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1 Proofs of technical results

1.1 Proof of Theorem 1

The proof of this requires a simple lemma on normal orthant probabilities:

Lemma 1. (Stuart and Ord, 1994) Let (Xi,---,X,) follow the equicorrelated normal
distribution, with E(X;) = 0, E(ij) = 1 and E(X;Xx) = p for all j # k, and let
pm =P(X7 >0,---,X,, >0). Then:
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For the main proof, note that each row of the latent matrix Z is i.i.d., so it suffices to fix
n = 1 and explore the correlation amongst the scalar ME quantities Z; 4 and CME quantities
T1,4/B+- We denote these as 74 and 44 for brevity. Under the latent equicorrelated
distribution {0, pJ + (1 — p)I}, it is easy to show that E[Z4] = 0 and Var[Za] = 1.
Moreover, the CME 7 44 can be conditionally decomposed as 7 4+ 4 R[2p,] if 5 = +1,
and 0 if 2 = —1, where R[q] is the Rademacher random variable taking on +1 w.p.

q € [0,1] and -1 otherwise. From this, we get:

pe = Efiap.] = EEEup. 5] = 5 (4p2 — 1),
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0% = Varliayp] = VarlElzajp 7] + E[Varlias 5] = 5 - ( : p) .

Consider the correlation between the MEs T4 and Zg. Note that 2,2 equals +1 when
Z4 and Zp have the same sign, and equals -1 otherwise. Letting P(++) be the probability

of (Za,Zp) = (+1,+1) (with similar notation for +—, —+ and ——), Lemma 1 then gives:

Corr(za,2p) = [P(++4) + P(++)] — [P(+—=) + P(—4)] = 2ps — 2[1/2 — po] = 2sin” P



Next, consider the two sibling CMEs 7 45+ and Z 4c4. Note that 454704 equals +1

when both g = +1 and Z¢ = +1, and equals 0 otherwise. It follows that:
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The correlation for parent-child pairs can be proved in an analogous way.
Consider now the two cousin CMEs Tp|44+ and Zcojay. Note that TpjayTcias equals +1
when 74 = +1 and Tp = Z¢, Tpja+Tc|a+ equals -1 when 74 = +1 and Zp # Z¢, and equals

0 otherwise. We then have:

Corr(Epias, Foiar) = o5 [(BCH+4) + P(+ = )} = (B(+ + =) + B(++ )} ]

_ [{P(+++) + (P(—) = P(— — =)} = 2{P(++) — P(+ + +)} — 1]
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1.2 Proof of Theorem 2

Let X € R™?" be the normalized model matrix consisting of all main effects and CMEs,
where p’ = p + 4(’2’). By the strong law of large numbers, the sample covariance matrix
C, = X"X/n converges elementwise to some matrix C € R”*?" with unit diagonal entries
and off-diagonal entries given in Theorem 1. Consider the following block partition of

C C
C= H " , where Cy; is the block for the active set A, and Csyy the block for the

Co1 Co
remaining variables. Zhao and Yu (2006) proved that the LASSO is sign-selection consistent

only when the (weak) irrepresentability condition holds: V¢ € {—1,+1}", |CuC¢| < 1
(this is a slight simplification of the original condition under the current i.i.d. setting).

Hence, sign-selection inconsistency can be proven if 3¢ € {—1,+1}” and an inactive effect



J satistying:
Cy1,C{¢| > 1, where Cyy ; is the row corresponding to effect j. 1
J&11 J

Consider first a model with only ¢ > 3 active siblings of the form A|B+, A|C'—, ...,
A|R—. Using the same principles as in Theorem 1, Cy; can be shown to be a ¢ X ¢ matrix
with unit diagonal, [(1/2 — py) — p?]/0? for off-diagonal entries in the first row and column,
and 4 (p) for all other off-diagonal entries '. Letting A be the inactive effect, we have
Coa = wpc(p)qu, and letting ¢ = 1,, it follows that |C21,AC1_11C| > 1 for p > 0. By (1),
part (a) is proven.

Next, consider a model with only ¢ = 2 active main effects, say, A and —B. From Theo-
rem 1, Cy; is a ¢ X ¢ matrix with unit diagonal and —1),,,.(p) on the off-diagonals. Let A|B—
be the inactive effect, so Coy ajp— = (Vpe(p), ¥(p)). Taking ¢ = (1,1)T, |Coy a5 C1i'¢| > 1
for p > 0.27, thereby proving selection inconsistency.

Lastly, consider a model with only ¢ > 6 active cousins of the form B|A+, C|A—, ...,
R|A—. Using the same principles as in Theorem 1, Cy; is a ¢ X ¢ matrix with unit diagonal,
—u?/o? for the off-diagonal entries in the first row and column, and t..,(p) for all other

off-diagonal entries. Let B be the inactive effect with Co1 5 = (¢sin(p), ¥(p)14—1). Taking
¢=1, |C21,BC1_11C| > 1 for p > 0.29, which proves inconsistency.

1.3 Proof of Proposition 1

As a note, since the objective Q(3) is non-differentiable at 3 = 0, what we mean by strict
convexity here is that V2Q((3), the directional Hessian of Q(3) in direction u, is positive-
definite for all 8 and all ||u|| = 1. We follow a similar approach as Proposition 1 of Breheny
(2015). Note that V?|ly — X3||5 = 2X"X. Moreover, with 7} (§) = Aexp(—67/A) and

Yhme(p)s Ysiv(p), Ype(p) and eou(p) are the pairwise correlations in Theorem 1 for main effects, siblings,

parent-child pairs and cousins, respectively. ¢)(p) = sin~'(p)/(no,) is the pairwise correlation between a
CME and its conditioned effect.



M- (0) = =7 exp(—07/X), one can show that VL Ps(8) > —7(1) + A(=1/(\y)) = =17 — 1/~
and similarly V2P.(3) > —7 — 1/, for all u and 3. Hence:

(xT
ViQ(B) =V, {%Hy — XB2 + P(B) + Pc(/B)} > W—Z (T + %) for all u and 3,

which is strictly positive when 7 + 1/7 < A\pin (X7 X)/(2n). The second part of the claim

follows by replacing X with x; in the argument above, and using the fact that ||x;[|3 = n.

1.4 Proofs of Theorem 3 and Corollary 1

The majorization claim a) follows from a first-order Taylor expansion of the outer penalty:

Mo (18,0152) = o (18, 133) + By {18, I, 13,11 . where the inequality holds due to
the concavity of . See Lemma 1 in Breheny (2015) for details.

To derive the threshold function in b), take the following optimization problem:
~ . 1
B = af?fgmm {%Hr — %3515 + Aiga, 4 (8;) + Angm(Bj)} : (2)

The KKT condition for (2) is:

sgn(p;) (1 — %)+ if |5;] > 0,

[~1,1] if 8; = 0.
(3)

Without loss of generality, assume z = XjTr /n > 0. Consider the same four cases for z as

1 A N R
0€e —EX}FI“ + B + A10x, 185 + Do0r, 1B, OryB5 =

presented in equation (9) in the paper:

1. z > Aq)7y: Suppose Bj = 2. Then the KKT condition (3) becomes 0 € —z + Bj, which

is satisfied. Since (2) is strictly convex, Bj = z must be its unique solution.



2. ¢y < 2 < Ay (see equation (9) in the paper for ¢;): Suppose 3; = (2=Aq))/ (1 -
Since Azyy < Bj < A1), the KKT condition (3) becomes 0 € —Z‘i‘Bj‘i‘A(l) (1 — Aiﬂ”)’

which is satisfied. Hence, Bj is the unique solution to (2).

3. Ap) + A < 2 < ¢y (see equation (9) in the paper for c3): Suppose Bj =(z—Aup —

Aw))/ (1 — /\A(l% — /f@%) Since 0 < f3; < A@2)7, the KKT condition (3) becomes

0e —z+ Bj +Aq) (1 — %) + A (1 — /\ij), which is satisfied. Hence, Bj is the

unique solution to (2).

4.0 < z < Apy + Ag): Suppose Bj = 0. The KKT condition then becomes 0 &€
—2+ (Aqpy + Ag))[—1, 1], which is satisfied, so 3, is the unique solution to (2).

From this, Corollary 1 can be proved in a similar way as Proposition 3 of Breheny (2015).

1.5 Proof of Proposition 2

Since () is strictly convex, it must have at most one minimizer 3. By definition, 8 must

satisfy the KKT condition:

0¢ —%X? (y = XB) + As(B)0r.+8; + Ac(B)Or 85, G=1,--- .0, (4)

where 0y ,f; is the subgradient defined in (3), and Ags(8) and A¢(8) are the linearized
slopes for the sibling and cousin groups of effect j (see equation (5) of the paper). Setting
B = 0, the right side of (4) becomes:

1 1
—=xly + AL+ A[-1,1] = —=xX]y 4+ [-As — A, A + A,
n n

which contains 0 when A, + A, > |x]y|/n. Hence, when A, + A > max;_; ..., [X] y|/n, one
can invoke the strict convexity of Q(8) to show that the trivial solution 8 = 0 is indeed

the unique minimizer.



2 Algorithm statement for cv.cmenet

Algorithm 1 cv.cmenet: A cross-validation algorithm for tuning cmenet

1: function cv.cMeENET(X,y, K)
2: e Initialize grid of potential parameters _Inax \ijy\/n > AL > o> 0 F >,
- 7"'7p/

max |ijy|/n >M > o> AM 50,40 < -0 < 4% and 7 < -0 < 7T (satisfying
p/

Jj=1,-,

T+1/y<1/2).

3: e Obtain the tuned MC+ parameters (A*,+*) using cv.sparsenet in the R package
SPARSENET, and set A%, A* <— A*/2 as an initial estimate.
4: e Randomly partition the data D = (X, y) into K equal pieces {Dy,--- , Dk }.
5: for k=1,---,K do > K-fold CV for tuning v and 7
6: for v € {71, -+ ,7¢} do > For each ...
7 ® Bprev < Oy > Reset warm start solution
8: for r € {m,--- ,7r} do > For each ...
9: ® By: (7,7 k) < cmenet(X g,y —k, A5, AL, Vs Ty Bprew) > Train w/o part k
10: ® Bprew < Bz (1,73 k) > Update warm start solution
K
11: o (v, 7))« argminz ¥k — XkBza: (1, T3 k)|13 > Estimate optimal v and 7
S C—
12: fork=1,--- | K dok ' > K-fold CV for tuning As; and A,
13: for A\ € {A\L,--- ) AM} do > For each ...
14: . IBprev < Oy
15: for A\ € {\L,--- ;A1 do > For each ;...
16: if Ae + A <maxj_q,. p |xfy|/n then
17: e Screen using the three strong rules in Section 4.3.
18: ® B (V7 k) = cmenet(X k¥ ks As; Ay V5 T Bprew)
using only screened effects.
19: e Check KKT conditions on converged solution 83, , (v, 7% k).
20: L4 Bprev < B)\S,)\C (7*7 T*; k)
K
21: o (ALY« argminz lye — XeBa,a. (V577 k)13 > Estimate optimal A\; and A,
AeAe 1y
22: o 3+ cmenet(X,y, A5, A5, 75, 7%,0,) > Refit using optimal parameters

return optimal coefficients ,3

Some comments on the implementation of active set optimization within cmenet:

e The active set of variables is initialized by performing the full coordinate descent cycle

for 25 iterations, then choosing the variables whose coefficients are non-zero.

7



e Repeat coordinate descent iterations over the active set until convergence.

e Perform a full coordinate descent cycle over all p’ variables. If this cycle does not
change the active set, cmenet is terminated; otherwise, the active set is updated, and

the above steps repeated.

3 Theoretical derivation of CME screening rules

Fix v and 7, and suppose Bj()\s, Ae) € (0, min{Ay + A2), A2)7}). For brevity, we denote
Bj(/\s, ) as Bj from here on. Using equation (9) in the paper, we know that Bj takes the

form:
) A 1 A 2
i = sn(e) 1l = B0 = )./ (132 2 )
5
NN (5)
= sgn(zj) (Izj] —As —Aco)y /{1 - Asy Aoy

where z; = x;r_;/n (see Theorem 3), and Ag and A¢ are the linearized slopes for the
current penalty setting (\g, A.). Plugging this expression into (4), the KKT condition for
Bj can be simplified to:

0= —c;(As, Ae) +sgn(Bj)As {1 — (|2jl — As — Ac)+ +sgn(B)Ac 41— (\zj\—AS—AC n
A (-5 - %) he (v -4 - 52)

& ci(As; Ae) =5 nBA<A 1-— | +sen(B;)A 1—(|Zj| : c) .
J( ) g(j) 8{ AS( N C>} g(J) C{ /\< Af )\cc)
(6)

Suppose no effects are active in either the sibling group S or the cousin group C, in

which case Ag = Ag and A¢ = \.. The KKT condition in (6) can then be rewritten as:

¢\, A) = sgn(B;) {)\s _ (5l _f_ > AC)*} +sgn(f;) {)\c _ Uzl _f_ > M*} (7



Taking the derivative with respect to Ay (and assuming z; is approximately constant in A,

following Lee and Breheny, 2015), we get:

Ao M) <1 - . 8
B R R (5)

8—)\5%‘(

A similar argument shows that this approximate upper bound also holds for [(9/0\.) ¢;(As, Ac)].
Now, suppose no effects are active in the sibling group S (but some in the cousin group

C), in which case Ag = ;. The KKT condition in (6) can then be rewritten as:

- zil = As — A - zil — As — A
cj(As, Ae) =sgn(5;) S As — (I2] ACC>+ +sgn(f;)Ac ¢ 1 — (I AC)+
(9)
Taking the derivative on Ay (and assuming z; is approximately constant in \,), we get:

A
S+ 1 a T A_CCA - E A (10)
y=1=-3 r-1=-3 r-1-3

Cj(>‘87 )‘C)

o

Finally, suppose there are no active effects in the cousin group C (but some in sibling group

S). One can do a similar approximation and show that:

0 1 5 g
)| S 1+ 4 A . 11
n, e (i A A "

These upper bounds on the absolute derivatives of ¢;(\s, A.), along with the proposed
strong rules in Section 4.3, can then be used to demonstrate the inactivity of effect j at

penalty setting (AL, A\™):

1. Consider the first part of the first strong rule, which applies when no active effects

are in S and C for setting (A\L"1, A™). This rule discards effect j at setting (AL, \™) if:

|Cj(>\l;1,)\;”)| <AL a4 ﬁ(/\ls ),



This can be justified as follows. Using the approximate upper bound in (8), the

inner-product of effect j at setting (AL, \™*) can be approximately upper bounded as:

(Ve A < e (A A2 — AT AT+ 1 (AT AL

CRIe s) 7

~
~

0 IR L
e AT = )+ ey (A

Y -1 l l m i 1 -1
— (A=A A A — (AL — A
< s>+{s+c+7_2(s )

=X + A7

Assuming effect j is the first variable to potentially be selected in S or C at current
setting (AL, \™), the KKT conditions in (4) suggest that effect j is inactive, which

justifies the screening rule. A similar argument can be used to derive the second part

of this rule.

. Consider next the second strong rule, which applies when no active effects are in S

for setting (A"1, A™). This rule discards effect j at setting (AL, \™) if:

s7 7%

(LA™ < AL p AL 4 ’ A=A,
’CJ(S c)’ s C ’Y_(Alc/)\gn‘i‘l)(S s )

This can be justified as follows. Using the approximate upper bound in (10), the

inner-product of effect j at setting (AL, \™) can be approximately upper bounded as:

R

5 (N A < e (A A2 — (AT AT+ 1 (A AL

o [0 | T = ) + e (A

< Y ()\l—l _)\l)+ |:>\l ‘|‘Aé+ g ()\l _)\l—l)
R R R e oy e R

=\ + A

10



Assuming:

e Effect j is the first variable to potentially be selected in & at current setting
(Ae AL,

ER

e The linearized slope Al at previous setting (A"}, \™) is approximately the

linearized slope A¢ at current setting (AL, \™),

s) "¢

the KKT conditions in (4) suggest that effect j is inactive, which justifies the screening

rule.

3. The third strong rule can be justified in a similar manner to the above two rules.
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