S.1

Let

W* =

where A, is the diagonal matrix of eigenvalues of W¥. Since Xy is nonstationary and xio is

stationary, intuitively % Z?;lj(xtﬂ’l —X1) (x¢1 —X1)" and % E?;f (X¢4j,2 — X2) (X2 — X2)’ do not
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Proof for Section 3.1

¥7 = diag

(:l D (xerjn — %) (1 — Xl)/> ; (711 D (Xerjo —Ka) (x12 — X2)’>]

t=1 t=1
= diag(X%7;, ¥5),
;020 ¥7(X7)" =: diag(Df,D3) and T'; be the p x p orthogonal matrix such that

WIFJ: = F$A~:L‘7

share the same eigenvalues, so T'; must be block-diagonal. Define WY = AW?*A’, then

This implies that the columns of AT, are just the orthogonal eigenvectors of W¥. Since T,
is block-diagonal, it follows that M(As) is the same as the space spanned by the eigenvectors
corresponding to the smallest r eigenvalues of WY. As a result, to show the distance between the
cointegration space and its estimate is small, we only need to show that the space spanned by

the eigenvectors of WY can be approximated by that of W. This question is usually solved by

WY = AW”A' = AT, A, T, A’

perturbation matrix theory. In particular, let

W = WY £ AWY, AWY = W — WY,



and

se 7. DY) = min A — ul,
p(D7, D3) /\e/\(Dgf)’“G/\(Dg)’ w|

where A(A) denotes the set of eigenvalues of a matrix A. When |[AWY|| = o,(sep(D7,D3)), one
can use the perturbation results of Golub and Loan (1996) to establish the bound of Theorems
3.1, 3.3 and 4.1, see also Lam and Yao (2012) or Chang, Guo and Yao (2017). However, in our
setting sep(D?, D%) can be of smaller order than |[|[AWY||, i.e., sep(D¥ D2)/||AWY|| -5 0 as
n — oo and the above method will not work.

To fix this problem, we adopt the perturbation results of Dopico, Moro and Molera (2000)
instead. A similar idea was used by Chen and Hurvich (2006) to recover their fractional cointegra-
tion spaces via the periodogram matrix, using a random diagonal block matrix instead. However,
because of the quadratic form of W* (= gozl 3%(X27)’), we cannot find a normalizing constant
matrix C,, such that C, W*C,, = O(1) or C,, WYC,, = O,(1), the argument of Chen and Hurvich
(2006) based on the perturbation bound of Barlow and Slapnicar (2002) cannot be used. We first
establish some lemmas (i.e. Lemmas 1-4 below) which will be used to prove Theorem 3.1.

For 1 <i<p-—r,set fi(t) =Wit), f} fo fd _,(s)dt, pu; = Ez} and define

4 - v s+ . 1
i) = fi0 - [ fa®d Gt =20 Ga= 1Y Galt)
0 d' n —1
Then, we have the following weak convergence result for the sample autocovariance.

Lemma 1. Let Ly(t) = Gy4(t) — Gg. Suppose xt ~ 1(d;), 1 <i < p—r, then under Condition 1,

ot — iLa. (t )
(wt xd._fm i ), 1< Sp—r) LN (Fl(t), 1< Sp—r) and (S.1)
n 7
RN o i _ Rad).i . p
(ndi+1/2 Z(xt — 2" — pilg,(t))(2; —Exp),i<p-r,p—r+1<j §p> — 0. (S.2)
t=1

Proof. For any I(d;) process x%, we can write
Vhay =Bz + (5 — Bzy) = o + (.

Let UX(0) = ¢}, V}(0) = p and

t t
UlG) =) UG -1), ViG)=> ViG-1.
s=1 s=1
Then
= Ul(dy) + VH(d)) = ZUl (dy — 1) +Zvl (dy — 1). (S.3)



By induction, we have

di—1
Vid) = [] ¢t +5)/di! = uGa, (t). (S.4)

=0

On the other hand, since E¢} = 0, by (i) of Condition 1 and continuous mapping theorem, it
follows that

Ul (dg) /=12 25 £l (5), on D[0,1]. (S.5)
Thus, by (S.3)—(S.5),
(xl[ns} - MlGdz([ns]))/ndl_l/Q % fclll(s)> on D[O> 1] (SG)

Since S¢(t;), 1 < i < p converge to their limiting distribution jointly, (S.1) follows from (S.6) and
the continuous mapping theorem.
As for conclusion (S.2), by the joint convergence condition (see (i) of Condition 1) and (S.1),

[nt;]

Tty — T — piLa,([nti]) 1 . .
t; 1 i 1 ) ‘
= ndim1/2 >ﬁ2(xi—Ewi),1§%§p—r,p—r+1§;gp
s=1
J1

— (Fz(tl), Wj(tj)) g

iy’

on D[0,1] x D[0,1]. (ii) of Condition 1 implies that E|z}|? < co. This gives

. . 1 < .
max [r] — Eall /v = 0,(1), and - Z & — Ead| = Op(1). (S.7)

Thus, by Theorem 3.1 of Ling and Li (1998), we have
1 LI . . ,
VYo Z(CU;L& — & — L, (1)) (2] — Ear]) = 0.
t=1

Since p is fixed, we have (S.2) as desired. O

Next, we establish a bound for the eigenvalues of X7 and A’ f]jA =: f]j
Without loss of generality, we assume the first r; components of x;; are I(a1), the next ro

components are I(az) and the last r, components of x4 are I(a,), that is,

I(aq) I(ag-1) Ha1)
/_/H q q
1 rq rq+1 rq+rg—1 Gyl 22i=1Tiys
mtl_(xt)”'vl‘ta :'Ut 7.“7'1"15 ’.”7'1"15 7..'7'1:15 )7

where a1 < ag < -+ < a4 are positive integers and > ¢ 7, =p—r. For 1 <i < g, define v, =0

and v; = >2%_, rj. Then for any x;(r;) := (2 Y A = (i1 ;) 7 O,



there must exist a r; X (r; — 1) matrix P; and r; x 1 vector fx; such that P/P; = I -1 (Pi, ;)

has full rank r;, P/u; = 0 and @p; = 1, where I, denotes a x a matrix. Let B; = (P;,n~"/2f,)’

7

if p; # 0 and B; =1,, if p; =0, and ©,, = diag(By, - -- , B2, B1,1,.). Define

Tq r1

P T

Dnl = dlag( naqil/2’ e 7,,.[/(1471/2’. .. 7na171/27 e ’na171/2 )7 Dn? = (1’ e ,1),

and D,, =: diag(D,1,Dp2). Let HY(t) = t?/d! — 1/(d+1)!, Fi(t) be given as in Lemma 1,
Fi(t) = (FYH(t), - FYHri(y), My(t) = (Fi(6)Ps, H*(1))'I(p; # 0) + Fi(t)I(p; = 0), and
M(t) = (M(t), M} _4(t),---,Mj(t))". Then Lemma 2 below follows from Lemma 1 and the

continuous mapping theorem:.

Lemma 2. Let T'j(z) = diag(% Yo (xe1 — X1) (%1 — X1)’, Cov(Xi442, x172)). Under Condition

1, we have
1
D,'©,I4e,D; " - diag( /0 M(OM(t) dt, Cov(xi sz, X1,2) ).

Proof. For any 1 < i <, we define X(s;) = £ 37" | x4(s;). When p; = 0, Lemma 1 gives

Bixlso) —x(s0) _ Gao) = X)) 5 g on ] Dl (5.8)
j=1

When p; # 0, by pip; = 1, we have Bixi(s;) = (Pixi(s:))/,n " Y2Gq,(t) + n= 2 pixy(s;))".
Note that

ai—l

. 1 iy p . 1 T N tai
i, o Gl + i (o0) 2 Jin (ot = fim 2 TT (o] +) = 25 (89
]:
Thus, by Piu; = 0, Lemma 1 and continuous mapping theorem, we have
B;(x:(s;) — x(s; J a i
( tiai)_m ) i (prru)y, HE () on T[ D01, (S.10)
j=1

Combining (S.8), (S.10) and the joint convergence condition ((i) of Condition 1) yields

<<Bi(Xt7iZi)—1_/2i(8i))>l’l <i< l> i (MA(t),1<i<1)=M(t) on ﬁD[O, 1]. (S.11)
=

Let B = diag(B1,B2,--- ,B;) = (bi;). By (S.11) and continuous mapping theorem, we have
1 « 1 «
DB (n > (xi1 — %) (%01 — Xl)') BD, = (n > (D, B(xn —x1)) (D, B(xs1 — X1))'>

t=1 t=1

SN / 1 M(t)M(t) dt (S.12)
0

and complete the proof of Lemma, 2. ]



Let F(t), 1 <i < p—r be defined in Lemma 1, where W(t) = 0;;B'(t) and B'(t), 1 <i < p—r

are independent Brownian motions. Let F(t) = (F(t), F%(t),--- , FP~"(t))".
Lemma 3. Under condition 2 and p = o(n'/?>~7) with 0 < 7 < 1/2,
1
|pairyD;t - diag(/ F()F(t) dt, Cov(xija, x12) ||, = 0p(1):
0
Further, fol F(t)F'(t) dt is positive definite.

Proof. First, we show (S.13). To this end, it is enough to show

n 1
oy (;Zxﬂ_xl xﬂ—sq)') D, - /0 F(F(t) dt]|| = o,(1).
t=1

Let & = (&},€2,--- ,€P7") be an integrated process with components & satisfying
leﬁf = Oiﬂjg = gf:

For any given 1 <14, j <p—r,

d+d Z (af —3) = (& =N - &)
, 1 oo .
d+d Z (@ — (2] — 7 WZ@%—&Z)[@"{—&%—(:E]
t=1
= rij—i—'rij.

By induction, it is easy to show that under condition (10),

t

. . 1 . .
sup sup E[(a?i — £z>/ndi—1/2]2 < sup sup *E(SZ _ 25)2 — O(’I’L2T_1),
1<i<p—r 1<t<n 1<i<p—r 1<t<n 1 =

sup  sup E(E/n% V2 =0(1) and sup sup E(zi/n%1/%)?=0(1).
1<i<p—r 1<t<n 1<i<n 1<t<n
Thus, by equations (S.15), (S.16) and the independence of the components,

S [B0L)? + B2 = 0P ),

,j=1

which implies

HDful [( Zn: (x1 — X1) (%01 — X1 ) — ( zn: —),>] D!
=1 —

where & = (£1,€2,--. £€P77). Thus, for the proof of (S.14), it suffices to show

;

S

! N — & "Rt di]| = 7-1/2
- Z(st N )= [ FOP@ ], = o).

sup
1<i,y<p—r

= Op(pn™7?),

(S.13)

(S.14)

~ &)

(S.15)

(S.16)

(S.17)



Note that

Ly~ (_ & SRR N LA
n; (ndi1/2> (ndj1/2> ;/(t—l)/nf (a)f’(a)da
- %Z (ﬁm —fi<f/n>> ( 7 _1/2) Zfl (t/n) ( fj(t/n)>
t/n ' 4 '
‘Z/ = F@/m)f (@) + (/) (a) = f(t/n) da

1) /n
=: Jnl(lv.]) + Jn2(27]) + Jn3<17])

From the definition of I(d) process, it is easy to deduce that if & ~ I(d) satisfying V¢ = &,
then & = >.'_, &5 when d = 1 and when d > 2,

t [d—1
&§=> [H(t—s+i)/(d—1)! Es (S.18)
s=1 Li=1
and fi(t) can be rewritten as
t
Filt) = / (t — )% L dWi(s)/(ds — 1) (S.19)
0
y (S.19) and the continuity of W(s), it is easy to get that
sup sup|[f'(a) = f1(t/m)]f (@) = Oqs.(n™/?log?n).
1<4,j<p—7r (t—1)/n<a<t/n
Thus,
sup | Jn3(i,§)| = Oas.(n"?10g? n). (S.20)
1<ij<p—r

Set T[7_,(t — s 4+ h)/0! = 1. Using expressions (S.18) and (S.19), we have
[T = s+ ) = (¢ = )%

t
G/t fltn) = Y] 4=172(d; — 1)) £
s=1
t dz 1% t/n di—1
(t—s)t el (t/mn—s) i
" (;n 4=172(d; — 1)! _/0 @ W (S)>
=t Hpyy () + Hpp(2).
It is easy to get that
sup  sup |H;(t)] = Oqs.(n"?logn). (S.21)

1<i<p—r 1<t<n

On the other hand, we have for any 1 <t <n,

t di-1 ~ d;
i 1 t S (3 gé S/’/l t (3
nalf) = (di —1)! Z <<n N ”) N Y <n - a>

e 'Z/s 5 [( _ 3>di_1 _ <; _a)di_ll AW (a). (8.22)

3
3



This gives

sup  sup |Hf12(t)| = nOa_s(n_g/2 logn) = Og.s. (n_1/2 logn). (S.23)
1<i<p—r 1<t<n

Since the normal sequences {1/} are independent with respect to 4, it follows that

sup  sup |€/| = Ous. (%12 logn). (S.24)
1<j<p—r1<t<n

Thus, by (S.21), (S.23) and (S.24), we have

sup [ Jn1(i,§)| = Oas.(n”"/?log? n). (S.25)
1<i,j<p—r
Similarly, we have
sup ’JTLQ <Z7 j)| = Oa.s. (nil/Q 10g2 ’)’L) (826)
1<i,j<p—r

Using the same argument, we can show

1 1

sup (@t @) = [ paa [ a] = 0, Pl (s2)
1<i,j<p—r 0 0

Combining equations (S.20), (S.25)-(S.27), we have (S.17) and conclude (S.13). The positive

definiteness of fol F(t)F'(t) dt can be shown similarly to that of Lemma 3.1.1 in Chan and Wei

(1988). 0

Lemma 4. Under Condition 1, or Condition 2 and p = 0(n1/2_7), we have

max [[D;'©,(X? - T%)@,D (s - 0 and (S.28)
0<5<jo
—1 7t _1TZ / —1 p
02%%’20”]3” 0,(%; -T190,D,'|; X 0. (S.29)

Proof. We first consider the case with fixed p. To this end, we split the matrix into three parts:
the nonstationary block, the cross block with elements being the product of stationary component

with nonstationary component and the stationary block.



(I) As for the nonstationary block, we have for 1 <i,h <p—r,

n
S Gy, — ) ) — ) = 3 (@h — 7)(af — 2"
t=1 t=1
R C 0 [/ Sy - I [
t=1 t=1
= - piLa () (@) — 2 — L, (1) = S (@ — 7~ L (0) (el — o))
t=1 t=1
J
—M§:mh 2~ & — il (1) — 1Y La(0)(a) — & — unLa, (1))
t=1

— i fth Z Lg, (t)La,(t) — p Z Lg,(t xt+] )
=1

6
=: Z Snm (g, i, h).

m=1
From (S.6), it follows that

On1(7,1,h j xl — 7 — pu;Lg (t zh — 7" — Ly, (t
sup 7‘ "15‘7+d’ ) < 70 < sup i d; flz dl( )|> ( Sup i d 11”; dh( )‘)(S‘SO)
0<j<jo MUT n \1<t<n ndi—1/ 1<t<n ndn=1/

— 0,(1/n).

As for 0p2(4,1, h), we have

(i) If dp, = 1, then zf' ; — zf' = Zf+§+1 eh. Since Ele?| < oo, it follows that

|(5n2(j,i,h)| < ’xt _ x - ,ulLd i tJrZJO ‘ h‘ (S 31)
Oiygjo nditdn Sup ndi—1/2 n3/2 c '

t<n t=1 i=t+1

= 0p(1/n'?).

(ii) If dj, > 2, then :v?ﬂ- —ah = ZZJ;{;H[Ug(dh — 1) + V/(dy, — 1)] (see Lemma 1), it follows
that

|x?+j_$?| Jo Uk (ay, )+Vh(dh_1)’
< s 1/2 .
R T A 0,/ (8:32)
which implies
. o , ,
[On2(J, 4, h)| [ — @' — 1L, (1) [y, — @t
sup — - — = su : sup sup ——————— S.33
T ndi=1/2 ran g mdn1/2 (833)
= 0,(1/n'?).



Let Apm(j) = (6nm (4,8, 1)) (p=r)x (p—r)> M = 1,2, -+ ,6. Then by equations (S.30) — (S.33),

sup ||DyiBn~ (An1(j) + Apa(5))B'D |2

1<j5<jo

IN
-~

\bilbim|> 0,(1/n1/?)

INA
O

(b7 + b?m)> Op(1/n'7?) = Op(p? /n'/?). (S.34)

By the definition of B, it is easy to see that the elements of BA,,3(j), BA,4(j) are zero except

in rows Zgzl siy j = 1,2,--+ 1 and the non-zero elements have the following forms:

n~1/? Z La, (t)(xf — 7' — piLa;(t))-

Thus, by

Sy La, ()(a) — & — piLg,(t))
ndh +d;—1/2

sup
1<5<jo0

= Op(l)v

we have

swp DB (A7) + Am()BDL k= Op(pn"). (8.35)
>J)=Jo

> th< )L, (t)

d;+dp,

= Op(1), we have

Simﬂarly, by Suplgjgjo
sup |[Dy1Bn™! Ans(j)B'Dy |2 = Op(pn ™). (S.36)
1<5<50
Further, using (S.9), similar to (S.31) and (S.32), we can show

1

sup ——————> Lg (t)(zl . — M) = 0,(1/n'/?).
lﬁjgjo ndi+dh+1/2tzl dz( )( t+j t) p( / )

Thus, for A,(j) we have
sup ||D,{Bn ' Aus(j)B'D,{ ||z = Op(p/n'/?). (S.37)
1<ji<jo
Combining equations (S.34), (S.35), (S.36) and (S.37) gives

n—j n

Z (Xe+j1 = X1)(xe1 = %1)' = Y (xe1 = %1)(xn1 — %1)'|| B'D,{
= =1 2

1
= 0p<p2/n1/2) (S-38)

(IT) As for the cross block, we first show
n n
D,;llB’n_l Z(th — i1>(Xt2 - )22)/ + nt Z(th — ig)(Xﬂ — il)/B/Dgll
t=1 2 t=1 2
= op(1). (S.39)




Note that for 1 <i<p—randp—r < h<p,

D (-t —2") = ) (af 7 — piLa, (D) (af — 2" +M12Ld -,

t=1 t=1

Let @1 = (w},)(por)xr and Qo = (w3)(p—r)xr- Then the elements of BR; = (e;p,) have the

following expression:

€jh = Z bji Z -z - piLa,(t)) Z b]lwzh'

t=1
By Lemma 1, we have
7| < i O il = 0p(0). (S.41)
i=1

On the other hand, by the definition of B, the elements of BQy = (d;;,) can be represented as

R o ,
djh = WZLal(t)(x? — xh)l(] — Si)a 7 = 1,2,. .. J'
t=1

It is easy to get that

[ djn| /!> = 0,(1). (S.42)
Consequently, by (S.41) and (S.42), it follows that
HD;lan—l D (xi = x1)(xi2 —%2)|| < ||D,iBn '], +||D, Bn 2],
t=1 2
= o0p(1). (S.43)
Similarly,
nh (xip — Ro)(xi1 — %1)B'D, || = 0,(1). (S.44)
t=1 2

(S.39) follows from (S.43) and (S.44).

Next, we show

_ n—j n
sup ( (Xpj1 — %1) (xe0 — X2)' = Y (311 — %1)(xs2 — >‘<2)’> =0, (1)  (S.45)
i<jo =1 t=1 2

and
1 ([ "
sup ||— Z(th — iQ)(Xt_Fj’l — )21)/ — Z(XtQ — ig)(Xﬂ — )21)/ B,Dgll (846)
i ||\ = )
= op(1).
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As for (S.45), note that for any 1 <i<p—r,p—r+1<h <p,

n—j n
nd%/ (Z@fiﬂ =) (et —a") =Y (a) -2 (af - f”>>

t=1 t=1
n— ) n— 3
1 ] <£Ut+J l) (o — Eah) — (zh — Bah) ! xtﬂ i
- di—1/2 1 Z di—1/2
n — n- n —1 n-

1 i =i -
T dit1)2 Z (fﬂt—ﬂﬂ)(fﬂ?—ﬂ?h)

t=n—j+1
= Lln(ja i, h) + L2n(j7 i) h) + L3n(j7 ia h)

By (S.32) and 2 >} | E[z}| = O(1), it follows that when d; > 2,

sup |Lin(j, 4, h)| = Op(1/n'/?).
0<5<j0

When d; =1, by xiﬂ — 2l = Zgi]Hl el, we have
1 t+jo
B sup |Lin(iyih)] < max —z S Bleb(ah — Balb)] = O(1/n'/?)

1/2
0<5<jo 1<t<nn / Nyl

Thus, (S.48) also holds for d; = 1. Similar to L1,(j,, h), we have

1 xi+. — 7
j _ 1/2
sup |~ —| = Opl1/n'7?).
1<i<50 _

This combining with Condition 1 show

TR
sup | Lon (j, 4, h)| = n~ "/ (n1/2,55h - Eﬂ??\) -3 % = Op(1/n).
J<jo n t=1 n=
For L3y, (4,4, h), by Lemma 1 and (S.9), we have
sup |2y — Z'|/n% = Oy(1),
1<t<n
thus by >0, . 4y E|z}|/n'/? = O(1/n'/?), we have
sup [ Ly, 1, h)| = Op(1/n'7?).
J<jo
Therefore, by (S.47)—(S.50),
n—j n
Sup d. +1/2 Z :Et-f—] - jh) - Z(ﬁ[fé - jz)(xl}fl - jh) = Op(l/n1/2)7
g<go T t=1 t=1

which shows (S.45).

(S.47)

(S.48)

(S.49)

(S.50)

(S.51)



For (S.46), note that forany 1 <i<p—r,p—r+1<h<p,

s (Z s — ) — 3 (af — 7)) ﬂ))

t=1 t=1

1 y y y
= ndi+1/ Z(x?-i,-] - CC?)(LUt - ) + L3n(]7 2, h) = L4TL(]7 1, h’) + L3TL(]7 1, h’)
t=1
Let L(j) = (Lan(J, 1, h))’( and decompose Ly, (7,14, h) into two terms as in (S.40). Using the

—T)XT

same arguments as in (S.41) and (S.42), we can show

sup [n ™' LG)B'D, |2 = 0,(1). (8.52)
thus, by (S.50), we have (S5.46). Combining equations (S.39) with (S.45) and (S.46) shows that
the cross blocks tend to 0 in probability.

(ITI) As for the stationary block, let Y7 and ?j be the matrixes obtained by replacing the
stationary block 1 DI | I (X140 — X)(Xpg — Xo)' in 37 and ﬁf with Cov(x1+;2, X} 5). By (ii) of

Condition 1, we have
37 = X7[l2 = 0p(1) and [|Z; — L []2 = 0p(1). (S.53)
Thus, by (S.38) and the fact that the cross blocks tend to 0 in probability (see (II)), we have
ID;10,(S5 ~T5)0, DYz < |ID;'©,(35 — X5)©, D, (|2 +[|D; ' ©,(Y5 — I§)©;,D; |2
= 0p(1)

and

T

D10, (2] ~T9)O, DY, < [|ID;'0,(E] - X;)0,D; ! +[|D;'0,(Y; - I'?)e,D;!|.

Hence, Lemma 4 holds for finite p.
Next, consider the case: p = o(nl/ 2=7). We still split the matrix into three parts as above.
(THE NONSTATIONARY BLOCK.) Since by < limy, o0 Var(3 o 22/4/n) = 02 < by for all i, it

follows that as n — oo,

¢
max Var(Zzé/\/ﬁ) <by and max Var( ¢ ndi 1/2) < bo. (S.54)

1<t<n 1<t<n
s=1

Let 0,1(7,1,h),0n2(j, %, h) be defined as above with p; = pp = 0. Note that the components of

{z;} are independent, by (S.54) and some elementary computation, we can show

p—r .. 2
6” jvlah .
DY (p W) = O /)
1

i,h= J7<Jo

12



and
SN )
E|) sup i = 0(j5p*/n).
ih=1 \JS

Combining the above two equations yields

n—

.

D in”! D,
2
= O,(pn~2). (S.55)

n

— !

(Xp4j1 — X1) (%1 — %1) § (x¢1 — X1) (%01 — X1)
=1

(THE CROSS BLOCK.) Let w;, be defined as in (S.40) with p; = 0. Since z; and x4 are

independent, it follows from (S.54) that

B[ > ] - z

M3

i=1 h=p—r+1 i=1 h=p—r+1
p—r p —i
-3 -22 A D )
2 pdi—1/2 t t
i=1 h=p— tt'=1
p—r p
o[ 2w Il - e - )| | = 0/
i=1 h=p—r+1 =1

by (iii) of Condition 2. Thus,

n

Dnln 12 x4 — X1) (X2 — X2)
t=1

= ||D,in7 1], = Op(pn /2. (S.56)
2

Similarly,

n

n! Z(Xw — X2) (x4 — 5<1)/D,211
=1

= O, (pn~1/2+7). (S.57)
2

Further, by some elementary computation, it is easy to show

p—r p 3
B[ Y S n(ih)?] =0/,

i=1 j=p—r+11=1
which gives

—1

—Jj n
sup Z Xerj1 — X1)(Xepj2 — K2) = D (X1 — R1)(Xe2 — Ra)
J<jo =1 t=1 2
= op(pn—%+ ). (S.58)
Note that Lyn (4,1, h) = Z?,n_j+1(xi — &) — S (@ — 2l — S0 f(xtﬂ z})xp, 5, it is easy
to show that E[ 1 (Lan (3, 1, h))ﬂ = O(pr/n'~?7) too. As a result, we have
1 n—j n
sup ||— Z(Xt+j,2 — X2) (Xt — x1)' Z X2 — Xo)(xp — X1)' Dﬁll
i<io || \i1=1 t=1 9
= Oy(pn2*7). (S.59)

13



1

Consequently, by equations (S.56)—(S.59), we get that the norms of the cross blocks are O, (pn~277).

(THE STATIONARY BLOCK.) By (ii) of Condition 2, we also have (S.53). Thus, by (S.55) and

the bound of the cross blocks (see above), we have if p = o(n'/2-7),

IDZH(EF ~THD 2 < [[D;H(E] - X5)Dy |2 + [[D (X5 — T5)D |

= op(1) + Op(pn_l/z) = op(1)
and
1.z _ 1T ST 1. _
|’Dn1<23 - F]x)DanQ < HDnl(Zj - Tj)DanQ + HDnl(‘r] - F;C>Dn1”2 = Op(l)'

Hence, Lemma 4 holds also for large p with p = o(n!'/2=7). O

Proof of Theorem 3.1. Since

_— 1 ~ o~y
{D(M(A2). M(A2)Y = —{tr[AY(T, — AsA))Aq]}
|AL(AsAl — AsAY)Asl]s < 2[|As — A3,

IN

it follows from Theorem I1.5.5 of Stewart and Sun (1990) (see also Proposition 2.1 of Vu and Lei
(2013)) that

D(M(Az2), M(Az)) < V2||As — Asll2 < V2||As — As||r < 2v2||sin O(As, As)|lr,  (S.60)

where ©(Ag, Ay) = arccos[(AéKQKQAg)l/ 2] is the canonical angle between the column spaces of
A, and As. Letﬁ = miEG/\(Df),uek(ﬁS) I\ — u|/v/ A, where A\(D%) consists of the r smallest
eigenvalues of A'WA =: W*. By Theorem 2.4 of Dopico, Moro and Molera (2000), we have

[|5in ©(Az, As)||r < [[(WY) ™ 2AWY(W) ™2 | /1. (S.61)

Note that
(WY)2ZAWY(W)~1/2 = (WY)~H2(W)Y2 — (W) H2(W)~ 12, (.62)

Thus, by equations (S.60), (S.61) and (S.62), we have
D(M(Az), M(Az)) < (J[(W¥)"2(W) 2| g+ [| (W) /2(W) =12 p) /.
Next, we show thatH(Wy)*l/z(W)lﬂHp = Op(1), which is equivalent to
[(W=)~V2(W)Y2||p = O, (1). (8.63)
Note that

Jo Jo
0< 3 < (WH)YV2 S {ZAI)Y Y2 and 0< 3 < (WHYV2 <D {E(E) 2 (8.64)
§=0 j=0

14



It follows from (S.64) that
- Jo S
1OW) T2 (W) 2] < 11(36) S (E5) 2l
j=0
Thus, for (S.63), it is enough to show the eigenvalues of (X)~! Zg‘;o{i;&(f}f)’}lm are Op(1),
which is equivalent to
the solutions X of |{E () }1/2 — AZE| = 0 are Op(1). (S.65)

Since diag <f01 M(t)M/(t) dt, Var(xlg)) > 0, by Lemma 4 the solutions (\) of equation

D, '®,.{3;(%;)'}"/?e, D, - \D,'®,3§e,D,'| =0 (S.66)
are bounded in probability. Thus, we have (S.65) and (S.63) as desired.
Similarly, we can show

(W) Y2(W) =2 = [[(WE)Y2(W) V2|5 = 0,(1). (S.67)

Using equations (S.64) and (S.67), the remainder of the proof of Theorem 3.1 consists of showing
that there exist two positive constants c1, co such that in probability n > ¢;n?*1~1/\/j provided
[Io] > 2 or |Ip] = 1 and Ez/® = 0 and > ¢3n* /\/Fo provided |Iy| = 1 and Ez/ # 0.

Define \;(A) to be the i-th eigenvalue of a matrix A. Note that

diag </01 M(t)M'(t) dt, Var(xl,g)) > 0.

By Lemmas 2 and 4, it follows that when |Io] > 2 or |Iy| = 1 and Ez/® = 0, Ap—r(BF) = Oc(n?1~1)

and )\p,rﬂ(f}j) = O¢(1). Thus, there exist two positive constants cs, ¢4 such that in probability

Nopr (W) > Ny (S5(55)) > egn?@aD (.68)
and
T, AT - Jo T, T 2
¢ < Apri1 (Zp(Z0)) < Aperit (W) < [Npepin (I AETEN YA < eaid. (8.69)
7=0

Hence, in probability
n > legn®P 7 — cyjg| /([ ean?Ca=Veyjd > dn®M 7 /o,
Similarly, we have |Ip| = 1 and EztIO # 0, then in probability,
n > cn** /jo. (S.70)

Since jp is fixed, combining (S.63), (S.70) and (S.70), we complete the proof of (i) and (ii).
Conclusion (iii) can be shown similarly by treating Aj; as the role of As, see also the proof of
Theorem 1 of Chen and Hurvich (2006), we omit the details here. 0

~

Let A1p= Ay and Bii = (Guists - »Amir) fori=1,--- ¢ and By = (Fp=r+15"* s¥p)-
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Lemma 5. Under Condition 1, we have
IB1iALnllr = Op(n= =), for 1 # h.
Proof. Let n(B1,, A1) be defined as n above, i.e.,

(B, Arp) = min }|)\*M|/\/ AL

)‘G{AV1+11"' a:\/\ul+rl }1 HE{AV}LJ”lu'” ’>\Vh+'rh

By Lemmas 2 and 4, using the same arguments as in Theorem 3.1, we have
n(B1,, Ay ) > en?lonal (S.71)

for some ¢ > 0. It has been shown in Theorem 1 that ||(W¥)~"V2AWY(W)~1/2||p = O,(1),
thus by Theorem 2.4 of Dopico, Moro and Molera (2000) (see also Theorem 4.1 of Barlow and
Slapnicar (2000)), we have

IBiiAslr < [[(WY)TY2AWY(W) V2| p /(B Ay)
= Op(n_2|ah—al‘)‘

This completes the proof of Lemma 5. 0

Proof of Theorem 3.2. First, we prove the consistency of 7. For any 1 <1 < p,
Tp =y = (VA 1gXe1g, s VAIIXe1, T AoXy2). (S.72)
Let v; be defined as that after Lemma 1 and rg = r. By Lemma 5, when v;+1 < i < v+, [ # h,
FAh = Op(n~2lan—atl),
Thus, by sup;<;<,, [X¢14| = Op(n®~1/2) for h > 1 (see Lemma 1), we have
FA X, = Op(n~ T2V [(h > 1) + Oy (n~ 23—V [(1 < h < 1).

As a result, by (S.72), it follows that for any v; + 1 <@ < v+ 1,

q l

~% =~ — 2a;—1/2 —2 _1—1/2

Bo= AlAuxa+Op( Y TR LN Tyt
h=i+1 h=1

= — 2a;—1/2 -2 _1—1/2
= FlAuxu 4 Op(n ap1+2a-1/2 4 p—2a+3a-1 /)’

where X410 = X¢2. Thus, for any given m, we have

“ 1 — ~q =i\ s~ =i
> (= Y@ - D)@ -3))
=1 t=1
?{A l m n—k
= 7,;7_1]{: D> ek — Xu) (e — Xu) ALA (1 + 0p(1)). (S.73)
k=1 t=1
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By (S.73), we have that for any vy +1<i<y +r,l=1,--- ,q

m n—k
1 —~i =i\ s~ =i
> (g L@ =)@ =)
k=1 t=1
A (1% - - - -
= sz{All(ﬁ > (%1 — %) (xens — Xu)/) ALFi(1+ 0p(1)) = Oc(mn®~1). (S.74)
t=1

On the other hand, by (S.73) and || >_jL; -1 S F Xk — X2)(x; o — X2)|| < C in probability,
it follows that for p —r +1 <i < p,

m n—=k )
Z (n -y Z Ty — ) (@ri — ?)) = Op(1). (S.75)
=1
Equation (S.74) together with (S.75) yields the conclusion of Theorem 3.2 as desired. O

S.2 Proofs for Section 3.2

Proof of Theorems 3.3 and 3.4. Theorem 3.3 can be shown similarly to Theorem 3.1 by

using Lemma 3 instead of Lemma 2, except that when p — oo,

» 1/2
12574 ()2 r = 0, (Z(Az)2> = 0,(p'"?),
i=1
where \;, 1 < i < p are solutions of (S.65). As a result, (S.63) should be replaced by
(W)~ 2(W) 2|1 = 0, (p!/?) and [|[(WH)V2(WH)2||p = 0p(p1%). (8.76)

Theorem 3.4 can be shown similarly to Theorem 3.2. We omit the details. O

S.3 Proofs for Section 4

To prove Theorems 4.1 and 4.2, we first introduce some notations. Let kp; = n%~1/2I(d; > 1/2)+
ndH21(d; < 1/2) and \i(t — s) = (t — 8)%Y/T(d)I(d; > 1/2) + (t — )% /T(d; + 1)I(d; < 1/2).
Define K,, = diag(kn1,- - , knp), A(t,s) = diag(M(t — s), -, A\p(t — s)) and

t 1
By =0, Bt:(Btl,---,Bf)’:/A(t,s)dWS, Ut:Bt—/ B, dt,
0 0

where W is given in (i) of Condition 3. Let V4v! = py, I¢ = {i : d; > 1/2} and x; ; = (2}, i € I)'

and vy = (vi, i€ I)

Lemma 6. Let Z(t) = ((X{nt,re = Vine),1c)’s Egn:ta(xj,h —v;n)). Under (it) of Condition 3,

K'7,(t) <2 By, on D[0, 1]°. (S.77)
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Proof. Let df, = {d; : i € I}, then Zgnzt]l x;j 1, is an integrated fractional process with order
dr, + 1, and each of its components has order larger than 1/2. We can show this lemma similarly
to Theorem 1 of Marinucci and Robinson (2000) by replacing their Lemma 2 with Condition
3(ii). O

Let ©®, and M;(t) be defined as that after Lemma 1 by using H%(t) = t%/T(d; +1) —
1/T(d; +2) and Fy(t) = (U"tL(t),--- ,U"*"i(t)), where U} be the i-th component of Uy;. Let
Ly, = diag(ln1,- - s lnp)s bni = n%V21(d; > 1/2) + I(d; < 1/2). Similar to Lemma 2, by Lemma

6 and the continuous mapping theorem, we have the following lemma.

Lemma 7. Let the conditions of Theorem 5 hold. Then the following assertions hold for any

0<7 < Jo.
(i) If § > 1/2, then
~1 d 1
L0, 50,1, 4 [ (M UL (M Up)dr, and
p 1 1
L,'e, e L, -4 diag( / M, M, dt, / U,,U,, dt),
0 0
where Uy 9 is corresponding to the last p components of Uy.
(i1) If § < 1/2, then
~T d 1
L,'©,X;0,L, " - diag ( /0 MM, dt, Cov(Xytj,n,Xe,1, )) , (S.78)

and

1
L;l@nEfQ;ngl LN diag (/ M, M, dt, Cov(xtﬂ,letJl)) . (S.79)
0

Proof. We only give the proof for p; = 0, j = 1,---,p in details, other cases can be proved
similarly. By Lemma 6 and the continuous mapping theorem, it follows that (i) holds for j = 0.

Thus, for the proof of (i), it suffices to show for any 1 < i, h < p,

sup
1<5<70

n— ] n
v +dh < (zhy; — ") = (-7 (af - xh)) ‘ = op(1). (S.80)

t=1 t=1

Observe that

n—j n
PP CATE — ) =Y (a2 (af — 2"
t=1 t=1
n—j n )

= ($t+j $t)(£13‘? - 'Th) - Z (.%'é - jl)(x? - xh) - anl(]a ¢ h) + Oéng(],l h)
t=1 t=n—j+1

18



By Lemma 5, it follows that for any 1 <i,h < p,

((xfnﬂ —2) b2 () — 2" /ndh*1/2) s (Ui(t), UM (s)) on D0, 1], (S.81)
This gives
sup Jana (G, )| /n = O, (1/n). (3.82)
0<5<jo0
Further, for any € > 0, then
li_)m P{ sup sup '\miﬂ — 2l /n%?2 s ey =0, (S.83)
n=oo 1< <o 1<t<n—j
Thus,
sup | a1 (g, i, h)|/néitd = o,(1). (S.84)
0<5<jo
Combining (S.82) and (S.84) gives (S.80) as desired.
By (i) of Condition 3, it follows that
1< _ - p
= (Xegn — X)) (Xe1, — Xry) = Cov(Xeyj1,Xe.1,)-
"=
Thus, by (i) of Lemma 6, we have (S.79).
As for (S.78), it is enough to show for any i € I{ and h € I,
1 = i —iN(h =h an1(j,i,h) | ana(j,i,h) 1 - i =in/ h  =h
W;(%H —o)(z 1) = nditiz T iz T diiie ;(xt =) (zf —2%)
25 0, (S.85)
holds for all 0 < j < jg. Similar to Lemma 1, we can show
1 & _
—i > (2} -2 (@) - z") 0. (S.86)
i=1
By (S.81) and n~! D tnio Elzl — 2" = O(jon™!), we have
sup ana(j, 1, h)/n /2 = 0,(1/n). (3.87)
J<jo
By (S.83) and 2 >} | Elz}! — 2"| = O(1), we have
sup a1 (4,7, h) /%2 = 0,(1). (S.88)
J<jo
(S.85) follows by equations (S.86)—(S.88). O

Proof of Theorems 4.1 and 4.2. By Lemma 7, Theorems 4.1 and 4.2 can be established in

a similar manner as to Theorems 3.1 and 3.2. Therefore we omit the detailed proofs.
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S.4 Proofs for Remarks 3.4 and 3.5

Proof of Remark 3.4. (i) By the martingale version of the Skorokhod representation theorem
(Strassen 1967, Hall and Heyde 1980, and Wu 2007), we have for all ¢, on a richer probability
space, there exists a standard Brownian motion {W(¢)} and a non-negative stopping times {’7’;}

such that for t > 1,
¢

St=W( ) and E[r][F1(i)] = E[(e})*|Fe1(d)], (S.89)

j=1

where (i) is the o-algebra generated by {e, s < ¢}. This implies that

E|S} — W (out)|* = E| ZT oit]

t t t
Z |’Ft 1 Z |]:t 1 Z — ot .

Since both {7} — E(7}|F;-1(i))} and {(¢ ) E((e ) |Fi—1(i))} are martingale difference and
Elei|? < oo, it follows that

t n
sup B> ()~ B(1Faa(0)| = O | BD_[7} ~ Bl Fima (D] | = O(*/).
AN j=1 j=1
Similarly, sup;<;<, E ‘2;:1[(53)2 - E((£§)2|}}_1(i))] = O(n%9"). Further, condition E| 3>7_, [(¢})?

—o7]| = O(n*/7") implies that sup;<;<, B[} [(e})* — 07]] = O(n*"). Thus, Condition 2(i)

holds for any 7 > 1/¢*. If p = o(n'/?), Condition 2(ii) holds. Since the components of e; are
independent, Condition 2(iii) follows with sup; > 37, Elelel| = O(n).

(ii) By the proof of Theorem 9.3.1 of Lin and Lu (1996), we know that there exists a martingale
difference sequence {m}} such that R; = S} — M} satisfying E|R;|? = O(1), where M} = $" =1 m
Further,

a/2
E Z:[(ml)2 —E(m)?%| < Cnlogn. (5.90)

As a result, Condition 2(i) holds for any 7 > 1/q. Similarly, Condition 2(iii) can be easily obtained
by basic inequality for mixing processes, see Lemma 1.2.2 of Lin and Lu (1996). Note that for
any given j,
n—j
EH* (Xe4j,2 — X2) (X2 — X2)" — Cov(X1452, X1,2)H
t=

1 2

p n 2
< Y E(lzuxif)(xz‘fj)ch(:ci,xi)]) — O(p*/n) = 0

n
i, j=p—r+1 t=1
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as p = o(n'/?). Condition 2(ii) holds too.

(iii) By Beveridge-Nelson decomposition, €} can be represented as

. e . e . ©
= (et — () =ty @ = 3 o
7=0 =0 h=j+1
Let R = S — (Z;io cij> 22':1 77;- = ¢ — €p. Then
2
. e t .
sup |S; — (ZCiJ) Zn; =0(1) (5.91)
1<t<n =0 =1

Since {n;} is an i.i.d sequence with E|77Ji»\q < 00, by Theorem 4.3 of Strassen (1967), the stopping
{7} defined as in (S.89) is an independent sequence with E7} = E(n§)2 and E|7}|%/? < co. Thus,
SUpP; <4<y, B Z;ZI[T; — E(n;-)z]\q/Q = O(n +n%*). As a result, we have for ¢y = min{q, 4},

1<t<n

t
sup B|'S lrj — Bl)?)] = 0(n'm).
j=1
Let a; = E(n;-)?, then on a richer space there exist a standard Brownian motion W (¢) such that

E() 0 — W(ait))? = O(n?®). (S.92)
j=1

Thus, by (5.91), (S.92), Condition 2(i) holds for 7 = 1/qo. It is easy to show that sup Z |E(5§5§)|

P—r<JsP i1
= O(n). Thus, Condition 2(iii) follows by the independence of the components. Condition 2(ii)

can be shown similarly to Remark 3.4(ii). O

Proof of Remark 3.5. It is easy to get \* = O¢(1) when p — r is fixed. We only show the case
when m = p—r — 00 as n — o0. Let d = dpin, & be I(1) process defined as in Lemma 3,
& = (€,---,€) and e = (1,---,1) be two n dimensional vectors. Let E, and II, be n x n

matrices given by

1 00 0--- 0
1, -1 10 0 S (|
E,=1,— —ee and II, = ,
n oo : :
0 00 -1 1
then for any 1 <i,5 < m,
¢ = (fia"' ,5;2)' = aiiﬂgd(vi,vé,--- ,U;)' =: aiiH;dVi, and

& —€Y(E -8&) = ouoy (VY (IL,Y)E,E,IT, V7.
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Let 4 < --- <, and 71 > --- > 7, be the eigenvalues of IL,IT/, and (H;d)'EnE’nH;d respec-
tively. Since A\;(E,E]) =+ = X\,_1(E,E]) = 1, by Theorem 9 of Merikoski and Kumar (2004),
it follows that

6% = X1 (YT YN, 1 (BRE) < i < N((TL, )T )M (B, E),) = 6% (S.93)

i
Further, 6 =2 — 2cos(2kn/(2n+ 1)), k =1,2,--- ,n (see Yueh (2005)), which implies
O ~ 4(km/(2n +1))2, as k/n — 0. (S.94)
Let U be an orthogonal matrix with row vectors uj,--- ,u, such that (IT,%)E,E,II ¢ =

Udiag(y1, -+ ,7)U" and let @ = (V! ... V™). For x € R™ with x’x = 1, define UQx =
(bix, -+ ,bux) = bx € R™. By (S.93), we have

1 ¢ . o
Ammin (WZ@ —-&)(& - ¢ ))
t=1
= )\min (71203(51 - éla e 7Em - gm)/(gl _Elv T asm - £m)>

1
> {min(oy)}? min —7 X' (UQ)'diag(71, -+, 1) (UQ)x
1 X n

(b;cbx) béc(Vla e 77Tb)bx
n2d bl b

= {min(o;)}* min
(2 X

v

k n
{min(os) }?n 2\ nin (/2 /1) min (Z 5k_—i,c-l1b12x/z b%x>
7 X —1

=1
k
> fmin(o) 1/ n) Do (€2'2/2) (22 m)] 5 mim 5 02,
=1
= O Auin ([ (- )] [(h - w2, (5.95)

where Anin, Amax denote the smallest and largest eigenvalues of a matrix respectively, the last
equation follows by (S.94) and the fact that there exist two positive constants C7,Cy such that
C1 < Amin (/1) < Amax (2'Q/n) < Cy in probability when p/n'/? — 0. Since U is orthogonal

and the elements of 2 are independent standard normal variables, it follows that the elements

of (uf,---,u})'Q are independent and standard normal variables, thus by Theorem 2 of Bai and
Yin (1993), we have if m/k € (0,1),
Amin{ [ (uy, -, w))[(uy, -, w)'Q} = (1= /m/k)?, as. (5.96)

Taking k = 2m, then by (S.95) and (S.96), we have
1 & . . _
Amin (nm S (e - e - 5’)) > O, (5.97)
t=1

Since ||—57 Y1 (& — &)(&; — £ — fol F(t)F'(t) dt||2 = 0p(1) (see Lemma 3), Remark 3.5 follows
from (S.97). O
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S.5 Numerical studies for j, and m

To evaluate the impact of the choice of jo and m, we report some of our simulation results in this
subsection.

We first present a numerical result for the choice jo. We let x;2 in model (1) consist of r
stationary AR(1) processes with coefficients generated independently from U(—0.8,0.8), x;; be
p —r ARIMA(1,1,1) processes with coefficients generated from U(0,0.8) and U(—0.8,0.8). Let
the elements of A be generated independently from U(—3,3). We estimate the cointegration rank
r by the ACF unit-root test defined in (5). For each setting, we replicate the exercise 500 times
with sample size n = 300, 500, 1000 and jy ranging from 5 to 90. The relative frequencies for the
occurrence of events {7 = r} and the average distance between the true cointegrating space and
its true space are reported in Table S.1. It is shown from Table S.1 that the performance is stable

with respect to the choice of jg, especially for small p and large n.

Table S.1: Relative frequencies (RF) of the occurrence of event {7 = r} and average distance D; with jo
ranging over (5,90) and 500 replications.

(p,r) n j=51 10 20 30 40 50 60 70 80 85 90
RF | .950 | .928 | .938 | .960 | .940 | .924 | .928 | .948 | .934 | .926 | .926
300 | D1 | .062 | .069 | .057 | .047 | .065 | .065 | .070 | .0563 | .064 | .068 | .068
RF | 982 | 982 | .986 | .978 | .984 | .974 | .978 | .980 | .978 | .976 | .988
(4,2) | 500 | D1 | .029 | .024 | .023 | .029 | .027 | .036 | .028 | .030 | .029 | .030 | .024
RF | 992 | 994 | 996 | .996 | .994 | .998 | 1.00 | 1.00 | .994 | .998 | .998
1000 | D1 | .013 | .012 | .013 | .012 | .011 | .014 | .008 | .009 | .014 | .012 | .009

RF | .822 | .794 | .834 | .810 | .802 | .826 | .828 | .794 | .834 | .816 | .812
300 | D1 | .128 | .137 | .115 | .131 | .136 | .121 | .122 | .136 | .120 | .124 | .129
RF | 934 | 948 | .946 | .938 | .960 | .962 | .964 | .970 | .952 | .960 | .958
(6,3) | 500 | D1 | .061 | .053 | .053 | .062 | .052 | .049 | .047 | .045 | .050 | .045 | .050
RF | 988 | .990 | .994 | .994 | .976 | .984 | .992 | .994 | .988 | .994 | .994
1000 | D1 | .024 | .018 | .018 | .018 | .026 | .022 | .017 | .017 | .021 | .020 | .020

RF | .562 | .564 | .578 | .628 | .612 | .648 | .620 | .646 | .592 | .598 | .610
300 | D1 | .230 | .224 | .223 | .204 | .211 | .198 | .209 | .194 | .217 | .213 | .213
RF | .874 | .886 | .858 | .908 | .884 | .920 | .910 | .934 | .900 | .898 | .914
(8,4) | 500 | D1 | .093 | .078 | .101 | .078 | .085 | .077 | .077 | .067 | .081 | .081 | .078
RF | .966 | .978 | .986 | .980 | .984 | .986 | .986 | .986 | .988 | .988 | .990
1000 | D1 | .046 | .031 | .028 | .032 | .030 | .030 | .027 | .029 | .031 | .028 | .028

Next table is reported for the choice of m. In this simulation, x;; and Xy are generated
from model (1) as the previous example. We also replicate the exercise 500 times in each setting
with sample size n = 300, 500 and 1000 and the lags number m is taken from 5 to 90. The
corresponding relative frequencies for the occurrence of events {7 = r} and the average distance
between the true cointegrating space and its true space are reported in Table S.2. It is shown
from Table S.2 that a relatively small m always works well for the estimation of the cointegrating

space. On the contrary, if m is selected too large, the performance is relatively poor, especially
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when the sample size n is relatively small. This is reasonable, because from Remark 2.1, we know
that only when n/m — oo, > ;- p(k)/m — 1 — 0, otherwise, it is difficult to distinguish the
integrated process from the stationary process, which means that m could not be selected too
large, especially when n is relatively small. This simulation also confirms that m = 20 is usually
good enough for the procedure.

In our simulation, we also use a data driven procedure in selecting m, which is given by

m = argmin,, {f(m) v f~(m)}

where T'(m) = {m Py (1= ﬁl(k:))} and f(m) =T(m)/T(m+1). It also work reason-
ably, for example, when (p,r) = (6, 3), the corresponding relative correct frequencies and average

distance is (0.776,0.119) for n = 300, (0.888,0.062) for n = 500 and (0.970,0.0229) for n = 1000.

Table S.2: Relative frequencies (RF) of the occurrence of event {7 = r} and average distance D; with m
ranging over (5,90) and 500 replications.

(p,r) n j=b 10 20 30 40 50 60 70 80 85 90
RF | .872 | 976 | .980 | .968 | .936 | .882 | .816 | .744 | .644 | .602 | .586
300 | D1 | .016 | .021 | .025 | .031 | .048 | .078 | .115 | .156 | .211 | .235 | .243
RF | .864 | .980 | .998 | .998 | .996 | .986 | .968 | .942 | .914 | .896 | .866
(3,2) | 500 | D1 | .008 | .009 | .010 | .010 | .011 | .017 | .026 | .041 | .056 | .067 | .084
RF | .874 | 980 | .996 | .996 | .996 | .994 | .994 | .992 | .992 | .992 | .992
1000 | D1 | .006 | .005 | .006 | .006 | .006 | .007 | .007 | .008 | .008 | .008 | .008

RF | .850 | .942 | 916 | .818 | .702 | .560 | .398 | .250 | .140 | .102 | .070
300 | D1 | .043 | .050 | .064 | .101 | .149 | .211 | .283 | .349 | .403 | .422 | .441
RF | .848 | .966 | .972 | .958 | .916 | .8564 | .762 | .660 | .568 | .518 | .462
(6,4) | 500 | DI | 0.024 | .026 | .029 | .034 | .051 | .076 | .115 | .160 | .200 | .223 | .248
RF | .842 | 974 | 996 | .996 | .992 | .984 | .976 | .968 | .942 | .928 | .906
1000 | D1 | .011 | .012 | .013 | .013 | .014 | .017 | .020 | .023 | .034 | .039 | .049

RF | 802 | .848 | .732 | .510 | .290 | .118 | .040 | .004 0 0 0

300 | D1 | .083 | .095 | .128 | .203 | .286 | .363 | .414 | 452 | .476 | 483 | .494
RF | .800 | .944 | .930 | .896 | .792 | .638 | .438 | .294 | .186 | .132 | .104
(9,6) | 500 | D1 | .039 | .045 | .052 | .063 | .098 | .154 | .227 | .286 | .334 | .359 | .375
RF | .856 | .984 | .990 | .980 | .980 | .964 | .946 | .914 | .862 | .834 | .786
1000 | D1 | .018 | .019 | .019 | .021 | .021 | .026 | .032 | .044 | .062 | .072 | .089
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