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1 Appendix: Proofs for theorems

In this section we give the proofs for Theorems 2 and 4 in Section 3, and the proofs for Theorems

1 and 3 are put in the online supplementary material.

1.1 Proof of Theorem 2

Recall that @ = (o, B). In what follows, the calculations are based on the condition that v € T,

10]|c < n7, where 7 € (0,1/2) is a positive constant. By calculations, we have

= Y (ai; — pi)(Zjy + i + B;) + Ell(v,0)],
i£]

where E[((v,0)] is given in (9) and py; = pi;(¥*, o, B;). By the triangle inequality, we have

‘m Zn: > (ay —pij)Z;'y‘ < %zn: )n i - > (ai; — piy)ZiA|. (1)
i=1 j#i

i=1 j#i
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Since we assume that Z;;’s lie in a compact subset of R” and the parameter space © of covariate

parameters is compact, we have for all i # j,

Zl~| < 2
rggg\ vl <k, (2)

where £ is a constant. By inequality (2), a;; Z;: ;7Y is a bounded random variable with the upper

bound k. By Hoeffding’s (1963) inequality, we have

P(‘n 1 1 Z(aij —pij>Zi}7’ > 6) < 2exp (_(TZQ_—K;)GQ) .

J#i

By taking € = 2x[log(n — 1)/(n — 1)]*/2, we have

1 T log(n — 1 4
i (\n_12<% ~ )| 2 2 %) e

J#i

Therefore, we have

F ‘ n—l ZZaU Pij) 57(2% %)

zl];éz

I~ 1 - log(n — 1)
< P ﬁZ’n_lz@zj—pz‘j)Zz’j')" > 2K W
i=1 JF#i
ST T log(n — 1)
< P U ‘n 1 Z(aij _pij)Zij7‘ > 2K W
i=1 j#i
< n
T (=1

In the above, the first inequality is due to (1). Note that ||« < n™ and ||3|| < n”. Similarly,

with probability at most n/(n — 1)?, we have

n

Q;
> n—lzlzn (aij — pij)
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Hence, with probability at least 1 — 3n/(n — 1)?, we have

1 . (log )/
<l <7 m;;(% = i) (Zyyy + i+ )| < nl/2=r
or equivalently,
(logn)'/?
. {U(~.0) —E[l(~.0 ‘ e
‘YSF,III%EI}ILZ(OSM n(n — 1){ (7:9) L, 0)]}] < nl/2= )

Let Bu(p) = {7 : [|7 — 7*|loo < p} be an open ball in T with v* as its center and p as its

radius, and B¢ (p) be its complement in I". Define

1
en(p) = —< max E[/(~",0] — max Ell(v,0)] ¢,
v ”(”_1){”9“w<m o0 YEBE (p),|6]|oc <7 Ay )]}
and
2(logn)'/?

en(pn) = arg mpiﬂ en(p) > i

Recall that E[((y",8)] = Zz‘<j D r,(pillpi (7", ci, By)) — Zi<j S(pij). Therefore,

max E[((~, 0] — max E[¢(~, 0
1610 <™ [{(~", 6] epe X [£(~,0)]
e Z kL (Pijllpi (V" i, B)) WGBg(f)r)l,a;{Hoogm; kL (Dijllpi; (¥, iy B))

By the property of the Kullback-Leibler divergence and noticing that p;; is a monotonous
function on i, a; and 3;, E[{(v,0)] is uniquely maximized at (v*, 6*). Therefore, €, will
be strictly greater than zero for each fixed n. Further, since €,(p) is a continuous increasing

function on p as p increases, we have

pn — 0, as n — oo. (4)
Let E,, be the event
1 6n<pn)
—— | max f(v,0)— max E[/(v,0)]| < .
n(n — 1)1 0]ls<n (.6) 1] <n" (67, 6) 2

for all v € . Under event E,,, we get the inequalities

- 1 - 1 ~ En(pn)
« —E[{(7,0)] > ———
||9<>o|E|L§nT n(n — 1) [ ( )]




1 1 €n(pn)

max ——((v*,0) > max ——E[{(v",0)] — 6
I6llcc<n n(n — 1) (. 6) 18]l <n™ n(n — 1) [, 0) 2 (6)
According to the definition of the restricted MLE, we have that
L 43.6) > L 5.0
— max ———— .
n(n —1) Y= l6l<n™ n(n — 1) v
Then, by inequality (5), we have
L El3,6) > L 5,0) - % ©
max ———— , max ——0(5,0) — —.
16]lsc<n™ n(n — 1) v 16]jcc<n™ n(n — 1) v 2
Adding both sides of (6) and (7) gives
S E[l3,0) —((5,6) ", 6)
max ———— ,0)] — | max —/(,0) — max ,
|0]lcc<n” (N — 1) K 0]l <n™ n(n — 1) K 10]lco<n n(n — 1) v
1
> max ——E[l(v",0)] —e,(pn
e ey g [(~*, 0)] — en(pn)
1
= —E[{(~, 0
e X e = 1) [0(, 0)],
where the equality follows the definition of €,. By noting that
L 5,0)> L iy 0)
max ———/(4,0) > max —— ,0),
ol n(n — 1) ) = ol = 1)
we have
1 R 1
max ——E[((7,0)] > max —E[l(~, 0)].

[6lloc<n™ n(n — 1) ~eBg 0]l <n” n — 1)
From the above equation, we have that E,, = 4 € B,(p,). Therefore P(E,) < P(¥ € B,(pn)).
Inequality (3) implies that lim, o, P(E,) = 1 according to the definition of p,. By (4), it

follows that 4 2 ~*.

1.2 Derivation of approximate expression for I,(v)

Recall that H is the Hessian matrix of the log-likelihood function (2):

H— H’Y’Y H79
Hl, —V



where

=D il =py) 2,2}, (8)
i#j

and
> P11 = p1y) 21

Zj;énpn]( an)ZT
Zz‘;ﬁl pia(1l = pi)Zy

Z#n,l Pin—1 (1 - pi,nfl)ZiTn_l
In what follows, we will derive the approximate expression of I,(7y). Let (1),,x, be an m x n
matrix whose elements all are 1. By calculations, we have

1 1nn _177, n—
T AL N (R R R

V2n,2n <—1)(n—1)><n (1)(n—1)><(n—1)

where D = diag(1/v11,...,1/v2n-12n-1). By noting that

Z Zpij pz] Z sz] p’L] me pm ma

i=1 j#i j=1 i#£j i#n

we have

1 (1)n 1
H,YQSH,;FG = H'YQDH,;;"’—HWQ : me pm
V2n,2n ( 1)(n 1)x1 /) i#n

n

= Zviﬁ(Zpij(l_pij)Zij> pr(l p”)ZT>

i=1 J#i J#i
1
+ Z v ] ] <me( pm > <szj p’L] ) (9)
j=1 I i#j

By Lemma 1, we have

_ cy M? 1 1)\ 2 (1 + 210" lloc try6 0110% oo
< - _ ‘
IV = SIS e < i ( 4) Nz

Therefore,

£616%

1o (V™ = S)Hoglloe < [ Hapll5 [V = Sl < O(n?) % O(H ) = O(nel” =),

n2



Recall that N = n(n — 1) and note that
(Hyy + HyoV T Hy) = Ho + HygSH g+ Hyo(V™' — S)H .
Therefore, we have
—N"YH,, + H\gV 'H ) = =N "' (H,, + HypSH.)y) + o(1), (10)

where H,, and H,sSH ), are given in (8) and (9), respectively. It shows that the limit of
—N"'(H,, + Hy4SH)) is I.(7) defined in (10).

1.3 Proofs for Theorem 4

Let @ = arg maxg ((v*, 6). Similar to the proofs of Theorems 1 and 2 in Yan et al. (2016), we

have two lemmas below, which will be used in the proof of Theorem 4.

Lemma 1. Assume that 0° € R*"™! with ||0%||. < 7logn, where 0 < 7 < 1/24 is a constant,

and that A ~ Pg«. Then as n goes to infinity, with probability approaching one, the 0 exists

o (log n)1/26810°
He—enm—ca( — o,(1).

nl/2

and satisfies

Lemma 2. If ||0%|« < Tlogn and 7 < 1/40, then for any i,

b; — 6; = [5{g — E(g)}]: + 0p(n~"/?).

For convenience, define ¢;;(v,0) by the (i,7)" dyad’s contributions to the log-likelihood

function in (2), i.e.,
05(7.0) = aij (Zgy + i+ ) = log(1 4 e#57h),

Let T;; be a 2n — 1 dimensional vector with ones in its ith and n + jth elements and zeros
otherwise. Let s, (v,80) and sy,,(,8) denote the score of /;;(~, @) associated with the vector
parameter v and 6, respectively:

ol 7, eZiroith
S, (7, 0) = 87] = ai;Zi; — —

1+ eZivtaits;’



ol e Zijvtaith;
50,; (779> = 80] = aijﬂj -

1+eZ£‘Y+a¢+5j *

Then we have the following lemma, whose proof is given in online supplementary material.

Lemma 3. Let Hgg = —V and

55, (Y 07) =5, (7", 07) — HyoHpg 50, (7", 07). (11)

Then —= [ DY) YR >4 S5, (Y7, 67) follows asymptotically a p-dimensional multivari-

ate standard normal distribution.

Proof of Theorem 4. Recall that 5(7) = argmaxg {(7y, ). A mean value expansion gives
) SEMEATED 3) SINICATECIED 3) pea 7757, 1O =7,
=1 j#i =1 j#i i=1 j#i
where 4 = ty* + (1 — )7 for some t € (0,1). By noting that Y7 >°. . s,.(7, 6) = 0, we have
VFE-7) == [ ZZ Tvﬂé e [\ﬁzz 5 (7 00r )]
i=1 j#i i=1 j#i
Since the dimension p of ~ is fixed, by Theorem 2, we have

N s 8 B L)

i=1 j#i

~

Let & = 6(~*). Therefore,

VNG =) = 120 x [ S5 e (r6)] + (1) (12)

11]752

By applying a third order Taylor expansion to the summation in brackets in (12), it yields

\/_ZZS%J ’)/ , Sl +SQ —|—Sg, (13)

i=1 j#i



where

Sy = % i1 Zj;éi Sy, (77, 07) + \/LN 2t Zj;éi [6%3%7' (" 9*)] (é* —67),

= 2\ﬁ S 10— 00 X Y 895%57” (v*,60%) x (0" — 6%)
n— n— N* * * 0 SWJ( o )

— 6\F 22 ! 22 ! (Qk - gk)( 9 )|:Zz 1 Zg;ﬁz agkagjaoT ](

Y

0" -0}

Similar to the proof of Theorem 4 in Graham (2017), we will show that (1) S is asymptotically
normal distribution; (2) S is the bias term having a non-zero probability limit; (3)S; is an
asymptotically negligible remainder term.

We work with S, Sy and S5 in reverse order. We first evaluate the term S;. We calculate

i s 71](79)
Ikih = B6,00,00,

(1) For different k,1,h, g2, = 0.

as follows.

(2) Only two values are equal. If k =1 =i <n;h >n+1, g%h =pij(1—pi;)(1 —6pij—{—6p?j)ZZ~j;
for other cases, the results are similar.

(3) Three values are equal. g}, = pi;j(1 — pi;)(1 — 6py; + 6p7;)Zij it k =1 =h =1 <m
i = Pji(L = pji)(1 — 6pj; + 6p;) Z; ifk=l=h=j>n+1.

Therefore, we have

s (Y 0*)
ZZZ 89:8%99;1

i=1 j#i klh
= =Y Zylpi (1 — piy) (1 — 6ps; + 6p%) (s — f)*(B; — ;) +

pii(1 = pji) (1 — 6pji + 6p3;) (& — af ) (B; — B7)7].

Let Ay = |6 — 6*||. Note that Z;; lies in a compact set Z, and p;;(1 — p;;) < 1/4, and
(1 = 6py; + 6p3;)| < 6. By Lemma 1, any element of S3 is bounded above by
nin—1)  C3(logn)3/2e20"ll

n(n—1) 6 4
— 2 X =X xsuplz| = 3 X X sup |z
vV N 4 " zEIZ) | | TL(TZ — 1) n3/2 zeg | |

_ O((logn)g/\/zﬁe%lla*”“) — o(1).

Similar to the calculation of deriving the asymptotic bias in Theorem 4 in Graham (2017),



we have Sy = B, + 0,(1), where

n

B, = lim L Z 271 Pis(1 = pig) (1 — 2pij) Zi N " iz Pig(1 = pig) (1 = 2pij) Zi
eV 5 2z Pii (1 = pig) iz Pis(1 = pij)

j=1
(14)
By Lemma 2, similar to deriving the asymptotic expression of S; in Graham (2017), we
have
1 < .
S =—= Z Z S:i-(’y*v 0 ) + Op(1)7
VN priwri

Therefore, it shows that equation (13) equal to

1 O A 1 <
=) 5, (v 0) = —=> " st (¥,0") + B. + 0,(1), (15)
VN S i VN S i
with \/LN Dict 2 Sa (75 07) equivalent to the first two terms in (13) and B, the probability
limit of the third term in (13).

Substituting (15) into (12) then gives

VNG =) = 0B+ 1 0) 7= S 85, (0,0) + a1

i=1 j#i

Then Theorem 4 immediately follows from Lemma 3. [
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