij σ2 λj Gij ξj τj

Ti βj θj αj ηj γj ρ

Figure 2: Schema of the Bayesian hierarchical varying-sparsity model. Model parameters
are in circles and observed data are in boxes.

B. Posterior inference

In this section, we present the posterior inference procedure under BEHAVIOR and the
formula to calculate posterior expected FDR. The MCMC sampler goes as follows.
Algorithm

(1) Update ηjk by Metropolis.

(2) Update ξjk in blocks by Metropolis.

(3) rescale ηjk and ξjk: ξjk → ξjk/ξ̄jk and ηjk → ηjk ∗ ξ̄jk with ξ̄jk =
∑d

i=1 |ξ
(i)
jk |/d.
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(4) Update λ by Metropolis.

(5) Update τjk by Gibbs: p(τjk|ηjk, γjk) = IG(aτ + 1
2
, bτ +

η2jk
2γjk

).

(6) Update γjk by Gibbs:
p(γjk=1|ηjk,τjk,ρ)
p(γjk=v0|ηjk,τjk,ρ)

=
√
v0ρ

1−ρ exp
{

(1−v0)η2jk
2v0τjk

}
(7) Update ρ by Gibbs: ρ|γ ∼ Beta(aρ +

∑
δ1(γjk), bρ +

∑
δv0(γjk))

(8) Update σ2 by Metropolis.

Let ψj = I(βj 6= 0) denote a binary parameter indicating whether the jth protein is selected

in the prognostic model for j = 1, . . . , p. Let ψ
(i)
j for i = 1, . . . , N denote the ith Monte

Carlo sample of ψj. The expected FDR given a cutoff t is given by

FDR(t) =

∑p
j=1 I(ψ̄j > t)(1− ψ̄j)∑p

j=1 I(ψ̄j > t)
,

where ψ̄j = 1
N

∑N
i=1 ψ

(i)
j is Monte Carlo sample average of ψj. Then the desired FDR level

can be approximately achieved by choosing an appropriate cutoff t.

C. Sensitivity analysis

We perform a sensitivity analysis on the choice of hyperparameters (aτ , bτ ) = (5, 100), v0 =
2.5 × 10−4, bλ = 1, (aσ, bσ) = (10−4, 10−4), (aρ, bρ) = (0.5, 0.5). We consider the scenario
where the true λ = 0.3 and the results (Tables 1 and 2) show that our approach is relatively
robust to the choice of hyperparameters.
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Table 1: Sensitivity analysis. The default settings are (aτ , bτ ) = (5, 100), v0 = 2.5 ×
10−4, (aσ, bσ) = (10−4, 10−4), (aρ, bρ) = (0.5, 0.5).

(aτ , bτ ) v0 (aσ, bσ) (aρ, bρ)
(3, 80) 2.5× 10−3 (10−3, 10−3) (0.1, 0.9)

gTPR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
gFDR 0.102 (0.165) 0.268 (0.250) 0.192 (0.245) 0.099 (0.147)
gMCC 0.925 (0.128) 0.778 (0.247) 0.838 (0.242) 0.930 (0.105)
gAUC 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
pTPR 0.979 (0.025) 0.977 (0.025) 0.976 (0.029) 0.979 (0.025)
pFDR 0.048 (0.047) 0.074 (0.077) 0.056 (0.064) 0.047 (0.047)
pMCC 0.945 (0.043) 0.920 (0.067) 0.935 (0.059) 0.946 (0.044)
pAUC 0.998 (0.003) 0.997 (0.004) 0.998 (0.004) 0.998 (0.003)
MSPE 0.061 (0.027) 0.080 (0.035) 0.065 (0.034) 0.059 (0.027)

(8, 120) 2.5× 10−5 (10−5, 10−5) (0.9, 0.1)
gTPR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
gFDR 0.301 (0.290) 0.071 (0.124) 0.185 (0.244) 0.282 (0.303)
gMCC 0.717 (0.334) 0.951 (0.087) 0.844 (0.242) 0.727 (0.348)
gAUC 1.000 (0.000) 0.999 (0.006) 1.000 (0.000) 1.000 (0.000)
pTPR 0.974 (0.028) 0.977 (0.028) 0.976 (0.029) 0.971 (0.035)
pFDR 0.077 (0.088) 0.043 (0.036) 0.056 (0.063) 0.072 (0.079)
pMCC 0.915 (0.076) 0.948 (0.037) 0.936 (0.058) 0.917 (0.071)
pAUC 0.997 (0.004) 0.998 (0.003) 0.998 (0.004) 0.996 (0.005)
MSPE 0.087 (0.043) 0.060 (0.027) 0.065 (0.034) 0.078 (0.040)

Table 2: Sensitivity analysis of bλ with default bλ = 1.

bλ
0.5 1 1.5 2 5 10

gTPR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
gFDR 0.165 (0.236) 0.185 (0.244) 0.193 (0.260) 0.165 (0.225) 0.130 (0.186) 0.169 (0.212)
gMCC 0.862 (0.228) 0.844 (0.242) 0.830 (0.265) 0.864 (0.217) 0.899 (0.177) 0.870 (0.180)
gAUC 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
pTPR 0.987 (0.017) 0.976 (0.029) 0.976 (0.029) 0.975 (0.031) 0.978 (0.026) 0.978 (0.025)
pFDR 0.066 (0.067) 0.056 (0.063) 0.059 (0.067) 0.057 (0.065) 0.050 (0.060) 0.055 (0.049)
pMCC 0.935 (0.063) 0.936 (0.058) 0.932 (0.062) 0.934 (0.060) 0.942 (0.057) 0.938 (0.042)
pAUC 0.998 (0.004) 0.998 (0.004) 0.997 (0.004) 0.998 (0.004) 0.998 (0.004) 0.998 (0.003)
MSPE 0.065 (0.037) 0.065 (0.034) 0.067 (0.033) 0.064 (0.030) 0.062 (0.029) 0.064 (0.027)
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D. Additional details, tables, figures and results for

TCGA data analysis

The sample size, the number of events, the median survival time and the average number
of selected protein markers per patient per pathway for each cancer is summarized in Table
3. In Figure 3, we show the heatmap of prognostic protein effects βj(Gij) for HNSC. In
Table 4, we list the proteins and their coding genes (grouped by pathways) that we use in
our analysis. In Table 5, we report the c-indices across cancers and pathways.

We also assess the aggregate prognostic effect of each protein. Let

πj =

∑n
i=1 p(Gij)p(βj(Gij) 6= 0|Data)∑n

i=1 p(Gij)
,

for j = 1, . . . , p where p(Gij) is the empirical density of gene expressions Gij. Intuitively,
πj is the “population-level” marginal posterior probability that protein j is prognostic with
patient-level gene expressions Gij integrated out. A large value of πj suggests that protein
j is likely to be prognostic in the population. We reported πj of each protein for 12 path-
ways in KIRC in Table 6. There are 18 out of 86 proteins for which the “population-level”
marginal posterior probabilities exceed 0.5.

For MCMC convergence diagnostics, we calculate Gelman-Rubin potential scale re-
duction factor (PSRF, Gelman and Rubin 1992) for continuous parameters and Pearson
correlation coefficient of posterior probabilities for binary parameters. The chain is likely
to converge to its stationary region when both measures are close to one.

The median PSRFs for λ, σ, α, α0, α∗ are 1.0010, 1.0002, 1.0002, 1.0003 and 1.0002,
respectively. The median correlations for γα, γα0 , γα∗ , I(β = 0) are 1.00, 0.94, 0.97 and
1.00, respectively. The trace plots of the log likelihood and the parameters λ, α, α0, α∗ for
DNA damage response pathway in KIRC are shown in Figures 4-6. The plots of posterior
probabilities for binary parameters γα, γα0 , γα∗ , I(β = 0) from each pair of chains (totally(
4
2

)
= 6 pairs) are displayed in Figure 7-12.

Table 3: The sample size, the number of events, the median survival time in days and the
average number of selected protein markers per patient per pathway for KIRC, OVCA,
SKCM and HNSC.

Sample size Number of events Median survival time Average number of protein markers
KIRC 428 142 2256 2.360
OVCA 232 135 1354 0.126
SKCM 262 105 2993 0.167
HNSC 200 103 804 0.274
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Figure 3: Heatmap of prognostic protein effects βj(Gij) for HNSC with PTEN removed.
The rows (patients) and columns (proteins) are grouped by hierarchical clustering with
complete linkage. Color scale is given in the top left corner.
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Table 4: Proteins and corresponding coding genes are listed for 12 pathways.
Pathway Protein(Gene)
Apoptosis BAK(BAK1), BAX(BAX), BID(BID), BIM(BCL2L11), BADPS112(BAD),

BCL2(BCL2), BCLXL(BCL2L1), CASPASE7CLEAVEDD198(CASP7),
CIAP(BIRC2)

Breast reactive CAVEOLIN1(CAV1), MYH11(MYH11), RAB11(RAB11A,RAB11B),
BETACATENIN(CTNNB1), GAPDH(GAPDH), RBM15(RBM15)

Cell cycle CDK1(CDK1), CYCLINB1(CCNB1), CYCLINE1(CCNE1), PCNA(PCNA),
CYCLINE2(CCNE2), P27PT157(CDKN1B), P27PT198(CDKN1B),
FOXM1(FOXM1)

Core reactive CAVEOLIN1(CAV1), BETACATENIN(CTNNB1), RBM15(RBM15),
ECADHERIN(CDH1), CLAUDIN7(CLDN7)

DNA damage response 53BP1(TP53BP1), ATM(ATM), BRCA2(BRCA2), CHK1PS345(CHEK1),
CHK2PT68(CHEK2), KU80(XRCC5), MRE11(MRE11A), P53(TP53),
RAD50(RAD50), RAD51(RAD51), XRCC1(XRCC1)

EMT FIBRONECTIN(FN1), NCADHERIN(CDH2), COLLAGENVI(COL6A1),
CLAUDIN7(CLDN7), ECADHERIN(CDH1), BETACATENIN(CTNNB1),
PAI-1(SERPINE1)

Hormone receptor ERALPHA(ESR1), ERALPHAPS118(ESR1), PR(PGR), AR(AR)
Hormone signaling INPP4B(INPP4B), GATA3(GATA3), BCL2(BCL2)
PI3K/AKT AKTPS473(AKT1, AKT2, AKT3), AKTPT308(AKT1, AKT2, AKT3),

GSK3ALPHABETAPS21S9(GSK3A, GSK3B), GSK3PS9(GSK3A, GSK3B),
P27PT157(CDKN1B), P27PT198(CDKN1B), PRAS40PT246(AKT1S1),
TUBERINPT1462(TSC2), INPP4B(INPP4B), PTEN(PTEN)

RAS/MAPK ARAFPS299(ARAF), CJUNPS73(JUN), CRAFPS338(RAF1),
JNKPT183Y185(MAPK8), MAPKPT202Y204(MAPK1,MAPK3),
MEK1PS217S221(MAP2K1), P38PT180Y182(MAPK14),
P90RSKPT359S363(RPS6KA1), YB1PS102(YBX1)

RTK EGFRPY1068(EGFR), EGFRPY1173(EGFR), HER2PY1248(ERBB2),
HER3PY1298(ERBB3), SHCPY317(SHC1), SRCPY416(SRC),
SRCPY527(SRC)

TSC/mTOR 4EBP1PS65(EIF4EBP1), 4EBP1PT37T46(EIF4EBP1),
4EBP1PT70(EIF4EBP1), P70S6KPT389(RPS6KB1), RBPS807S811(RB1)
MTORPS2448(MTOR), S6PS235S236(RPS6), S6PS240S244(RPS6)
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Figure 5: Trace plots of the threshold λ and constant terms αj from four parallel chains
for DNA damage response pathway in KIRC. The x-axes are the iterations. The y-axis of
the top left panel is the threshold λ and the y-axes of other panels are the constant terms
αj.

Table 5: C-index of survival time prediction across 4 cancers and 12 pathways. We use
“-” to denote the case where BEHAVIOR does not select any protein markers. We follow
the acronym of cancer type by TCGA: kidney renal clear cell carcinoma (KIRC), ovarian
serous cystadenocarcinoma (OVCA), skin cutaneous melanoma(SKCM) and head and neck
squamous cell carcinoma (HNSC). The pathway indices are given by: (1) Apoptosis. (2)
Breast reactive. (3) Cell cycle. (4) Core reactive. (5) DNA damage response. (6) EMT.
(7) Hormone receptor. (8) Hormone signaling. (9) PI3K/AKT. (10) RAS/MAPK. (11)
RTK. (12) TSC/mTOR.

Pathways
1 2 3 4 5 6 7 8 9 10 11 12

KIRC 0.5770 0.6515 0.5698 0.6457 0.6877 0.6084 0.6875 0.5956 0.7049 0.6389 0.6862 0.7224
OVCA 0.5591 0.5791 - - 0.5165 - - 0.6167 - - - -
SKCM 0.6080 0.6119 - - - - - - - - - -
HNSC - 0.6253 - 0.6619 - 0.6576 0.6437 - 0.6305 - - -
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Table 6: Proteins and their aggregate effects (πj) are listed for 12 pathways in KIRC.
Proteins are bold-faced if πj > 0.5.

Pathway Protein (πj)
Apoptosis BAK(0.07), BAX(0.11), BID(0.06), BIM(0.05), BADPS112(0.07),

BCL2(0.10), BCLXL(0.41), CASPASE7CLEAVEDD198(0.11),
CIAP(0.08)

Breast reactive CAVEOLIN1(0.36), MYH11(0.25), RAB11(0.31),
BETACATENIN(0.84), GAPDH(0.22), RBM15(0.28)

Cell cycle CDK1(0.08), CYCLINB1(0.47), CYCLINE1(0.09), PCNA(0.09),
CYCLINE2(0.21), P27PT157(0.08), P27PT198(0.11),
FOXM1(0.08)

Core reactive CAVEOLIN1(0.29), BETACATENIN(0.90), RBM15(0.29),
ECADHERIN(0.17), CLAUDIN7(0.19)

DNA damage response 53BP1(0.43), ATM(0.25), CHK1PS345(0.18),
CHK2PT68(0.18), KU80(0.56), MRE11(0.51), P53(0.36),
RAD50(0.40), RAD51(0.95), XRCC1(0.18)

EMT FIBRONECTIN(0.12), NCADHERIN(0.10), COLLAGENVI(0.13),
CLAUDIN7(0.09), ECADHERIN(0.08), BETACATENIN(0.32),
PAI-1(0.84)

Hormone receptor ERALPHA(0.09), ERALPHAPS118(0.14), PR(0.09), AR(0.62)
Hormone signaling INPP4B(0.44), GATA3(0.25), BCL2(0.52)
PI3K/AKT AKTPS473(0.57), AKTPT308(0.67),

GSK3ALPHABETAPS21S9(0.38), GSK3PS9(0.48),
P27PT157(0.52), P27PT198(0.26), PRAS40PT246(0.30),
TUBERINPT1462(0.79), INPP4B(0.43), PTEN(0.45)

RAS/MAPK ARAFPS299(0.05), CJUNPS73(0.04), CRAFPS338(0.06),
JNKPT183Y185(0.05), MAPKPT202Y204(0.93),
MEK1PS217S221(0.11), P38PT180Y182(0.05),
P90RSKPT359S363(0.10), YB1PS102(0.14)

RTK EGFRPY1068(0.22), EGFRPY1173(0.30), HER2PY1248(0.28),
HER3PY1298(0.28), SHCPY317(0.52), SRCPY416(0.20),
SRCPY527(0.85)

TSC/mTOR 4EBP1PS65(0.43), 4EBP1PT37T46(0.73),
4EBP1PT70(0.27), P70S6KPT389(0.83), RBPS807S811(0.60)
MTORPS2448(0.27), S6PS235S236(0.40), S6PS240S244(0.32)
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