
Supplementary Materials 1 to
“Linear hypothesis testing with functional data”

Łukasz Smaga ∗1 and Jin-Ting Zhang2

1Faculty of Mathematics and Computer Science, Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland, ls@amu.edu.pl

2Department of Statistics and Applied Probability, National University of Singapore
3 Science Drive 2, Lower Kent Ridge Road, Singapore, stazjt@nus.edu.sg

Journal: Technometrics

Asymptotic properties of L2-norm-based and F -type
tests
In this section, we consider the theoretical properties of the L2-norm-based and F -type
tests proposed in Section 5.3.3 of Zhang (2013). Their test statistics Tn and Fn are given
by (3) of the paper.

In Zhang (2013), the null distribution of Tn is approximated by theWelch-Satterthwaite
χ2-approximation. We have Tn ∼ β̂χ2

qκ̂ approximately, where β̂ = tr (γ̂⊗2) /tr (γ̂) and
κ̂ = tr2 (γ̂) /tr (γ̂⊗2) are the estimators of the naive method, or β̂ = ̂tr (γ⊗2)/tr (γ̂) and
κ̂ = t̂r2 (γ)/ ̂tr (γ⊗2) are the estimators of the bias-reduced method, where

t̂r2(γ) = (n− k)(n− k + 1)
(n− k − 1)(n− k + 2)

(
tr2(γ̂)− 2tr(γ̂⊗2)

n− k + 1

)
,

̂tr(γ⊗2) = (n− k)2

(n− k − 1)(n− k + 2)

(
tr(γ̂⊗2)− tr2(γ̂)

n− k

)
.

Thus, for each method of estimation of the parameters β = tr (γ⊗2) /tr (γ) and κ =
tr2 (γ) /tr (γ⊗2), we have the L2-norm-based test with critical region {Tn > Tn(α) =
β̂χ2

qκ̂(α)}. These two tests are referred to as the L2N and L2B tests for naive and bias-
reduced method of estimation, respectively.

For approximating the null distribution of Fn, Zhang (2013) used the two-cumulant
matched F -approximation method (see Section 4.4 in Zhang, 2013). Namely, Fn ∼
Fqκ̂,(n−k)κ̂ approximately, where κ̂ is given above. Hence, we also have two F -type tests
which differ in the method of estimation of the parameter κ, referring to the FN and FB

∗Corresponding author (ls@amu.edu.pl)

1

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 2

tests. The critical region is of the form {Fn > Fn(α) = Fqκ̂,(n−k)κ̂(α)}, where Fd1,d2(α)
denotes the upper 100α percentile of the Fd1,d2-distribution.

The above approximations of the null distributions of Tn and Fn are derived under
Gaussian or large samples. For other samples, Zhang (2013) proposed the nonparamet-
ric bootstrap procedure described in Subsection 2.2 of the paper. The nonparametric
bootstrap L2-norm-based and F -type tests will be referred to as the L2b and Fb tests,
respectively. Similarly as the GPF and Fmaxb tests, this procedure is valid for the L2-
norm-based and F -type statistics in the sense of the following result (In Subsection 2.3
of the paper, some remarks about such validity of the bootstrap methods are given.).

Theorem 1. Let T bn (resp. F b
n) denote the nonparametric bootstrap statistic obtained by

computing Tn (resp. Fn) based on the bootstrap samples given by (9) in the paper taking
c ≡ 0. Under Assumptions A1-A3 (resp. A1-A5 and A7) in the paper, the unconditional
null distribution of Tn (resp. Fn) given in Theorem 5.12 in Zhang (2013) (resp. in (1))
is the same as the conditional distribution of T bn (resp. F b

n), as n→∞.

Proof. First, we establish the asymptotic null distribution of Fn. By Theorem 5.12 in
Zhang (2013) and Lemma 1 in Zhang and Liang (2014), under the null hypothesis, we
have

Fn =
∫
T SSHn(t) dt/q∫

T γ̂(t, t) dt
d→
∑m
r=1 λrAr
qtr(γ) , (1)

as n → ∞, where Ar are the independent χ2
q random variables, λr are the decreasing-

ordered eigenvalues of γ(s, t) (If λr > 0 for all r, m = ∞.). As we noticed in the proof
of Theorem 2.2 in the paper, the bootstrap samples v̂bij(t), j = 1, . . . , ni, i = 1, . . . , k are
i.i.d. SP (0, γ̂), where γ̂ is as in (1) in the paper, and thus they satisfy the null hypothesis
H0 : Cη(t) = 0 for all t ∈ T . Moreover, γ̂(s, t) P→ γ(s, t) uniformly for all (s, t) ∈ T 2, as
n→∞. So, by Theorem 5.12 in Zhang (2013) and (1), we finish the proof.

The consistency of the L2-norm-based and F -type tests can be considered under
two different types of local alternatives. First, we take into account local alternatives
considered in Subsection 2.3 of the paper, and obtain the following result for these testing
procedures, which is analogous to that given in Theorem 2.3 in the paper for the GPF
tests.

Theorem 2. Let Dτ = diag(1/τ1, . . . , 1/τk) and δ2 =
∫
T d(t)>

(
CDτC>

)−1
d(t) dt. Un-

der the local alternatives H1n : Cη(t)− c(t) = n−1/2d(t), ‖di‖ ∈ (0,∞), i = 1, . . . , q and
Assumptions A1–A5 and A7 in the paper, as n → ∞, the asymptotic power of the L2N,
L2B, FN and FB tests as well as the power of the nonparametric bootstrap L2-norm-based
and F -type tests tend to 1 as δ →∞.

Proof. In the proof of Theorem 2.3 in the paper, we established that under H1n, zn(t) d→
zalt(t) ∼ GPq (µalt, γIq), as n → ∞, where µalt(t) =

(
CDτC>

)−1/2
d(t). Hence, under

H1n

Tn
d→ Talt =

∫
T

zalt(t)>zalt(t) dt, Fn
d→ Falt = Talt

qtr(γ) .

From Theorem 4.10 in Zhang (2013), it follows that Talt d= ∑m
r=1 λrA

alt
r + ∑∞

r=m+1 δ
2
r

and Falt
d= (∑m

r=1 λrA
alt
r + ∑∞

r=m+1 δ
2
r)/[qtr(γ)], where Aaltr are independent χ2

q(δ2
r/λr)

random variables, δ2
r = ‖

∫
T µalt(t)ϕr(t) dt‖2, λr are the decreasing-ordered eigenvalues

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 3

of γ(s, t) with only the first m eigenvalues being positive, and ϕr(t) are the associated
eigenfunctions, r = 1, 2, . . . (When λr > 0 for all r, we take m = ∞.). The rest of the
proof for L2-norm-based (resp. F -type) tests runs in an analogous way as in the proof of
Theorem 2.3 in the paper by using Theorems 5.10 and 5.12 in Zhang (2013) (resp. (1))
and Theorem 1 instead of Proposition 2 in Zhang and Liang (2014) and Theorems 2.1
and 2.2 of the paper, respectively.

Now, the power of the L2-norm-based and F -type tests is considered under the local al-
ternatives H1n : Cη(t)− c(t) = n−ω/2d(t), where ω ∈ [0, 1) and d(t) = (d1(t), . . . , dq(t))>
is any fixed vector of real functions, independent of n, and ‖di‖ ∈ (0,∞), i = 1, . . . , q
(see, for example, Zhang, 2011). In contrast to local alternatives considered in Subsection
2.3 of the paper, these alternatives tend to the null hypothesis at a rate slightly slower
than root-n. Under the Gaussianity assumption, we show that the L2-norm-based and
F -type testing procedures can detect departures from the null hypothesis determined by
these alternatives with probability tending to one as n→∞.
Theorem 3. Let xi1(t), . . . , xini

(t) defined over T be i.i.d. GP (ηi, γ), i = 1, . . . , k. Under
the local alternatives H1n : Cη(t)−c(t) = n−ω/2d(t), ω ∈ [0, 1), ‖di‖ ∈ (0,∞), i = 1, . . . , q
and Assumptions A1–A5 and A7 in the paper, the asymptotic power of the L2N, L2B, FN
and FB tests as well as the power of the nonparametric bootstrap L2-norm-based and
F -type tests tend to 1 as n→∞.

Proof. Under the Gaussianity of the k samples, we have zn(t) ∼ GPq(ηz, γIq), where
ηz(t) =

(
CDC>

)−1/2
[Cη(t)− c(t)] (see Subsection 2.2 of the paper). First, we consider

the L2-norm-based tests. Theorem 4.10 in Zhang (2013) implies Tn d= ∑m
r=1 λrA

alt
r +∑∞

r=m+1 δ
2
r , where δ2

r = ‖
∫
T ηz(t)ϕr(t) dt‖2 and Aaltr , λr, ϕr and m the same as in the

proof of Theorem 2, r = 1, 2, Under H1n, we have

δ2
r =

∥∥∥∥∫
T

(
CDC>

)−1/2
n−ω/2d(t)ϕr(t) dt

∥∥∥∥2

=
∥∥∥∥∫
T

(
CnDC>

)−1/2
n(1−ω)/2d(t)ϕr(t) dt

∥∥∥∥2

= n1−ω
(∥∥∥∥∫

T

(
CDτC>

)−1/2
d(t)ϕr(t) dt

∥∥∥∥2
(1 + o(1))

)
,

and hence Tn d= ∑m
r=1 λrA

alt
r + n1−ω∑∞

r=m+1 δ
2
∗r, where Aaltr ∼ χ2

q(n1−ωδ2
∗r/λr) and δ2

∗r =
‖
∫
T

(
CDτC>

)−1/2
d(t)ϕr(t) dt‖2(1 + o(1)). Using Theorems 5.10 and 5.12 in Zhang

(2013) and Theorem 1, the rest of the proof runs in analogous way as in Section 2.4 of
Zhang et al. (2010) by taking “‖u‖ = δ∗”, where

δ2
∗ =

∞∑
r=1

δ2
∗r =

∫
T

d(t)>
(
CDτC>

)−1
d(t) dt > 0.

Now, we take into account the F -type testing procedures. By the above considerations
and Theorem 5.11 in Zhang (2013), we have

Fn
d=
∑m
r=1 λrA

alt
r + n1−ω∑∞

r=m+1 δ
2
∗r

q
∑m
r=1 λrEr/(n− k)

d=
∑m
r=1 λrA

alt
r + n1−ω∑∞

r=m+1 δ
2
∗r

qtr(γ) + op(1), (2)

as n → ∞, where Er are independent χ2
n−k random variables. By (2), Theorem 5.10 in

Zhang (2013) and Theorem 1, we can continue the proof for F -type tests using similar
arguments and techniques as in Section 2.2 of Zhang (2011).

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 4

Implementation of the tests in the R program
In this section, we present the R function tests.linear.hypotheses(), which calculates
the values of test statistics and p-values of the tests under consideration.

As in the paper, assume that we consider k groups of functions and q linear hypotheses.
The arguments of the function tests.linear.hypotheses() are described as follows:

• x - a n×J data frame or matrix of data, whose each row is a discretized version of a
function in J design time points (see Subsection 2.4 of the paper for more details),

• group.label - a vector containing group labels. The labels of groups in group.label
must be the numbers from 1 to the number of groups (first group – label 1, second
group – label 2, ..., last group – label k).

• CC - a q× k coefficient matrix C of full row rank. Remember to specify it correctly
taking into account the group labels in group.label.

• cc - a vector or matrix representing a known q × 1 vector c(t) of fixed functions
in the hypotheses. When c = 0, we can simply use cc = 0. In case of constant
functions in c(t) with at least one non-zero, cc is a vector of length q containing
numbers representing those functions. When at least one function in c(t) is not
constant, cc is a q×J matrix, whose each row is a discretized version of a function
in c(t) in J design time points, in which the observations in x are given.

• nboot - a number of bootstrap samples,

• seed - a seed given by set.seed(seed),

• parallel - a logical indicating whether to use parallelization of execution of boot-
strap loop,

• ncores - if parallel = TRUE, a number of logical processes used for parallel com-
puting. Its default value means that it is chosen automatically based on the com-
puter used.

To reduce the computational cost of bootstrap loop, its execution may be parallelized
using process forking, based on package doParallel (Revolution Analytics and Steve
Weston, 2015). To do this, we choose parallel = TRUE.

The function tests.linear.hypotheses() returns a data frame whose first row con-
tains the values of test statistics and the second one – p-values. The columns of outputted
data frame correspond to the L2N, L2B, L2b, FN, FB, Fb, GPF, GPFb and Fmaxb tests,
respectively.
tests.linear.hypotheses = function(x, group.label, CC, cc, nboot = 10000, seed = 1234,

parallel = FALSE, ncores = NULL){
if(nrow(x) != length(group.label)){

stop("number of observations (number of rows in x) and number of elements
in vector of group labels (group.label) must be the same")

}
if(any(is.na(group.label))){ stop("argument group.label can not contain NA values") }
if(length(unique(group.label)) != ncol(CC)){

stop("number of group labels in group.label and number of columns in

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 5

coefficient matrix C must be equal")
}
if(any(sort(unique(group.label)) != 1:length(unique(group.label)))){

stop("group labels must be the numbers from 1 to the number of groups")
}
if(qr(CC)$rank != nrow(CC)){ stop("coefficient matrix C must be of full row rank") }
if(! is.logical(parallel)){ stop("argument parallel is not logical") }
if(nboot < 1){ stop("invalid number of bootstrap samples (nboot)") }
if(is.null(seed)){ warning("argument seed equals NULL") }

n = nrow(x); p = ncol(x); x = as.matrix(x); qq = nrow(CC)
k = max(group.label); n.i = numeric(k)
for(i in 1:k) n.i[i] = sum(group.label==i)
vmu = matrix(0, nrow = k, ncol = p)
z = matrix(0, nrow = n, ncol = p)
for(i in 1:k){

xi = x[group.label==i,]
mui = colMeans(xi); vmu[i,] = mui
zi = xi - as.matrix(rep(1, n.i[i])) %*% mui
if(i==1){ z[1:n.i[i],] = zi }else{ z[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = zi }

}
if(n > p){ gamma.z = t(z) %*% z/(n-k) }else{ gamma.z = z %*% t(z)/(n-k) }
A = sum(diag(gamma.z)); B = sum(diag(gamma.z %*% gamma.z))
A2N = A^2; B2N = B
A2B = (n-k)*(n-k+1)/(n-k-1)/(n-k+2)*(A^2-2*B/(n-k+1))
B2B = (n-k)^2/(n-k-1)/(n-k+2)*(B-A^2/(n-k))
SSE = diag(t(z) %*% z)
weight.matrix = solve(CC %*% diag(1/n.i) %*% t(CC))
SSH = diag(t(CC %*% vmu - cc) %*% weight.matrix %*% (CC %*% vmu - cc))

statL2 = sum(SSH)
betaL2N = B2N/A; kappaL2N = A2N/B2N
betaL2B = B2B/A; kappaL2B = A2B/B2B
pvalueL2N = 1-pchisq(statL2/betaL2N, qq*kappaL2N)
pvalueL2B = 1-pchisq(statL2/betaL2B, qq*kappaL2B)

statF = sum(SSH)/sum(SSE)*(n-k)/qq
kappaFN = A2N/B2N; kappaFB = A2B/B2B
pvalueFN = 1-pf(statF, qq*kappaFN, (n-k)*kappaFN)
pvalueFB = 1-pf(statF, qq*kappaFB, (n-k)*kappaFB)

statGPF = mean(SSH/SSE*(n-k)/qq)
z = z/(as.matrix(rep(1, n)) %*% sqrt(colSums(z^2)))
if(n >= p){ z = t(z) %*% z }else{ z = z %*% t(z) }
betaGPF = (sum(diag(z %*% z))/p^2/qq)/((n-k)/(n-k-2))
dGPF = ((n-k)/(n-k-2))^2/(sum(diag(z %*% z))/p^2/qq)
pvalueGPF = 1-pchisq(statGPF/betaGPF, dGPF)

Fmax = max(SSH/SSE*(n-k)/qq)

set.seed(seed)
bootstrap.samples = matrix(0, nrow = nboot, ncol = n)
for(ii in 1:nboot){ bootstrap.samples[ii,] = sample(1:n, replace = T) }
xs = matrix(0, nrow = n, ncol = p)
for(i in 1:k){ xs[group.label==i,] = x[group.label==i,] -

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 6

as.matrix(rep(1, n.i[i])) %*% vmu[i,] }

if(parallel == FALSE){
L2boot = numeric(nboot); Fboot = numeric(nboot)
GPFboot = numeric(nboot); Fmaxboot = numeric(nboot)
for(ii in 1:nboot){

vmuboot = matrix(0, nrow = k, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
xboot = xs[bootstrap.samples[ii,],]
for(i in 1:k){

xiboot = xboot[group.label==i,]
muiboot = colMeans(xiboot)
vmuboot[i,] = muiboot
ziboot = xiboot - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{

zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
}
SSHboot = diag(t(CC %*% vmuboot) %*% weight.matrix %*% (CC %*% vmuboot))
SSEboot = diag(t(zboot) %*% zboot)
L2boot[ii] = sum(SSHboot)
Fboot[ii] = sum(SSHboot)/sum(SSEboot)*(n-k)/qq
GPFboot[ii] = mean(SSHboot/SSEboot*(n-k)/qq)
Fmaxboot[ii] = max(SSHboot/SSEboot*(n-k)/qq)

}
}else{

nlp = detectCores()
if(is.null(ncores)){

if(nlp >= 2){
ncores = nlp; parallel.method = "parallel.method1"

}else{
parallel.method = "parallel.method0"

}
}else{

if(nlp >= 2){
if(ncores >= 2){

ncores = ncores
}else{

ncores = nlp
}
parallel.method = "parallel.method1"

}else{
parallel.method = "parallel.method0"

}
}
if(parallel.method != "parallel.method0"){

cl = makePSOCKcluster(ncores)
registerDoParallel(cl)

}
if(parallel.method == "parallel.method0"){

L2boot = numeric(nboot); Fboot = numeric(nboot)
GPFboot = numeric(nboot); Fmaxboot = numeric(nboot)
for(ii in 1:nboot){

vmuboot = matrix(0, nrow = k, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
xboot = xs[bootstrap.samples[ii,],]

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 7

for(i in 1:k){
xiboot = xboot[group.label==i,]
muiboot = colMeans(xiboot)
vmuboot[i,] = muiboot
ziboot = xiboot - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{

zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
}
SSHboot = diag(t(CC %*% vmuboot) %*% weight.matrix %*% (CC %*% vmuboot))
SSEboot = diag(t(zboot) %*% zboot)
L2boot[ii] = sum(SSHboot)
Fboot[ii] = sum(SSHboot)/sum(SSEboot)*(n-k)/qq
GPFboot[ii] = mean(SSHboot/SSEboot*(n-k)/qq)
Fmaxboot[ii] = max(SSHboot/SSEboot*(n-k)/qq)

}
}
if(parallel.method == "parallel.method1"){

rs = foreach(ii = 1:nboot, .combine = rbind) %dopar%
{

vmuboot = matrix(0, nrow = k, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
xboot = xs[bootstrap.samples[ii,],]
for(i in 1:k){

xiboot = xboot[group.label==i,]
muiboot = colMeans(xiboot)
vmuboot[i,] = muiboot
ziboot = xiboot - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{

zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
}
SSHboot = diag(t(CC %*% vmuboot) %*% weight.matrix %*% (CC %*% vmuboot))
SSEboot = diag(t(zboot) %*% zboot)
c(sum(SSHboot), sum(SSHboot)/sum(SSEboot)*(n-k)/qq,

mean(SSHboot/SSEboot*(n-k)/qq), max(SSHboot/SSEboot*(n-k)/qq))
}
L2boot = rs[, 1]; Fboot = rs[, 2]; GPFboot = rs[, 3]; Fmaxboot = rs[, 4]

}
if(parallel.method != "parallel.method0"){

stopCluster(cl)
}

}
result = data.frame(L2N = c(statL2, pvalueL2N), L2B = c(statL2, pvalueL2B),

L2b = c(statL2, mean(L2boot >= statL2)),
FN = c(statF, pvalueFN), FB = c(statF, pvalueFB),
Fb = c(statF, mean(Fboot >= statF)),
GPF = c(statGPF, pvalueGPF),
GPFb = c(statGPF, mean(GPFboot >= statGPF)),
Fmaxb = c(Fmax, mean(Fmaxboot >= Fmax)))

rownames(result) = c("test statistic", "p-value")
return(result)

}

To illustrate the use of the function tests.linear.hypotheses(), we present the fol-
lowing code, which performs the real data example given in Section 4 of the paper. First,
we read the corneal surface data from the file CornealDataSet.txt. Next, we remove the

Suppl. Materials 1 to “Linear hypothesis testing with functional data” by Ł. Smaga and J.-T. Zhang 8

outliers in the unilateral suspect cornea group and define the vector of group labels. Fi-
nally, for given coefficient matrices, we apply the function tests.linear.hypotheses()
to the data. The resulting p-values are given in Table 1 in the paper (rounded to five
decimal places). Since the bootstrap tests applied to this data set are time-consuming,
we use parallelization.
data1 <- read.table("CornealDataSet.txt")
dim(data1)
150 2000
data2 <- data1[-c(49, 54),]
dim(data2)
148 2000
group.label <- rep(1:4, c(43, 12, 21, 72))
CC1 <- cbind(diag(rep(1, 3)), matrix(-1, nrow = 3, ncol = 1))
CC2 <- matrix(c(1, -1, 0, 0), nrow = 1)
CC3 <- matrix(c(1, 0, -1, 0), nrow = 1)
CC4 <- matrix(c(1, 0, 0, -1), nrow = 1)
CC5 <- matrix(c(0, 1, -1, 0), nrow = 1)
CC6 <- matrix(c(0, 1, 0, -1), nrow = 1)
CC7 <- matrix(c(0, 0, 1, -1), nrow = 1)
library(doParallel)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC1, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC2, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC3, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC4, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC5, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC6, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)
tests.linear.hypotheses(x = data2, group.label = group.label, CC = CC7, cc = 0,

nboot = 10000, seed = 1234, parallel = TRUE)

References
[1] Revolution Analytics and Steve Weston (2015). doParallel: Foreach parallel adaptor

for the ’parallel’ package. R package version 1.0.10. http://CRAN.R-project.org/
package=doParallel

[2] Zhang, J.-T. (2011). Statistical inferences for linear models with functional responses.
Statistica Sinica, 21, 1431–1451.

[3] Zhang, J.-T. (2013). Analysis of variance for functional data. Chapman & Hall, Lon-
don.

[4] Zhang, J.-T. and Liang, X. (2014). One-way ANOVA for functional data via global-
izing the pointwise F -test. Scandinavian Journal of Statistics, 41, 51–71.

[5] Zhang, J.-T., Liang, X., and Xiao, S. (2010). On the two-sample Behrens-Fisher
problem for functional data. Journal of Statistical Theory and Practice, 4, 571–587.

