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1 Appendix: Proofs for theorems

In this section we give the proofs for Theorems 2 and 4 in Section 3, and the proofs for Theorems

1 and 3 are put in the online supplementary material.

1.1 Proof of Theorem 2

Recall that θ = (α,β). In what follows, the calculations are based on the condition that γ ∈ Γ,

‖θ‖∞ ≤ nτ , where τ ∈ (0, 1/2) is a positive constant. By calculations, we have

`(γ,θ) = `(γ,θ)− E[`(γ,θ)] + E[`(γ,θ)]

=
∑
i 6=j

(aij − pij)(Z>ijγ + αi + βj) + E[`(γ,θ)],

where E[`(γ,θ)] is given in (9) and pij = pij(γ
∗, α∗i , β

∗
j ). By the triangle inequality, we have

∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣ 1

n− 1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣. (1)
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Since we assume that Zij’s lie in a compact subset of Rp and the parameter space Θ of covariate

parameters is compact, we have for all i 6= j,

max
γ∈Θ
|Z>ijγ| ≤ κ, (2)

where κ is a constant. By inequality (2), aijZ
>
ijγ is a bounded random variable with the upper

bound κ. By Hoeffding’s (1963) inequality, we have

P
(∣∣∣ 1

n− 1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≥ ε

)
≤ 2 exp

(
−(n− 1)ε2

2κ2

)
.

By taking ε = 2κ[log(n− 1)/(n− 1)]1/2, we have

P

(∣∣∣ 1

n− 1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≥ 2κ

√
log(n− 1)

(n− 1)

)
≤ 4

(n− 1)2
.

Therefore, we have

P

(∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≥ 2κ

√
log(n− 1)

(n− 1)

)

≤ P

(
1

n

n∑
i=1

∣∣∣ 1

n− 1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≥ 2κ

√
log(n− 1)

(n− 1)

)

≤ P

(
n⋃
i=1

∣∣∣ 1

n− 1

∑
j 6=i

(aij − pij)Z>ijγ
∣∣∣ ≥ 2κ

√
log(n− 1)

(n− 1)

)
≤ n

(n− 1)2
.

In the above, the first inequality is due to (1). Note that ‖α‖ ≤ nτ and ‖β‖ ≤ nτ . Similarly,

with probability at most n/(n− 1)2, we have

∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

(aij − pij)αi
∣∣∣ ≥ 1

n(n− 1)

n∑
i=1

∣∣∣∑
j 6=i

αi
n− 1

(aij − pij)
∣∣∣

≥ 1

n(n− 1)
· n · nτ

√
log(n− 1)

n− 1
=

(log n)1/2

n1/2−τ ,

and ∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

(aij − pij)βj
∣∣∣ ≥ (log n)1/2

n1/2−τ .
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Hence, with probability at least 1− 3n/(n− 1)2, we have

max
γ≤Γ,‖θ‖∞≤nτ

∣∣∣ 1

n(n− 1)

∑
i

∑
j 6=i

(aij − pij)(Z>ijγ + αi + βj)
∣∣∣ < (log n)1/2

n1/2−τ ,

or equivalently,

max
γ≤Γ,‖θ‖∞≤nτ

∣∣∣ 1

n(n− 1)
{`(γ,θ)− E[`(γ,θ)]}

∣∣∣ < (log n)1/2

n1/2−τ . (3)

Let Bn(ρ) = {γ : ‖γ − γ∗‖∞ < ρ} be an open ball in Γ with γ∗ as its center and ρ as its

radius, and Bc
n(ρ) be its complement in Γ. Define

εn(ρ) =
1

n(n− 1)

{
max
‖θ‖∞≤nτ

E[`(γ∗,θ]− max
γ∈Bcn(ρ),‖θ‖∞≤nτ

E[`(γ,θ)]

}
,

and

εn(ρn) = arg min
ρ
εn(ρ) >

2(log n)1/2

n1/2−τ .

Recall that E[`(γ∗,θ)] =
∑

i<j DKL(pij‖pij(γ∗, αi, βj))−
∑

i<j S(pij). Therefore,

max
‖θ‖∞≤nτ

E[`(γ∗,θ]− max
γ∈Bcn(ρ),‖θ‖∞≤nτ

E[`(γ,θ)]

= max
‖θ‖∞≤nτ

∑
i<j

DKL(pij‖pij(γ∗, αi, βj))− max
γ∈Bcn(ρ),‖θ‖∞≤nτ

∑
i<j

DKL(pij‖pij(γ∗, αi, βj)).

By the property of the Kullback-Leibler divergence and noticing that pij is a monotonous

function on γk, αi and βj, E[`(γ,θ)] is uniquely maximized at (γ∗, θ∗). Therefore, εn will

be strictly greater than zero for each fixed n. Further, since εn(ρ) is a continuous increasing

function on ρ as ρ increases, we have

ρn → 0, as n→∞. (4)

Let En be the event

1

n(n− 1)

∣∣∣ max
‖θ‖∞≤nτ

`(γ,θ)− max
‖θ‖∞≤nτ

E[`(γ,θ)]
∣∣∣ < εn(ρn)

2
.

for all γ ∈ Γ. Under event En, we get the inequalities

max
‖θ∞‖≤nτ

1

n(n− 1)
E[`(γ̂,θ)] >

1

n(n− 1)
`(γ̂, θ̂)− εn(ρn)

2
, (5)
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max
‖θ‖∞≤nτ

1

n(n− 1)
`(γ∗,θ) > max

‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ∗,θ)]− εn(ρn)

2
. (6)

According to the definition of the restricted MLE, we have that

1

n(n− 1)
`(γ̂, θ̂) ≥ max

‖θ‖≤nτ

1

n(n− 1)
`(γ̂,θ).

Then, by inequality (5), we have

max
‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ̂,θ)] > max

‖θ‖∞≤nτ

1

n(n− 1)
`(γ̂,θ)− εn

2
. (7)

Adding both sides of (6) and (7) gives

max
‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ̂,θ)]−

[
max
‖θ‖∞≤nτ

1

n(n− 1)
`(γ̂,θ)− max

‖θ‖∞≤nτ

1

n(n− 1)
`(γ∗,θ)

]
> max

‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ∗,θ)]− εn(ρn)

= max
γ∈Bcn,‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ,θ)],

where the equality follows the definition of εn. By noting that

max
‖θ‖∞≤nτ

1

n(n− 1)
`(γ̂,θ) ≥ max

‖θ‖∞≤nτ

1

n(n− 1)
`(γ∗,θ),

we have

max
‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ̂,θ)] > max

γ∈Bcn,‖θ‖∞≤nτ

1

n(n− 1)
E[`(γ,θ)].

From the above equation, we have that En ⇒ γ̂ ∈ Bn(ρn). Therefore P (En) ≤ P (γ̂ ∈ Bn(ρn)).

Inequality (3) implies that limn→∞ P (En) = 1 according to the definition of ρn. By (4), it

follows that γ̂
p→ γ∗.

1.2 Derivation of approximate expression for I∗(γ)

Recall that H is the Hessian matrix of the log-likelihood function (2):

H =

Hγγ Hγθ

H>γθ −V

 ,
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where

−Hγγ =
∑
i 6=j

pij(1− pij)ZijZ>ij , (8)

and

−H>γθ =



∑
j 6=1 p1j(1− p1j)Z

>
1j

...∑
j 6=n pnj(1− pnj)Z>nj∑
i 6=1 pi1(1− pi1)Z>i1

...∑
i 6=n−1 pi,n−1(1− pi,n−1)Z>i,n−1


.

In what follows, we will derive the approximate expression of I∗(γ). Let (1)m×n be an m × n

matrix whose elements all are 1. By calculations, we have

SH>γθ = DH>γθ +
1

v2n,2n

 (1)n×n (−1)n×(n−1)

(−1)(n−1)×n (1)(n−1)×(n−1)

H>γθ,

where D = diag(1/v11, . . . , 1/v2n−1,2n−1). By noting that

n∑
i=1

∑
j 6=i

pij(1− pij)Z>ij −
n−1∑
j=1

∑
i 6=j

pij(1− pij)Z>ij =
∑
i 6=n

pin(1− pin)Z>in,

we have

HγθSH
>
γθ = HγθDH

>
γθ +

1

v2n,2n

Hγθ

 (1)n×1

(−1)(n−1)×1

∑
i 6=n

pin(1− pin)Z>in

=
n∑
i=1

1

vii

(∑
j 6=i

pij(1− pij)Zij
)(∑

j 6=i

pij(1− pij)Z>ij
)

+
n∑
j=1

1

vn+j,n+j

(∑
i 6=j

pij(1− pij)Zij
)(∑

i 6=j

pij(1− pij)Z>ij
)
. (9)

By Lemma 1, we have

‖V −1 − S‖ ≤ c1M
2

m3(n− 1)
≤ c1

(n− 1)2
×
(

1

4

)2

× (1 + e2‖θ∗‖∞+κ)6

(e2‖θ∗‖∞+κ)3
= O

(
e6‖θ∗‖∞

n2

)
.

Therefore,

‖Hγθ(V
−1 − S)H>γθ‖∞ ≤ ‖Hγθ‖2

∞‖V −1 − S‖∞ ≤ O(n2)×O
(
n
e6‖θ∗‖∞

n2

)
= O(ne6‖θ∗‖∞).
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Recall that N = n(n− 1) and note that

(Hγγ +HγθV
−1H>γθ) = Hγγ +HγθSH

>
γθ +Hγθ(V

−1 − S)H>γθ.

Therefore, we have

−N−1(Hγγ +HγθV
−1H>γθ) = −N−1(Hγγ +HγθSH

>
γθ) + o(1), (10)

where Hγγ and HγθSH
>
γθ are given in (8) and (9), respectively. It shows that the limit of

−N−1(Hγγ +HγθSH
>
γθ) is I∗(γ) defined in (10).

1.3 Proofs for Theorem 4

Let θ̂
∗

= arg maxθ `(γ
∗,θ). Similar to the proofs of Theorems 1 and 2 in Yan et al. (2016), we

have two lemmas below, which will be used in the proof of Theorem 4.

Lemma 1. Assume that θ∗ ∈ R2n−1 with ‖θ∗‖∞ ≤ τ log n, where 0 < τ < 1/24 is a constant,

and that A ∼ Pθ∗. Then as n goes to infinity, with probability approaching one, the θ̂
∗

exists

and satisfies

‖θ̂∗ − θ∗‖∞ = Op

(
(log n)1/2e8‖θ∗‖∞

n1/2

)
= op(1).

Lemma 2. If ‖θ∗‖∞ ≤ τ log n and τ < 1/40, then for any i,

θ̂∗i − θ∗i = [S{g − E(g)}]i + op(n
−1/2).

For convenience, define `ij(γ,θ) by the (i, j)th dyad’s contributions to the log-likelihood

function in (2), i.e.,

`ij(γ,θ) = aij(Z
>
ijγ + αi + βj)− log(1 + eZ

>
ijγ+αi+βj).

Let Tij be a 2n − 1 dimensional vector with ones in its ith and n + jth elements and zeros

otherwise. Let sγij(γ,θ) and sθij(γ,θ) denote the score of `ij(γ,θ) associated with the vector

parameter γ and θ, respectively:

sγij(γ,θ) =
∂`ij
∂γ

= aijZij −
Zije

Z>ijγ+αi+βj

1 + eZ
>
ijγ+αi+βj

,
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sθij(γ,θ) =
∂`ij
∂θ

= aijTij −
eZ
>
ijγ+αi+βj

1 + eZ
>
ijγ+αi+βj

Tij.

Then we have the following lemma, whose proof is given in online supplementary material.

Lemma 3. Let Hθθ = −V and

s∗γij(γ
∗,θ∗) := sγij(γ

∗,θ∗)−HγθH
−1
θθ sθij(γ

∗,θ∗). (11)

Then 1√
N

[In(γ∗)]−1/2
∑n

i=1

∑
j 6=i s

∗
γij

(γ∗,θ∗) follows asymptotically a p-dimensional multivari-

ate standard normal distribution.

Proof of Theorem 4. Recall that θ̂(γ) = arg maxθ `(γ,θ). A mean value expansion gives

n∑
i=1

∑
j 6=i

sγij(γ̂, θ̂)−
n∑
i=1

∑
j 6=i

sγij(γ
∗, θ̂(γ∗)) =

n∑
i=1

∑
j 6=i

∂

∂γ>
sγij(γ̄, θ̂(γ̄))(γ̂ − γ∗),

where γ̄ = tγ∗+ (1− t)γ̂ for some t ∈ (0, 1). By noting that
∑n

i=1

∑
j 6=i sγij(γ̂, θ̂) = 0, we have

√
N(γ̂ − γ∗) = −

[ 1

N

n∑
i=1

∑
j 6=i

∂

∂γ>
sγij(γ̄, θ̂(γ̄))

]−1

×
[ 1√

N

n∑
i=1

∑
j 6=i

sγij(γ
∗, θ̂(γ∗))

]
.

Since the dimension p of γ is fixed, by Theorem 2, we have

− 1

N

n∑
i=1

∑
j 6=i

∂

∂γ>
sγij(γ̄, θ̂(γ̄))

p→ I∗(γ).

Let θ̂
∗

= θ̂(γ∗). Therefore,

√
N(γ̂ − γ∗) = I−1

∗ (γ)×
[ 1√

N

n∑
i=1

∑
j 6=i

sγij(γ
∗, θ̂

∗
)
]

+ op(1). (12)

By applying a third order Taylor expansion to the summation in brackets in (12), it yields

1√
N

n∑
i=1

∑
j 6=i

sγij(γ
∗, θ̂

∗
) = S1 + S2 + S3, (13)
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where

S1 = 1√
N

∑n
i=1

∑
j 6=i sγij(γ

∗,θ∗) + 1√
N

∑n
i=1

∑
j 6=i

[
∂

∂θ>
sγij(γ

∗,θ∗)
]
(θ̂
∗ − θ∗),

S2 = 1
2
√
N

∑2n−1
k=1

[
(θ̂∗k − θ∗k)

∑n
i=1

∑
j 6=i

∂2

∂θk∂θ
> sγij(γ

∗,θ∗)× (θ̂
∗ − θ∗)

]
,

S3 = 1
6
√
N

∑2n−1
k=1

∑2n−1
l=1 {(θ̂∗k − θ∗k)(θ̂∗l − θ∗l )

[∑n
i=1

∑
j 6=i

∂3sγij (γ∗,θ̄∗)

∂θk∂θl∂θ
>

]
(θ̂
∗ − θ∗)}.

Similar to the proof of Theorem 4 in Graham (2017), we will show that (1) S1 is asymptotically

normal distribution; (2) S2 is the bias term having a non-zero probability limit; (3)S3 is an

asymptotically negligible remainder term.

We work with S1, S2 and S3 in reverse order. We first evaluate the term S3. We calculate

gijklh =
∂3sγij (γ,θ)

∂θk∂θl∂θh
as follows.

(1) For different k, l, h, gijklh = 0.

(2) Only two values are equal. If k = l = i ≤ n;h ≥ n+1, gijklh = pij(1−pij)(1−6pij +6p2
ij)Zij;

for other cases, the results are similar.

(3) Three values are equal. gijklh = pij(1 − pij)(1 − 6pij + 6p2
ij)Zij if k = l = h = i ≤ n;

gijklh = pji(1− pji)(1− 6pji + 6p2
ji)Zji if k = l = h = j ≥ n+ 1.

Therefore, we have

n∑
i=1

∑
j 6=i

∑
k,l,h

∂3sγij(γ
∗, θ̄∗)

∂θk∂θl∂θh

=
1

2

1√
N

n∑
i=1

n−1∑
j=1

Zij[pij(1− pij)(1− 6pij + 6p2
ij)(α̂i − α∗i )2(β̂j − β∗j ) +

pji(1− pji)(1− 6pji + 6p2
ji)(α̂i − α∗i )(β̂j − β∗j )2].

Let λn = ‖θ̂∗ − θ∗‖∞. Note that Zij lies in a compact set Z, and pij(1 − pij) ≤ 1/4, and

|(1− 6pij + 6p2
ij)| ≤ 6. By Lemma 1, any element of S3 is bounded above by

n(n− 1)√
N

× 6

4
λ3
n × sup

z∈Z
|z| = 3

n(n− 1)√
n(n− 1)

× C3(log n)3/2e24‖θ∗‖∞

n3/2
× sup

z∈Z
|z|

= O

(
(log n)3/2e24‖θ∗‖∞

√
n

)
= o(1).

Similar to the calculation of deriving the asymptotic bias in Theorem 4 in Graham (2017),
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we have S2 = B∗ + op(1), where

B∗ = lim
n→∞

1

2
√
N

[
n∑
i=1

∑
j 6=i pij(1− pij)(1− 2pij)Zij∑

j 6=i pij(1− pij)
+

n∑
j=1

∑
i 6=j pij(1− pij)(1− 2pij)Zij∑

i 6=j pij(1− pij)

]
.

(14)

By Lemma 2, similar to deriving the asymptotic expression of S1 in Graham (2017), we

have

S1 =
1√
N

n∑
i=1

∑
j 6=i

s∗γij(γ
∗,θ∗) + op(1),

Therefore, it shows that equation (13) equal to

1√
N

n∑
i=1

∑
j 6=i

sγij(γ
∗, θ̂

∗
) =

1√
N

n∑
i=1

∑
j 6=i

s∗γij(γ
∗,θ∗) +B∗ + op(1), (15)

with 1√
N

∑n
i=1

∑
j 6=i s

∗
γij

(γ∗,θ∗) equivalent to the first two terms in (13) and B∗ the probability

limit of the third term in (13).

Substituting (15) into (12) then gives

√
N(γ̂ − γ∗) = I−1

∗ (γ)B∗ + I−1
∗ (γ)

1√
N

n∑
i=1

∑
j 6=i

s∗γij(γ
∗, θ∗) + op(1).

Then Theorem 4 immediately follows from Lemma 3.
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