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In the following sections, we further demonstrate the flexibility and utility of the d-QPSO algorithm

for finding different types of optimal exact and approximate designs for GLMs with mixed factors

and a binary response. We also show how it can be used to address uncertainty in the model

assumptions and discuss the general performance of the algorithm.

S1 d-QPSO Computational Timing and Accuracy

We first report the average CPU run time and the average D-efficiency lower bound attained

by the d-QPSO algorithm-generated design for some simple models. The model of interest is

logit(µ) = β0+
∑k

i=1 βixi and the number of factors, k, ranges from two to six, for all combinations of

up to three discrete and three continuous factors. For each combination of factor types we apply the

d-QPSO algorithm to construct 500 locally D-optimal approximate designs with β0, βi ∼ U(−3, 3).

The design space is such that the discrete xi’s ∈ {−1, 1} and the continuous xi’s ∈ [−1, 1]. The

tuning parameters we used were 30 particles in each swarm, and the number of swarms was chosen

to be equal to the number of continuous factors in the model. We initialized our search among

designs with up to min{16, 2k} support points, or in other words, each candidate design has at most

16 support points. The termination rule was either a maximum of 200× k iterations or when the

generated design attained a D-efficiency lower bound of 98%. Grid searches were used to evaluate
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Table S1: Average CPU times (seconds) and D-efficiency lower bounds (elb) for 500 simulated
experimental designs generated with the d-QPSO algorithm.

Discrete
Factors

Continuous
Factors

1 2 3

CPU time elb CPU time elb CPU time elb
1 0.01 1.00 0.729 0.99 38.07 0.98
2 2.15 1.00 1.427 0.99 64.44 0.96
3 16.36 0.99 65.81 0.96 127.35 0.84

the sensitivity function of each generated design. These searches are included in the CPU time

calculation, which is measured using the “user time” reported by R.

Table S1 displays the average CPU time required by the d-QPSO algorithm to obtain the locally

D-optimal approximate design and the average D-efficiency lower bounds (elb) when there are

different numbers of discrete and continuous factors in the experiment. Our results show that the

d-QPSO algorithm is able to quickly identify a very highly D-efficient design or locally D-optimal

approximate design.

S2 Minimally Supported Designs

In our second simulation, we delineate cases when and if a minimally supported locally D-optimal

approximate design can be found by the d-QPSO algorithm. This is an interesting issue because

some methods can only produce optimal designs with a fixed number of points (see for exam-

ple, Yang et al. (2011)). Minimally supported optimal designs can be desirable because taking

observations at a new point can be expensive.

Consider the model Y ∼ Bern(µ), with logit(µ) = β0 + β1x1 + β2x2 where x1 ∈ {−1, 1}

and x2 ∈ [−1, 1], and the ranges for the nominal values are β0 ∈ {1, 1.5, 2}, β1 ∈ [−1.5, 1.5] and

β2 ∈ [−3, 3]. We employ the d-QPSO algorithm to find locally D-optimal approximate designs.

The tuning parameters we used were 2 swarms, 25 particles in each swarm, and we initialized our

search among designs with up to 4 support points. The termination rule was either a maximum

of 1000 iterations or when the generated design attained a D-efficiency lower bound of 99%. For

the simulation, we discretize the parameter space for β1 and β2 using a grid with resolution 0.01,

meaning that each parameter space is divided into a grid with points uniformly spaced 0.01 apart.
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Figure S1: The black areas show the ranges of values for β1 and β2 for which a minimally supported
locally D-optimal approximate design was found by the d-QPSO algorithm for the two-factor
additive model when β0 = 1, 1.5, and 2, respectively.

We use d-QPSO and generate designs for all combinations of β1, β2, with the intercept β0 fixed.

This results in a total of 180,901 (301 β1 values × 601 β2 values) d-QPSO algorithm-generated

locally D-optimal approximate designs for each fixed β0 setting.

The black curvilinear areas in Figure S1 show parameter values β1 and β2 for which the d-QPSO

algorithm was able to construct minimally supported designs when β0 = {1, 1.5, 2}. We observe

that as the magnitude of β0 increases, the region in which a minimally supported design can be

constructed also increases. These pictures are similar to the ones obtained theoretically in Figure

2 on page 399 of Yang et al. (2016) and in Figures 1 and 3 of pages 11 and 19 of Yang et al. (2017).

S3 Sensitivity Study

S3.1 Robustness Under Mis-specification of the Link Function

Before a design is implemented, it is important to investigate its robustness properties to model

mis-specification. For example, in GLMs with a binary response it is common to choose the logit

link, but a prudent researcher should choose a design that reflects the actual goals of the study and

has acceptable efficiency if there are violations in the model assumptions. There are several types

of such violations. To fix ideas, suppose there is concern whether the link function is correctly

specified and we want to know whether the locally D-optimal design found under the assumed link

function remains efficient when the true link is another link function. In what follows, we use the
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Table S2: Percentiles of the D-efficiencies of the logit link based d-QPSO algorithm-generated lo-
cally D-optimal designs relative to the d-QPSO algorithm-generated locally D-optimal approximate
designs constructed under the probit, log-log, and complementary log-log link functions.

Percentile
True Link

Probit Log-log C-log-log

0.99 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 0.9900
0.90 1.0000 1.0000 0.9488
0.80 0.9900 0.9737 0.8692
0.70 0.9670 0.9106 0.7925

d-QPSO algorithm to investigate the robustness of locally D-optimal approximate designs found

under the logit link when the true link function is probit, log-log, or complementary log-log.

We ran the d-QPSO algorithm using tuning parameters of 2 swarms, 25 particles in each swarm,

and we initialized our search among designs with up to 4 support points. The termination rule was

either a maximum of 1000 iterations or when the generated design attained a D-efficiency lower

bound of 99%. We compare the D-efficiency of the logit link based d-QPSO algorithm-generated

design relative to the d-QPSO algorithm-generated designs under the correct link function. In this

study we considered the model Y ∼ Bern(µ), with logit(µ) = β0 + β1x1 + β2x2 with x1 ∈ {−1, 1}

and x2 ∈ [−1, 1], but other models can be used. We take β0 = 1 and explored β1 ∈ [−1.5, 1.5] and

β2 ∈ [−3, 3] over a grid with resolution 0.1; this results in a total of 31 × 61 = 1891 individual

locally D-optimal approximate designs generated for each link function. We then compare how the

d-QPSO algorithm-generated locally D-optimal approximate design from the logit link function

performs under various other link functions.

Table S2 provides results of the above simulation, and Figure S2 displays the D-efficiencies. We

observe that many of the d-QPSO algorithm-generated designs are fairly robust against model mis-

specification in the link function. When the true link is the probit or log-log link, the logit-based

designs tend to perform very well and less so when the true link function is the complementary

log-log. Figure S2 suggests the problematic areas occur when β1 is near 0 for the log-log link and

when β1 and β2 are both near their extremes for the complementary log-log link. We note that

these results assume β0 = 1; for different values of β0, the d-QPSO algorithm-obtained locally

D-optimal approximate designs under an incorrect link function may behave differently.
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Relative Efficiency When Log−Log is True Link
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Relative Efficiency When c−Log−Log is True Link
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Figure S2: D-efficiencies of the logit link based d-QPSO algorithm-generated locally D-optimal
approximate designs relative to the d-QPSO algorithm-generated locally D-optimal approximate
designs constructed under the probit (left), log-log (middle), and complementary log-log (right)
link functions.
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Figure S3: Loss of D-efficiency under 3 different levels of mis-specification: up to 30% of parameter
magnitude, 50% of parameter magnitude, and 100% of parameter magnitude, corresponding to the
columns in Table S5. Loss of D-efficiency was calculated by taking 1− (D-efficiency of each design
to the d-QPSO algorithm-generated locally D-optimal approximate design).
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S3.2 Sensitivities of Locally Optimal Designs to Mis-specified Nominal Values

Before a locally D-optimal design is implemented, it is important to investigate if it is robust to mis-

specification of the nominal values. When there are multiple parameters the model, the problem

becomes complicated since it may not be clear how to vary the nominal values systematically and

draw meaningful conclusions. To fix ideas, let us return to the odor removal experiment, and con-

duct three robustness studies of the d-QPSO algorithm-generated locally D-optimal approximate

design in Section 3.1. For the purpose of comparison, we also examine the d-QPSO algorithm-

generated pseudo-Bayesian approximate design in Section 4.1. First, we investigate the drop in

D-efficiency of the locally D-optimal approximate design when one of the nominal parameters is

mis-specified by 10%, 20%, and 30% of its true value. Second, we examine the performance of the

design when two parameters are mis-specified using the same setup as before, where all
(
6
2

)
= 15

combinations of parameters were considered for mis-specification.

As a third and probably more effective way to assess the effects of mis-specification of the

nominal values on the optimal design, we consider cases where the entire nominal parameter vector

is mis-specified to some extent. To this end, we perform similar robustness experiments to those

carried out by Woods et al. (2006) and Gotwalt et al. (2009) and generate 150 random parameter

vectors θi, i = 1, . . . , 150 from the prior specification (uniform ± 100% the magnitude of the

nominal values) and compute the locally D-optimal approximate designs ψθ1 ,ψθ2 , . . . ,ψθ150 using

d-QPSO. We evaluate the D-efficiencies of the d-QPSO algorithm-generated locally D-optimal

approximate design ψθ0 in Section 3.1, and the pseudo-Bayesian design ψB in Section 4.1, relative

to the d-QPSO algorithm-generated locally D-optimal designs ψθ1 ,ψθ2 , . . . ,ψθ150 as

REL,i =

(∣∣Iψθ0 (θi)
∣∣∣∣Iψθi (θi)∣∣
)1/6

and REB,i =

(∣∣IψB(θi)
∣∣∣∣Iψθi (θi)∣∣
)1/6

,

respectively, for i = 1, . . . , 150. Here, REL,i evaluates the objective function value of the design

constructed under the nominal values, θ0, at the true parameter vector, θi, and compares that value

to the objective function value of the d-QPSO algorithm-generated locally D-optimal approximate

design for θi. Similarly, for the pseudo-Bayesian design, REB,i compares the value of the objective

function of the design constructed under the prior vector at the true parameter vector θi with that
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Table S3: Mean and median D-efficiencies (RE) of the d-QPSO algorithm-generated locally D-
optimal and pseudo-Bayesian approximate designs relative to the d-QPSO algorithm-generated
locally D-optimal design when one parameter is mis-specified at a time by ±10%, ±20%, and
±30% of the magnitude of its nominal value.

Design ±10% ±20% ±30%

Mean RE Median RE Mean RE Median RE Mean RE Median RE
Locally Optimal 0.9964 0.9989 0.9852 0.9945 0.9690 0.9872
Pseudo Bayesian 0.9618 0.9645 0.9538 0.9620 0.9424 0.9575

Table S4: Mean and median D-efficiencies (RE) of the d-QPSO algorithm-generated locally D-
optimal and pseudo-Bayesian approximate designs relative to the the d-QPSO algorithm-generated
locally D-optimal approximate designs when two parameters are mis-specified at a time by ±10%,
±20%, and ±30% of the magnitude of their nominal values (i.e. we randomly generate parameter
vectors from uniform priors).

Design ±10% ±20% ±30%

Mean RE Median RE Mean RE Median RE Mean RE Median RE
Locally Optimal 0.9934 0.9933 0.9745 0.9726 0.9475 0.9427
Pseudo Bayesian 0.9595 0.9617 0.9457 0.9544 0.9264 0.9427

of the d-QPSO algorithm-generated locally D-optimal approximate design for θi.

We also sample parameter vectors from two narrower priors (±30% and ±50%) and compare

the loss in D-efficiency following the same procedure. We note that the uniform prior of nomi-

nal values ±100% was used to construct the pseudo-Bayesian design under consideration and the

robustness was evaluated by constructing ψθ1 , . . . ,ψθ150 for each of ±30%, ±50%, and ±100%

mis-specification. Thus the two narrower mis-specifications correspond to situations where the ex-

perimenter took a very conservative approach even when the true parameter values were actually

fairly close to the supposed nominal values.

Tables S3 and S4 list, respectively, results of one- and two-parameter mis-specification in the

nominal values, and Table S5 shows the mean and median D-efficiencies based on the 150 simulated

values for the full vector of model parameters. Figure S3 provides histograms of the corresponding

loss in D-efficiency. For the one- and two-parameter mis-specification simulations we observe that

the d-QPSO algorithm-generated locally D-optimal and pseudo-Bayesian designs are both very

efficient, even with 30% mis-specification of the magnitude of the nominal values. For the full

parameter vector mis-specification simulations, Table S5 and Figure S3 show that the d-QPSO

algorithm-generated designs also appear to perform quite well.
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Table S5: Mean and median D-efficiencies (RE) of the d-QPSO algorithm-generated locally D-
optimal and pseudo-Bayesian approximate designs relative to the the d-QPSO algorithm-generated
locally D-optimal approximate designs when all parameters are mis-specified and sampled from an
independent uniform prior over ±30%, ±50%, ±100% of the parameter magnitudes, µ.

Design β ∼ U(0.7µ, 1.3µ) β ∼ U(0.5µ, 1.5µ) β ∼ U(0µ, 2µ)

Mean RE Median RE Mean RE Median RE Mean RE Median RE
Locally Optimal 0.9359 0.9446 0.8559 0.8690 0.6538 0.6443
Pseudo Bayesian 0.9182 0.9204 0.8612 0.8624 0.6980 0.6995

S4 Locally D-optimal Exact Designs

In Section 4, we showed that the d-QPSO algorithm could be used to find a pseudo-Bayesian exact

design. Here we further demonstrate that the algorithm can also find locally D-optimal exact

designs. We apply the d-QPSO algorithm to generate locally D-optimal exact designs for the odor

removal experiment with nominal values as β = (−1, 2, 0.5,−1, −0.25, 0.13)T . We find locally D-

optimal exact designs when the total number of observations, N , is specified. We generate locally

D-optimal exact designs for N = 6, 10, 25, 50 and 100 and note that (i) the case N = 6 corresponds

to finding a minimally supported locally D-optimal exact design and (ii) when N = 100 (which is

large), the d-QPSO algorithm-generated locally D-optimal exact design should be similar to the

d-QPSO algorithm-generated locally D-optimal approximate design in Section 3.1.

The first three locally D-optimal exact designs were found by the d-QPSO algorithm using 10

swarms, 20 particles, and a termination rule of 5000 iterations. The last two designs were found

using 15 swarms instead of 10. For each problem, we ran the d-QPSO algorithm four times to

ensure the objective function value was about the same. Table S6 reports the number of support

points in the d-QPSO algorithm-generated exact designs, along with their objective function values

and the CPU times required to find them. Clearly, when N > 25 the objective function value

of the exact designs becomes close to that of the d-QPSO algorithm-generated locally D-optimal

approximate design, which has a value of 0.3519.

Table S7 displays the d-QPSO algorithm-generated exact designs for N = 6, 10, and 15 and

shows how their support points are distributed. Table S8 compares the d-QPSO algorithm-

generated locally D-optimal exact design for N = 100 (right) with the d-QPSO algorithm-generated

locally D-optimal approximate design (left). The two designs are aligned by support points, such

that each support point on the left is very similar to the one on the right. The three points listed at
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Table S6: Properties of the d-QPSO algorithm-generated exact designs for the odor removal exper-
iment with nominal values β = (−1, 2, 0.5,−1,−0.25, 0.13)T .

N
Number of

Support Points
CPU Time Objective Function Value

6 6 14.368 0.3368
10 10 15.616 0.3438
25 17 30.223 0.3504
50 18 89.696 0.3510
100 18 337.073 0.3513

Table S7: The d-QPSO algorithm-generated locally D-optimal exact designs for the odor removal
experiment with nominal values β = (−1, 2, 0.5,−1,−0.25, 0.13)T for N = 6, 10, and 25.

Algae Scav. Resin Comp. Temp. N Algae Scav. Resin Comp. Temp. N Algae Scav. Resin Comp. Temp. N

−1 −1 −1 1 29.74 1 −1 −1 −1 1 13.25 1 −1 −1 −1 −1 7.60 1
−1 −1 1 1 27.95 1 −1 −1 −1 1 30.50 1 −1 −1 −1 −1 26.92 2
−1 1 −1 −1 5.00 1 −1 −1 1 −1 34.39 1 −1 −1 −1 1 28.48 2
−1 1 1 −1 33.59 1 −1 1 −1 −1 17.06 1 −1 −1 1 −1 24.95 1

1 −1 1 −1 5.00 1 −1 1 −1 −1 5.00 1 −1 −1 1 −1 35.00 1
1 1 1 1 5.00 1 −1 1 1 1 18.49 1 −1 −1 1 1 29.66 1

−1 1 1 1 35.00 1 −1 −1 1 1 35.00 1
1 −1 1 −1 5.00 1 −1 1 −1 −1 5.00 2
1 −1 1 1 5.00 1 −1 1 −1 1 5.13 2
1 1 1 1 5.00 1 −1 1 1 −1 19.24 1

−1 1 1 −1 33.74 1
−1 1 1 1 35.00 2

1 −1 −1 1 5.00 1
1 −1 1 −1 5.00 2
1 −1 1 1 5.00 2
1 1 1 −1 5.00 1
1 1 1 1 5.00 2
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Table S8: The d-QPSO algorithm-generated D-optimal exact design (right) for the odor removal
experiment with nominal values β = (−1, 2, 0.5,−1,−0.25, 0.13)T with N = 100 experimental units
and the corresponding d-QPSO algrorithm-generated locally D-optimal approximate design (left).

Algae Scav. Resin Comp. Temp. pi (%) Algae Scav. Resin Comp. Temp. N

−1 −1 −1 −1 9.04 3.70 −1 −1 −1 −1 8.56 4
−1 −1 −1 −1 25.79 4.30 −1 −1 −1 −1 26.25 6
−1 −1 −1 1 29.71 10.17 −1 −1 −1 1 29.95 9
−1 −1 1 −1 35.00 4.73 −1 −1 1 −1 35.00 5
−1 −1 1 1 29.58 11.59 −1 −1 1 1 30.55 8
−1 1 −1 −1 5.00 9.75 −1 1 −1 −1 5.00 9
−1 1 −1 1 5.21 7.86 −1 1 −1 1 5.36 8
−1 1 1 −1 16.89 2.20 −1 1 1 −1 16.73 2
−1 1 1 −1 33.37 8.80 −1 1 1 −1 32.45 6
−1 1 1 1 35.00 6.10 −1 1 1 1 35.00 8

1 −1 −1 1 5.00 5.11 1 −1 −1 1 5.00 5
1 −1 1 −1 5.00 10.75 1 −1 1 −1 5.00 8
1 −1 1 1 5.00 5.23 1 −1 1 1 5.00 8
1 1 1 1 5.00 9.71 1 1 1 1 5.00 7

−1 −1 −1 1 12.89 1
−1 −1 1 −1 25.43 2

1 1 1 −1 5.00 4

the bottom of the exact design have no similar points in the approximate design. The D-efficiency

of the exact design relative to the approximate design is 99.8%. Clearly the exact design found by

the d-QPSO algorithm is both highly efficient and very similar to the approximate design found in

Section 3.1, which is what we expect when N is large.

S5 Optimal Designs on an Irregular Design Space

The bulk of the D-optimal designs reported in the literature are on prototype design spaces. For

example, when factors are continuous the default design space is usually the unit cubiod, or, for

mixture experiments, the design space is the regular simplex. In practice, some studies have

irregularly shaped design spaces, and this is likely to pose additional difficulties for finding an

analytical description of the D-optimal design. Such design problems seem to have not been well

studied in the literature even though they appear in real problems. In this subsection we show

that the d-QPSO algorithm is flexible and can be directly modified to find a locally D-optimal

approximate design on an irregularly-shaped design space.
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Figure S4: The d-QPSO algorithm-generated locally D-optimal approximate design on an irregular
design space with a corner cut off from a box (left) and its sensitivity function (right) with nominal
values β = (1.0,−1.7, 1.3)T .

To fix ideas, consider a design space which is box-shaped with a corner removed. We consider

the model Y ∼ Bern(µ) with logit(µ) = β0 + β1x1 + β2x2, where Y takes values 1 or 0, and

x1, x2 ∈ [−1, 1]. We remove the upper left hand corner of this design space by adding the constraint

that we cannot have both X1 above 0.75 and X2 below 0.25. The nominal parameter vector is

β = (1.0,−1.7, 1.3)T . We run the d-QPSO algorithm using tuning parameters of 2 swarms, 25

particles in each swarm, and we initialized our search among designs with up to 6 support points.

The termination rule was either a maximum of 1000 iterations or when the generated design attained

a D-efficiency lower bound of 99%. Figure S4 shows the d-QPSO algorithm-generated locally D-

optimal approximate design and the sensitivity plot of the design in the same figure confirms its

local D-optimality.

S6 The d-QPSO Algorithm for Finding the Optimal Designs for

the Odor Removal Experiment

The C++ code that we provide is the d-QPSO algorithm for finding the D-optimal designs for the

odor removal experiment. The code can generate locally D-optimal exact and approximate designs,

and also pseudo-Bayesian designs.
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