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S.1 Proofs of the lemmas

Proof of Lemma 7. For any I(dl) process xlt, we can write

∇dlxlt = Ezlt + (zlt − Ezlt) =: µl + ζ lt.

Let U lt(0) = ζ lt, V
l
t (0) = µl and

U lt(j) =

t∑
s=1

U ls(j − 1), V l
t (j) =

t∑
s=1

V l
s (j − 1).

Then

xlt = U lt(dl) + V l
t (dl) =

t∑
j=1

U lj(dl − 1) +
t∑

j=1

V l
j (dl − 1). (S.1)

By induction, we have

V l
t (dl) = µl

dl−1∏
j=0

(t+ j)/dl! = µlGdl(t). (S.2)

On the other hand, since Eζ lt = 0, by (i) of Condition 1 and continuous mapping theorem, it

follows that

U l[ns](dl)/n
dl−1/2 J1=⇒ f ldl(s), on D[0, 1]. (S.3)

Thus, by (S.1)–(S.3),

(xl[ns] − µlGdl([ns]))/n
dl−1/2 J1=⇒ f ldl(s), on D[0, 1]. (S.4)
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Since Sin(ti), 1 ≤ i ≤ p converge to their limiting distribution jointly, (7.1) follows from (S.4) and

the continuous mapping theorem.

As for conclusion (7.2), by the joint convergence condition (see (i) of Condition 1) and (7.1),xi[nti] − x̄i − µiLdi([nti])
ndi−1/2

,
1√
n

[ntj ]∑
s=1

(xjs − Exjs), 1 ≤ i ≤ p− r, p− r + 1 ≤ j ≤ p


J1=⇒
(
F i(ti),W

j(tj)
)
ij
,

on D[0, 1]×D[0, 1]. (ii) of Condition 1 implies that E|xjs|2 <∞. This gives

max
1≤s≤n

|xjs − Exjs|/
√
n = op(1), and

1

n

n∑
s=1

|xjs − Exjs| = Op(1). (S.5)

Thus, by Theorem 3.1 of Ling and Li (1998), we have

1

ndi+1/2

n∑
t=1

(xit − x̄i − µiLdi(t))(x
j
t − Exj1)

p−→ 0.

Since p is fixed, we have (7.2) as desired.

Proof of Lemma 8. For any 1 ≤ i ≤ l, we define x̄(si) = 1
n

∑n
t=1 xt(si). When µi = 0, Lemma 7

gives

Bi(xt(si)− x̄(si))

nai−1/2
=

(xt(si)− x̄(si))

nai−1/2
J1=⇒ Fi(t), on

si∏
j=1

D[0, 1]. (S.6)

When µi 6= 0, by µ̄′iµi = 1, we have Bixt(si) = ((P′ixt(si))
′, n−1/2Gdi(t) + n−1/2µ̄′ixt(si))

′.

Note that

lim
n→∞

1

nai
(Gai([nt]) + µ̄′ix[nt](si))

p
= lim

n→∞

1

nai
Gai([nt]) = lim

n→∞

1

nai

ai−1∏
j=0

([nt] + j) =
tai

ai!
. (S.7)

Thus, by P′iµi = 0, Lemma 7 and continuous mapping theorem, we have

Bi(xt(si)− x̄(si))

nai−1/2
J1=⇒ ((P′iFi(t))

′, Hai(t))′ on

si∏
j=1

D[0, 1]. (S.8)

Combining (S.6), (S.8) and the joint convergence condition ((i) of Condition 1) yields((
Bi(xt(si)− x̄(si))

nai−1/2

)′
, 1 ≤ i ≤ l

)
J1=⇒ (M′

i(t), 1 ≤ i ≤ l) = M′(t) on

p−r∏
j=1

D[0, 1]. (S.9)

Let B = diag(B1,B2, · · · ,Bl) = (bij). By (S.9) and continuous mapping theorem, we have

D−1n1 B

(
1

n

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′

)
B′D−1n1 =

(
1

n

n∑
t=1

(D−1n1 B(xt1 − x̄1))(D
−1
n1 B(xt1 − x̄1))

′

)
d−→

∫ 1

0
M(t)M′(t) dt (S.10)

and complete the proof of Lemma 8.
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Proof of Lemma 9. First, we show (7.3). To this end, it is enough to show∥∥∥D−1n1
(

1

n

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′

)
D−1n1 −

∫ 1

0
F(t)F′(t) dt

∥∥∥
2

= op(1). (S.11)

Let ξt = (ξ1t , ξ
2
t , · · · , ξ

p−r
t )′ be an integrated process with components ξit satisfying

∇diξit = σiiv
i
t := ε̃it.

For any given 1 ≤ i, j ≤ p− r,

1

ndi+dj

n∑
t=1

[(xit − x̄i)(x
j
t − x̄j)− (ξit − ξ̄i)(ξ

j
t − ξ̄j)]

=
1

ndi+dj

n∑
t=1

[xit − ξit − (x̄i − ξ̄i)](xjt − x̄j) +
1

ndi+dj

n∑
t=1

(ξit − ξ̄i)[x
j
t − ξit − (x̄j − ξ̄j)]

=: r1ij + r2ij .

By induction, it is easy to show that under condition (3.2),

sup
1≤i≤p−r

sup
1≤t≤n

E[(xit − ξit)/ndi−1/2]2 ≤ sup
1≤i≤p−r

sup
1≤t≤n

1

n
E(Sit −

t∑
l=1

ε̃il)
2 = O(n2τ−1), (S.12)

sup
1≤i≤p−r

sup
1≤t≤n

E(ξit/n
di−1/2)2 = O(1) and sup

1≤i≤n
sup

1≤t≤n
E(xit/n

di−1/2)2 = O(1). (S.13)

Thus, by equations (S.12), (S.13) and the independence of the components,

p−r∑
i,j=1

[E(r1ij)
2 + E(r2ij)

2] = O(p2n2τ−1),

which implies∥∥∥D−1n1
[(

1

n

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′

)
−

(
1

n

n∑
t=1

(ξt − ξ̄)(ξt − ξ̄)′

)]
D−1n1

∥∥∥
2

= Op(pn
τ−1/2),

where ξ̄ = (ξ̄1, ξ̄2, · · · , ξ̄p−r)′. Thus, for the proof of (S.11), it suffices to show

sup
1≤i,j≤p−r

∥∥∥ 1

ndi+dj

n∑
t=1

(ξit − ξ̄i)(ξ
j
t − ξ̄j)−

∫ 1

0
F i(t)F j(t) dt

∥∥∥
2

= oa.s.(n
τ−1/2). (S.14)

Note that

1

n

n∑
t=1

(
ξit

ndi−1/2

)(
ξjt

ndj−1/2

)
−

n∑
t=1

∫ t/n

(t−1)/n
f i(a)f j(a) da

=
1

n

n∑
t=1

(
ξit

ndi−1/2
− f i(t/n)

)(
ξjt

ndj−1/2

)
+

1

n

n∑
t=1

f i(t/n)

(
ξjt

ndj−1/2
− f j(t/n)

)

−
n∑
t=1

∫ t/n

(t−1)/n
(f i(a)− f i(t/n))f j(a) + f i(t/n)(f j(a)− f j(t/n)) da

=: Jn1(i, j) + Jn2(i, j) + Jn3(i, j).

3



From the definition of I(d) process, it is easy to deduce that if ξt ∼ I(d) satisfying ∇dξt = εt,

then ξt =
∑t

s=1 εs when d = 1 and when d ≥ 2,

ξt =
t∑

s=1

[
d−1∏
i=1

(t− s+ i)/(d− 1)!

]
εs (S.15)

and f i(t) can be rewritten as

f i(t) =

∫ t

0
(t− s)di−1 dW i(s)/(di − 1)!. (S.16)

By (S.16) and the continuity of W i(s), it is easy to get that

sup
1≤i,j≤p−r

sup
(t−1)/n≤a≤t/n

|[f i(a)− f i(t/n)]f j(a)| = Oa.s.(n
−1/2 log2 n).

Thus,

sup
1≤i,j≤p−r

|Jn3(i, j)| = Oa.s.(n
−1/2 log2 n). (S.17)

Set
∏0
h=1(t− s+ h)/0! = 1. Using expressions (S.15) and (S.16), we have

ξit/n
di−1/2 − f i(t/n) =

t∑
s=1

[∏di−1
h=1 (t− s+ h)− (t− s)di−1

]
ndi−1/2(di − 1)!

ε̃is

+

(
t∑

s=1

(t− s)di−1ε̃is
ndi−1/2(di − 1)!

−
∫ t/n

0

(t/n− s)di−1

(di − 1)!
dW i(s)

)
=: H i

n1(t) +H i
n2(t).

It is easy to get that

sup
1≤i≤p−r

sup
1≤t≤n

|H i
n1(t)| = Oa.s.(n

−1/2 log n). (S.18)

On the other hand, we have for any 1 ≤ t ≤ n,

H i
n2(t) =

1

(di − 1)!

t∑
s=1

((
t

n
− s

n

)di−1 ε̃is√
n
−
∫ s/n

(s−1)/n

(
t

n
− a
)di−1

dW i(a)

)

=d 1

(di − 1)!

t∑
s=1

∫ s/n

(s−1)/n

[(
t

n
− s

n

)di−1
−
(
t

n
− a
)di−1]

dW i(a). (S.19)

This gives

sup
1≤i≤p−r

sup
1≤t≤n

|H i
n2(t)| = nOa.s(n

−3/2 log n) = Oa.s.(n
−1/2 log n). (S.20)

Since the normal sequences {νit} are independent with respect to i, it follows that

sup
1≤j≤p−r

sup
1≤t≤n

|ξjt | = Oa.s.(n
dj−1/2 log n). (S.21)
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Thus, by (S.18), (S.20) and (S.21), we have

sup
1≤i,j≤p−r

|Jn1(i, j)| = Oa.s.(n
−1/2 log2 n). (S.22)

Similarly, we have

sup
1≤i,j≤p−r

|Jn2(i, j)| = Oa.s.(n
−1/2 log2 n). (S.23)

Using the same argument, we can show

sup
1≤i,j≤p−r

∣∣∣∣(ξ̄i/ndi−1/2)(ξ̄j/ndj−1/2)− ∫ 1

0
f i(t) dt

∫ 1

0
f i(t) dt

∣∣∣∣ = Oa.s.(n
−1/2 log2 n). (S.24)

Combining equations (S.17), (S.22)–(S.24), we have (S.14) and conclude (7.3). The positive

definiteness of
∫ 1
0 F(t)F′(t) dt can be shown similarly to that of Lemma 3.1.1 in Chan and Wei

(1988).

Proof of Lemma 10. We first consider the case with fixed p. To this end, we split the matrix

into three parts: the nonstationary block, the cross block with elements being the product of

stationary component with nonstationary component and the stationary block.

(I) As for the nonstationary block, we have for 1 ≤ i, h ≤ p− r,

n−j∑
t=1

(xit+j − x̄i)(xht − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

= −
j∑
t=1

(xit − x̄i)(xht − x̄h)−
n−j∑
t=1

(xit+j − x̄i)(xht+j − xht )

= −
j∑
t=1

(xit − x̄i − µiLdi(t))(x
h
t − x̄h − µhLdh(t))−

n−j∑
t=1

(xit+j − x̄i − µiLdi(t))(x
h
t+j − xht )

−µh
j∑
t=1

Ldh(t)(xit − x̄i − µiLdi(t))− µi
j∑
t=1

Ldi(t)(x
h
t − x̄h − µhLdh(t))

−µiµh
j∑
t=1

Ldh(t)Ldi(t)− µi
n−j∑
t=1

Ldi(t)(x
h
t+j − xht )

=:

6∑
m=1

δnm(j, i, h).

From (S.4), it follows that

sup
0≤j≤j0

|δn1(j, i, h)|
ndi+dh

≤ j0
n

(
sup

1≤t≤n

|xit − x̄i − µiLdi(t)|
ndi−1/2

)(
sup

1≤t≤n

|xht − x̄h − µhLdh(t)|
ndh−1/2

)
(S.25)

= Op(1/n).

As for δn2(j, i, h), we have
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(i) If dh = 1, then xht+j − xht =
∑t+j

i=t+1 ε
h
i . Since E|εhi | <∞, it follows that

sup
0≤j≤j0

|δn2(j, i, h)|
ndi+dh

≤
(

sup
t≤n

|xit − x̄i − µiLdi(t)|
ndi−1/2

)(
1

n3/2

n∑
t=1

t+j0∑
i=t+1

|εhi |

)
(S.26)

= Op(1/n
1/2).

(ii) If dh ≥ 2, then xht+j − xht =
∑t+j

s=t+1[U
h
s (dh − 1) + V h

s (dh − 1)] (see Lemma 7), it follows

that

sup
1≤t≤n

sup
1≤j≤j0

|xht+j − xht |
ndh−1/2

≤ j0

n1/2
sup

1≤s≤n

|Uhs (dh − 1) + V h
s (dh − 1)|

ndh−1
= Op(1/n

1/2), (S.27)

which implies

sup
j≤j0

|δn2(j, i, h)|
ndi+dh

≤
(

sup
t≤n

|xit − x̄i − µiLdi(t)|
ndi−1/2

)(
sup
t≤n

sup
j≤j0

|xht+j − xht |
ndh−1/2

)
(S.28)

= Op(1/n
1/2).

Let ∆nm(j) = (δnm(j, i, h))(p−r)×(p−r), m = 1, 2, · · · , 6. Then by equations (S.25) – (S.28),

sup
1≤j≤j0

||D−1n1 Bn−1(∆n1(j) + ∆n2(j))B
′D−1n1 ||2

≤

(
p∑
i=1

p∑
l=1

p∑
m=1

|bilbim|

)
Op(1/n

1/2)

≤

(
p∑
i=1

p∑
l=1

p∑
m=1

(b2il + b2im)

)
Op(1/n

1/2) = Op(p
2/n1/2). (S.29)

By the definition of B, it is easy to see that the elements of B∆n3(j), B∆n4(j) are zero except

in rows
∑j

i=1 si, j = 1, 2, · · · , l and the non-zero elements have the following forms:

n−1/2
j∑
t=1

Lah(t)(xit − x̄i − µiLdi(t)).

Thus, by

sup
1≤j≤j0

∣∣∣∣∣
∑j

t=1 Ldh(t)(xit − x̄i − µiLdi(t))
ndh+di−1/2

∣∣∣∣∣ = Op(1),

we have

sup
1≤j≤j0

||D−1n1 Bn−1(∆n3(j) + ∆n4(j))B
′D−1n1 ||2 = Op(pn

−1). (S.30)

Similarly, by sup1≤j≤j0

∣∣∣∣∑j
t=1 Ldh

(t)Ldi
(t)

ndi+dh

∣∣∣∣ = Op(1), we have

sup
1≤j≤j0

||D−1n1 Bn−1∆n5(j)B
′D−1n1 ||2 = Op(pn

−1). (S.31)
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Further, using (S.7), similar to (S.26) and (S.27), we can show

sup
1≤j≤j0

1

ndi+dh+1/2

n−j∑
t=1

Ldi(t)(x
h
t+j − xht ) = Op(1/n

1/2).

Thus, for ∆n6(j) we have

sup
1≤j≤j0

||D−1n1 Bn−1∆n6(j)B
′D−1n1 ||2 = Op(p/n

1/2). (S.32)

Combining equations (S.29), (S.30), (S.31) and (S.32) gives

D−1n1 B

n

∣∣∣∣∣
∣∣∣∣∣
n−j∑
t=1

(xt+j,1 − x̄1)(xt1 − x̄1)
′ −

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′

∣∣∣∣∣
∣∣∣∣∣
2

B′D−1n1 (S.33)

= Op(p
2/n1/2).

(II) As for the cross block, we first show∣∣∣∣∣
∣∣∣∣∣D−1n1 Bn−1

n∑
t=1

(xt1 − x̄1)(xt2 − x̄2)
′

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
t=1

(xt2 − x̄2)(xt1 − x̄1)
′B′D−1n1

∣∣∣∣∣
∣∣∣∣∣
2

(S.34)

= op(1).

Note that for 1 ≤ i ≤ p− r and p− r ≤ h ≤ p,
n∑
t=1

(xit − x̄i)(xht − x̄h) =

n∑
t=1

(xit − x̄i − µiLdi(t))(x
h
t − x̄h) + µi

n∑
t=1

Ldi(t)(x
h
t − x̄h),

=: ω1
ih + ω2

ih. (S.35)

Let Ω1 = (ω1
ih)(p−r)×r and Ω2 = (ω2

ih)(p−r)×r. Then the elements of BΩ1 = (ejh) have the

following expression:

ejh =

p−r∑
i=1

bji

n∑
t=1

(xit − x̄i − µiLdi(t))(x
h
t − x̄h) =

p−r∑
i=1

bjiω
1
ih.

By Lemma 7, we have

∣∣∣ ejh

ndi+1/2

∣∣∣ ≤ 1

ndi+1/2

p−r∑
i=1

|bjiω1
ih| = op(1). (S.36)

On the other hand, by the definition of B, the elements of BΩ2 = (djh) can be represented as

djh =
1

n1/2

n∑
t=1

Lai(t)(x
h
t − x̄h)I(j = si), i = 1, 2, · · · , l.

It is easy to get that

|djh|/n1/2+di = op(1). (S.37)
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Consequently, by (S.36) and (S.37), it follows that∣∣∣∣∣
∣∣∣∣∣D−1n1 Bn−1

n∑
t=1

(xt1 − x̄1)(xt2 − x̄2)
′

∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣D−1n1 Bn−1Ω1

∣∣∣∣
2

+
∣∣∣∣D−1n1 Bn−1Ω2

∣∣∣∣
2

(S.38)

= op(1).

Similarly, ∣∣∣∣∣
∣∣∣∣∣n−1

n∑
t=1

(xt2 − x̄2)(xt1 − x̄1)
′B′D−1n1

∣∣∣∣∣
∣∣∣∣∣
2

= op(1). (S.39)

(S.34) follows from (S.38) and (S.39).

Next, we show

sup
j≤j0

∣∣∣∣∣
∣∣∣∣∣D−1n1 B

n

(
n−j∑
t=1

(xt+j,1 − x̄1)(xt,2 − x̄2)
′ −

n∑
t=1

(xt1 − x̄1)(xt2 − x̄2)
′

)∣∣∣∣∣
∣∣∣∣∣
2

= op (1) (S.40)

and

sup
j≤j0

∣∣∣∣∣
∣∣∣∣∣ 1n
(
n−j∑
t=1

(xt,2 − x̄2)(xt+j,1 − x̄1)
′ −

n∑
t=1

(xt2 − x̄2)(xt1 − x̄1)
′

)
B′D−1n1

∣∣∣∣∣
∣∣∣∣∣
2

(S.41)

= op (1) .

As for (S.40), note that for any 1 ≤ i ≤ p− r, p− r + 1 ≤ h ≤ p,

1

ndi+1/2

(
n−j∑
t=1

(xit+j − x̄i)(xht − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

)

=
1

n

n−j∑
t=1

(
xit+j − xit
ndi−1/2

)
(xht − Exh1)− (x̄h − Exh1)

n

n−j∑
t=1

(
xit+j − xit
ndi−1/2

)

− 1

ndi+1/2

n∑
t=n−j+1

(xit − x̄i)(xht − x̄h)

= L1n(j, i, h) + L2n(j, i, h) + L3n(j, i, h). (S.42)

By (S.27) and 1
n

∑n
t=1 E|xht | = O(1), it follows that when di ≥ 2,

sup
0≤j≤j0

|L1n(j, i, h)| = Op(1/n
1/2). (S.43)

When di = 1, by xit+j − xit =
∑t+j

s=t+1 ε
i
s, we have

E sup
0≤j≤j0

|L1n(j, i, h)| ≤ max
1≤t≤n

1

n1/2

t+j0∑
s=t+1

E|εis(xht − Exh1)| = O(1/n1/2).

Thus, (S.43) also holds for di = 1. Similar to L1n(j, i, h), we have

sup
1≤j≤j0

∣∣∣∣∣ 1n
n−j∑
t=1

xit+j − xit
ndi−1/2

∣∣∣∣∣ = Op(1/n
1/2).
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This combining with Condition 1 show

sup
j≤j0
|L2n(j, i, h)| = n−1/2

(
n1/2|x̄h − Exh1 |

) ∣∣∣∣∣ 1n
n−j∑
t=1

xit+j − xit
ndi−1/2

∣∣∣∣∣ = Op(1/n). (S.44)

For L3n(j, i, h), by Lemma 7 and (S.7), we have

sup
1≤t≤n

|xit − x̄i|/ndi = Op(1),

thus by
∑n

t=n−j0+1 E|xht |/n1/2 = O(1/n1/2), we have

sup
j≤j0
|L3n(j, i, h)| = Op(1/n

1/2). (S.45)

Therefore, by (S.42)–(S.45),

sup
j≤j0

1

ndi+1/2

∣∣∣∣∣
n−j∑
t=1

(xit+j − x̄i)(xht − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

∣∣∣∣∣ = Op(1/n
1/2), (S.46)

which shows (S.40).

For (S.41), note that for any 1 ≤ i ≤ p− r, p− r + 1 ≤ h ≤ p,

1

ndi+1/2

(
n−j∑
t=1

(xit − x̄i)(xht+j − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

)

=
1

ndi+1/2

n−j∑
t=1

(xht+j − xht )(xit − x̄i) + L3n(j, i, h) =: L4n(j, i, h) + L3n(j, i, h).

Let L(j) = (L4n(j, i, h))′(p−r)×r and decompose L4n(j, i, h) into two terms as in (S.35). Using the

same arguments as in (S.36) and (S.37), we can show

sup
j≤j0
||n−1L(j)B′D−1n1 ||2 = op(1), (S.47)

thus, by (S.45), we have (S.41). Combining equations (S.34) with (S.40) and (S.41) shows that

the cross blocks tend to 0 in probability.

(III) As for the stationary block, let Υx
j and Υ̂

x

j be the matrixes obtained by replacing the

stationary block 1
n

∑n−j
j=1 (xt+j,2 − x̄2)(xt2 − x̄2)

′ in Σx
j and Σ̂

x

j with Cov(x1+j,2, x′1,2). By (ii) of

Condition 1, we have

||Σx
j −Υx

j ||2 = op(1) and ||Σ̂
x

j − Υ̂
x

j ||2 = op(1). (S.48)

Thus, by (S.33) and the fact that the cross blocks tend to 0 in probability (see (II)), we have

||D−1n Θn(Σx
j − Γxj )Θ′nD

−1
n ||2 ≤ ||D−1n Θn(Σx

j −Υx
j )Θ′nD

−1
n ||2 + ||D−1n Θn(Υx

j − Γxj )Θ′nD
−1
n ||2

= op(1)
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and

||D−1n Θn(Σ̂
x

j − Γxj )Θ′nD
−1
n ||2 ≤ ||D−1n Θn(Σ̂

x

j − Υ̂
x

j )Θ′nD
−1
n ||2 + ||D−1n Θn(Υ̂

x

j − Γxj )Θ′nD
−1
n ||2

= op(1).

Hence, Lemma 10 holds for finite p.

Next, consider the case: p = o(n1/2−τ ). We still split the matrix into three parts as above.

(The nonstationary block.) Since b1 ≤ limn→∞Var(
∑n

s=1 z
i
s/
√
n) ≡ σ2ii ≤ b2 for all i, it

follows that as n→∞,

max
1≤t≤n

Var
( t∑
s=1

zis/
√
n
)
≤ b2 and max

1≤t≤n
Var
(
xit/n

di−1/2
)
≤ b2. (S.49)

Let δn1(j, i, h), δn2(j, i, h) be defined as above with µi = µh = 0. Note that the components of

{zt} are independent, by (S.49) and some elementary computation, we can show

E

 p−r∑
i,h=1

(
sup
j≤j0

|δn1(j, i, h)|
ndi+dh

)2
 = O(j20p

2/n2)

and

E

 p−r∑
i,h=1

(
sup
j≤j0

|δn2(j, i, h)|
ndi+dh

)2
 = O(j20p

2/n).

Combining the above two equations yields

D−1n1n
−1

∣∣∣∣∣
∣∣∣∣∣
n−j∑
t=1

(xt+j,1 − x̄1)(xt1 − x̄1)
′ −

n∑
t=1

(xt,1 − x̄1)(xt1 − x̄1)
′

∣∣∣∣∣
∣∣∣∣∣
2

D−1n1 (S.50)

= Op(pn
− 1

2 ).

(The cross block.) Let ωih be defined as in (S.35) with µi = 0. Since zt and xt2 are

independent, it follows from (S.49) that

E
[ p−r∑
i=1

p∑
h=p−r+1

ω2
ih

]
=

p−r∑
i=1

p∑
h=p−r+1

E(ω2
ih)

=

p−r∑
i=1

p∑
h=p−r+1

n−2
n∑

t,t′=1

E
[(xit − x̄i)
ndi−1/2

(xit′ − x̄i)
ndi−1/2

]
E[(xht − x̄h)][(xht′ − x̄h)]

= O

p−r∑
i=1

p∑
h=p−r+1

n−2
n∑

t,t′=1

|E[(xht − x̄h)][(xht′ − x̄h)]|

 = O(p2/n1−2τ )

by (iii) of Condition 2, which implies∣∣∣∣∣
∣∣∣∣∣D−1n1n−1

n∑
t=1

(xt1 − x̄1)(xt2 − x̄2)
′

∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣D−1n1n−1Ω1

∣∣∣∣
2

= Op(pn
−1/2+τ ). (S.51)
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Similarly, ∣∣∣∣∣
∣∣∣∣∣n−1

n∑
t=1

(xt2 − x̄2)(xt1 − x̄1)
′D−1n1

∣∣∣∣∣
∣∣∣∣∣
2

= Op(pn
−1/2+τ ). (S.52)

Further, by some elementary computation, it is easy to show

E
[ p−r∑
i=1

p∑
j=p−r+1

3∑
l=1

(Lln(j, i, h))2
]

= O(pr/n1−2τ ),

which gives

sup
j≤j0

∣∣∣∣∣
∣∣∣∣∣D−1n1n

(
n−j∑
t=1

(xt+j,1 − x̄1)(xt+j,2 − x̄2)
′ −

n∑
t=1

(xt1 − x̄1)(xt2 − x̄2)
′

)∣∣∣∣∣
∣∣∣∣∣
2

(S.53)

= Op(pn
− 1

2
+τ ).

Note that L4n(j, i, h) =
∑n

t=n−j+1(x
i
t− x̄i)xht −

∑j
t=1(x

i
t− x̄i)xht −

∑n−j
t=1 (xit+j −xit)xht+j , it is easy

to show that E
[∑p−r

i=1

∑p
j=p−r+1(L4n(j, i, h))2

]
= O(pr/n1−2τ ) too, thus

sup
j≤j0

∣∣∣∣∣
∣∣∣∣∣ 1n
(
n−j∑
t=1

(xt+j,2 − x̄2)(xt+j,1 − x̄1)
′ −

n∑
t=1

(xt2 − x̄2)(xt1 − x̄1)
′

)
D−1n1

∣∣∣∣∣
∣∣∣∣∣
2

(S.54)

= Op(pn
− 1

2
+τ ).

Consequently, by equations (S.51)–(S.54), we get that the norms of the cross blocks areOp(pn
− 1

2
+τ ).

(The stationary block.) By (ii) of Condition 2, we also have (S.48). Thus, by (S.50) and

the bound of the cross blocks (see above), we have if p = o(n1/2−τ ),

||D−1n (Σx
j − Γxj )D−1n ||2 ≤ ||D−1n (Σx

j −Υx
j )D−1n ||2 + ||D−1n (Υx

j − Γxj )D−1n ||2

= op(1) +Op(pn
−1/2) = op(1)

and

||D−1n (Σ̂
x

j − Γxj )D−1n ||2 ≤ ||D−1n (Σ̂
x

j − Υ̂
x

j )D−1n ||2 + ||D−1n (Υ̂
x

j − Γxj )D−1n ||2 = op(1).

Hence, Lemma 10 follows. And the proof of Lemma 10 is complete.

Proof of Lemma 13. We only give the proof for µj = 0, j = 1, · · · , p in details, other case can be

proved similarly. By Lemma 12 and the continuous mapping theorem, it follows that (i) holds for

j = 0. Thus, it suffices to show for any 1 ≤ i, h ≤ p,

sup
1≤j≤j0

∣∣∣∣∣ 1

ndi+dh

(
n−j∑
t=1

(xit+j − x̄i)(xht − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

)∣∣∣∣∣ = op(1). (S.55)
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Observe that
n−j∑
t=1

(xit+j − x̄i)(xht − x̄h)−
n∑
t=1

(xit − x̄i)(xht − x̄h)

=

n−j∑
t=1

(xit+j − xit)(xht − x̄h)−
n∑

t=n−j+1

(xit − x̄i)(xht − x̄h) =: αn1(j, i, h) + αn2(j, i, h).

By Lemma 11, it follows that for any 1 ≤ i, h ≤ p,(
(xi[nt] − x̄

i)/ndi−1/2, (xh[ns] − x̄
h)/ndh−1/2

)
J1=⇒ (U i(t), Uh(s)) on D[0, 1]2. (S.56)

This gives

sup
0≤j≤j0

|αn2(j, i, h)|/ndi+dh = Op(1/n). (S.57)

Further, for any ε > 0, then

lim
n→∞

P{ sup
1≤j≤j0

sup
1≤t≤n−j

|xit+j − xit|/ndi−1/2 > ε} = 0. (S.58)

Thus,

sup
0≤j≤j0

|αn1(j, i, h)|/ndi+dh = op(1). (S.59)

Combining (S.57) and (S.59) gives (S.55) as desired.

By (i) of Condition 3, it follows that

1

n

n∑
t=1

(xt+j,I1 − x̄I1)(xt,I1 − x̄I1)
p−→ Cov(xt+j,I1xt,I1).

Thus, by (i) of Lemma 12, we have (7.28).

As for (7.27), it is enough to show for any i ∈ Ic1 and h ∈ I1,

1

ndi+1/2

n−j∑
i=1

(xit+j − x̄i)(xht − x̄h) =
αn1(j, i, h)

ndi+1/2
+
αn2(j, i, h)

ndi+1/2
+

1

ndi+1/2

n∑
i=1

(xit − x̄i)(xht − x̄h)

p−→ 0, (S.60)

holds for all 0 ≤ j ≤ j0. Similar to Lemma 7, we can show

1

ndi+1/2

n∑
i=1

(xit − x̄i)(xht − x̄h)
p−→ 0. (S.61)

By (S.56) and n−1
∑n

t=n−j0 E|xht − x̄h| = O(j0n
−1), we have

sup
j≤j0

αn2(j, i, h)/ndi+1/2 = Op(1/n). (S.62)

By (S.58) and 1
n

∑n
t=1 E|xht − x̄h| = O(1), we have

sup
j≤j0

αn1(j, i, h)/ndi+1/2 = op(1). (S.63)

(S.60) follows by equations (S.61)–(S.63).
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S.2 Proofs of Remarks 5 and 6

Proof of Remark 5. (i) By the martingale version of the Skorokhod representation theorem (S-

trassen 1967, Hall and Heyde 1980, and Wu 2007), we have for all i, on a richer probability space,

there exists a standard Brownian motion {W (t)} and a non-negative stopping times {τ ij} such

that for t ≥ 1,

Sit = W (

t∑
j=1

τ ij) and E[τ it |Ft−1(i)] = E[(εit)
2|Ft−1(i)], (S.64)

where Ft(i) is the σ-algebra generated by {εis, s ≤ t}. This implies that

E|Sit −W (σiit)|2 = E|
t∑

j=1

τ ij − σiit|

≤ E

∣∣∣∣∣∣
t∑

j=1

(τ ij − E(τ ij |Ft−1(i))

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
t∑

j=1

[(εij)
2 − E((εij)

2|Ft−1(i))]

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
t∑

j=1

(εij)
2 − σiit

∣∣∣∣∣∣ .
Since both {τ ij − E(τ ij |Ft−1(i))} and {(εij)2 − E((εij)

2|Ft−1(i))} are martingale difference and

E|εit|q <∞, it follows that

sup
1≤t≤n

E

∣∣∣∣∣∣
t∑

j=1

(τ ij − E(τ ij |Ft−1(i))

∣∣∣∣∣∣ = O

E

∣∣∣∣∣∣
n∑
j=1

[τ ij − E(τ ij |Ft−1(i))]

∣∣∣∣∣∣
 = O(n2/q

∗
).

Similarly, sup1≤t≤n E
∣∣∣∑t

j=1[(ε
i
j)

2 − E((εij)
2|Ft−1(i))]

∣∣∣ = O(n2/q
∗
). Further, condition E

∣∣∣∑n
k=1[(ε

i
t)
2

−σ2ii]
∣∣∣ = O(n2/q

∗
) implies that sup1≤t≤n E

∣∣∑t
k=1[(ε

i
t)
2 − σ2ii]

∣∣ = O(n2/q
∗
). Thus, Condition 2(i)

holds for any τ > 1/q∗. If p = o(n1/2), Condition 2(ii) holds. Since the components of εt are

independent, Condition 2(iii) follows with supj
∑n

s,t=1 E|εjsεjt | = O(n).

(ii) By the proof of Theorem 9.3.1 of Lin and Lu (1996), we know that there exists a martingale

difference sequence {mi
t} such that Rt = Sit−M i

t satisfying E|Rt|q = O(1), where M i
t =

∑t
j=1m

i
j .

Further,

E

∣∣∣∣∣∣
n∑
j=1

[(mi
j)

2 − E(mi
j)

2]

∣∣∣∣∣∣
q/2

≤ Cn log n. (S.65)

As a result, Condition 2(i) holds for any τ > 1/q. Similarly, Condition 2(iii) can be easily obtained

by basic inequality for mixing processes, see Lemma 1.2.2 of Lin and Lu (1996). Note that for

any given j,

E
∥∥∥ 1

n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(x1+j,2,x1,2)

∥∥∥
2

≤
p∑

i,j=p−r+1

E

(
1

n

n∑
t=1

[(xit − x̄i)(x
j
t − x̄j)− Cov(xit, x

j
t )]

)2

= O(p2/n)→ 0
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as p = o(n1/2). Condition 2(ii) holds too.

(iii) By Beveridge-Nelson decomposition, εit can be represented as

εit =
( ∞∑
j=0

cij

)
ηit − (εt − εt−1), εt =

∞∑
j=0

c̃ijη
i
t−j , c̃ij =

∞∑
h=j+1

ch.

Let Rit = Sit −
(∑∞

j=0 cij

)∑t
j=1 η

i
j = εt − ε0. Then

sup
1≤t≤n

∣∣∣∣∣∣Sit −
( ∞∑
j=0

cij

) t∑
j=1

ηij

∣∣∣∣∣∣
2

= O(1) (S.66)

Since {ηit} is an i.i.d sequence with E|ηij |q <∞, by Theorem 4.3 of Strassen (1967), the stopping

{τ it} defined as in (S.64) is an independent sequence with Eτ it = E(ηij)
2 and E|τ it |q/2 <∞. Thus,

sup1≤t≤n E|
∑t

j=1[τ
i
j − E(ηij)

2]|q/2 = O(n+ nq/4). As a result, we have for q0 = min{q, 4},

sup
1≤t≤n

E|
t∑

j=1

[τ ij − E(ηij)
2]| = O(n2/q0).

Let ai = E(ηij)
2, then on a richer space there exist a standard Brownian motion W (t) such that

E(
t∑

j=1

ηij −W (ait))
2 = O(n2/q0). (S.67)

Thus, by (S.66), (S.67), Condition 2(i) holds for τ = 1/q0. It is easy to show that sup
p−r<j≤p

n∑
s,t=1

|E(εjtε
j
s)|

= O(n). Thus, Condition 2(iii) follows by the independence of the components. Condition 2(ii)

can be shown similarly to Remark 5(ii).

Proof of Remark 6. It is easy to get λ∗ = Oe(1) when p − r is fixed. We only show the case

when m := p − r → ∞ as n → ∞. Let d = dmin, ξ
i
t be I(1) process defined as in Lemma 9,

ξ̄
i

= (ξ̄i, · · · , ξ̄i)′ and e = (1, · · · , 1)′ be two n dimensional vectors. Let En and Πn be n × n

matrices given by

En = In −
1

n
ee′ and Πn =


1 0 0 0 · · · 0

−1 1 0 0 · · · 0
...

...
...

...
...

...

0 0 0 · · · −1 1

 ,

then for any 1 ≤ i, j ≤ m,

ξi = (ξi1, · · · , ξin)′ = σiiΠ
−d
n (vi1, v

i
2, · · · , vin)′ =: σiiΠ

−d
n Vi, and

(ξi − ξ̄i)′(ξj − ξ̄j) = σiiσjj(V
i)′(Π−dn )′EnE

′
nΠ
−d
n Vj .
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Let δ1 ≤ · · · ≤ δn and γ1 ≥ · · · ≥ γn be the eigenvalues of ΠnΠ
′
n and (Π−dn )′EnE

′
nΠ
−d
n respec-

tively. Since λ1(EnE
′
n) = · · · = λn−1(EnE

′
n) = 1, by Theorem 9 of Merikoski and Kumar (2004),

it follows that

δ−di+1 = λi+1((Π
−d
n )′Π−dn )λn−1(EnE

′
n) ≤ γi ≤ λi((Π−dn )′Π−dn )λ1(EnE

′
n) = δ−di . (S.68)

Further, δk = 2− 2 cos(2kπ/(2n+ 1)), k = 1, 2, · · · , n (see Yueh (2005)), which implies

δk ∼ 4(kπ/(2n+ 1))2, as k/n→ 0. (S.69)

Let U be an orthogonal matrix with row vectors u1, · · · ,un such that (Π−dn )′EnE
′
nΠ
−d
n =

Udiag(γ1, · · · , γn)U′ and let Ω = (V1, · · · ,Vm). For x ∈ Rm with x′x = 1, define UΩx =

(b1x, · · · , bnx)′ = bx ∈ Rn. By (S.68), we have

λmin

(
1

n2d

n∑
t=1

(ξt − ξ̄)(ξ′t − ξ̄
′
)

)

= λmin

(
1

n2d
(ξ1 − ξ̄1, · · · , ξm − ξ̄m)′(ξ1 − ξ̄1, · · · , ξm − ξ̄m)

)
≥ {min

i
(σii)}2 min

x

1

n2d
x′(UΩ)′diag(γ1, · · · , γn)(UΩ)x

= {min
i

(σii)}2 min
x

(b′xbx)

n2d
b′x(γ1, · · · , γn)bx

b′xbx

≥ {min
i

(σii)}2n1−2dλmin(Ω′Ω/n) min
x

(
k∑
l=1

δ−dk+1b
2
lx/

n∑
l=1

b2lx

)

≥ {min
i

(σii)}2(k/n2d)[λmin(Ω′Ω/n)/λmax(Ω′Ω/n)]δ−dk+1 min
x

1

k

k∑
l=1

b2lx

= Oe(k
1−2d)λmin{[Ω′(u′1, · · · ,u′k)][(u′1, · · · ,u′k)′Ω]}, (S.70)

where λmin, λmax denote the smallest and largest eigenvalues of a matrix respectively, the last

equation follows by (S.69) and the fact that there exist two positive constants C1, C2 such that

C1 < λmin(Ω′Ω/n) ≤ λmax(Ω′Ω/n) < C2 in probability when p/n1/2 → 0. Since U is orthogonal

and the elements of Ω are independent standard normal variables, it follows that the elements

of (u′1, · · · ,u′k)′Ω are independent and standard normal variables, thus by Theorem 2 of Bai and

Yin (1993), we have if m/k ∈ (0, 1),

λmin{[Ω′(u′1, · · · ,u′k)][(u′1, · · · ,u′k)′Ω]} = (1−
√
m/k)2, a.s. (S.71)

Taking k = 2m, then by (S.70) and (S.71), we have

λmin

(
1

n2d

n∑
t=1

(ξt − ξ̄)(ξ′t − ξ̄
′
)

)
≥ Cm1−2d. (S.72)

Since || 1
n2d

∑n
t=1(ξt − ξ̄)(ξ′t − ξ̄

′
) −

∫ 1
0 F(t)F′(t) dt||2 = op(1) (see Lemma 9), Remark 4 follows

from (S.72).

15



S.3 Numerical studies for j0 and m

To evaluate the impact of the choice of j0 and m, we report some of our simulation results in this

subsection.

We first present a numerical result for the choice j0. We let xt2 in model (2.1) consist of r

stationary AR(1) processes with coefficients generated independently from U(−0.8, 0.8), xt1 be

p − r ARIMA(1,1,1) processes with coefficients generated from U(0, 0.8) and U(−0.8, 0.8). Let

the elements of A be generated independently from U(−3, 3). We estimate the cointegration rank

r by the ACF unit-root test defined in (2.5). For each setting, we replicate the exercise 500 times

with sample size n = 300, 500, 1000 and j0 ranging from 5 to 90. The relative frequencies for the

occurrence of events {r̂ = r} and the average distance between the true cointegrating space and

its true space are reported in Table S.1. It is shown from Table S.1 that the performance is stable

with respect to the choice of j0, especially for small p and large n.

Table S.1: Relative frequencies (RF) of the occurrence of event {r̂ = r} and average distance D1 with j0
ranging over (5, 90) and 500 replications.

(p,r) n j=5 10 20 30 40 50 60 70 80 85 90
RF .950 .928 .938 .960 .940 .924 .928 .948 .934 .926 .926

300 D1 .062 .069 .057 .047 .065 .065 .070 .053 .064 .068 .068
RF .982 .982 .986 .978 .984 .974 .978 .980 .978 .976 .988

(4, 2) 500 D1 .029 .024 .023 .029 .027 .036 .028 .030 .029 .030 .024
RF .992 .994 .996 .996 .994 .998 1.00 1.00 .994 .998 .998

1000 D1 .013 .012 .013 .012 .011 .014 .008 .009 .014 .012 .009

RF .822 .794 .834 .810 .802 .826 .828 .794 .834 .816 .812
300 D1 .128 .137 .115 .131 .136 .121 .122 .136 .120 .124 .129

RF .934 .948 .946 .938 .960 .962 .964 .970 .952 .960 .958
(6, 3) 500 D1 .061 .053 .053 .062 .052 .049 .047 .045 .050 .045 .050

RF .988 .990 .994 .994 .976 .984 .992 .994 .988 .994 .994
1000 D1 .024 .018 .018 .018 .026 .022 .017 .017 .021 .020 .020

RF .562 .564 .578 .628 .612 .648 .620 .646 .592 .598 .610
300 D1 .230 .224 .223 .204 .211 .198 .209 .194 .217 .213 .213

RF .874 .886 .858 .908 .884 .920 .910 .934 .900 .898 .914
(8, 4) 500 D1 .093 .078 .101 .078 .085 .077 .077 .067 .081 .081 .078

RF .966 .978 .986 .980 .984 .986 .986 .986 .988 .988 .990
1000 D1 .046 .031 .028 .032 .030 .030 .027 .029 .031 .028 .028

Next table is reported for the choice of m. In this simulation, xt1 and xt2 are generated from

model (2.1) as the previous example. We also replicate the exercise 500 times in each setting

with sample size n = 300, 500 and 1000 and the lags number m is taken from 5 to 90. The

corresponding relative frequencies for the occurrence of events {r̂ = r} and the average distance

between the true cointegrating space and its true space are reported in Table S.2. It is shown

from Table S.2 that a relatively small m always works well for the estimation of the cointegrating

space. On the contrary, if m is selected too large, the performance is relatively poor, especially
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when the sample size n is relatively small. This is reasonable, because from Remark 1, we know

that only when n/m → ∞,
∑m

k=1 ρ̂(k)/m − 1 → 0, otherwise, it is difficult to distinguish the

integrated process from the stationary process, which means that m could not be selected too

large, especially when n is relatively small. This simulation also confirms that m = 20 is usually

good enough for the procedure.

In our simulation, we also use a data driven procedure in selecting m, which is given by

m̂ = argminm{f(m) ∨ f−1(m)}

where T (m) =
{

n
m(m+1)

∑p
i=1

∑m
k=1(1− ρ̂i(k))

}
and f(m) = T (m)/T (m+1). It also work reason-

ably, for example, when (p, r) = (6, 3), the corresponding relative correct frequencies and average

distance is (0.776, 0.119) for n = 300, (0.888, 0.062) for n = 500 and (0.970, 0.0229) for n = 1000.

Table S.2: Relative frequencies (RF) of the occurrence of event {r̂ = r} and average distance D1 with m
ranging over (5, 90) and 500 replications.

(p,r) n j=5 10 20 30 40 50 60 70 80 85 90
RF .872 .976 .980 .968 .936 .882 .816 .744 .644 .602 .586

300 D1 .016 .021 .025 .031 .048 .078 .115 .156 .211 .235 .243
RF .864 .980 .998 .998 .996 .986 .968 .942 .914 .896 .866

(3, 2) 500 D1 .008 .009 .010 .010 .011 .017 .026 .041 .056 .067 .084
RF .874 .980 .996 .996 .996 .994 .994 .992 .992 .992 .992

1000 D1 .006 .005 .006 .006 .006 .007 .007 .008 .008 .008 .008

RF .850 .942 .916 .818 .702 .560 .398 .250 .140 .102 .070
300 D1 .043 .050 .064 .101 .149 .211 .283 .349 .403 .422 .441

RF .848 .966 .972 .958 .916 .854 .762 .660 .568 .518 .462
(6, 4) 500 D1 0.024 .026 .029 .034 .051 .076 .115 .160 .200 .223 .248

RF .842 .974 .996 .996 .992 .984 .976 .968 .942 .928 .906
1000 D1 .011 .012 .013 .013 .014 .017 .020 .023 .034 .039 .049

RF .802 .848 .732 .510 .290 .118 .040 .004 0 0 0
300 D1 .083 .095 .128 .203 .286 .363 .414 .452 .476 .483 .494

RF .800 .944 .930 .896 .792 .638 .438 .294 .186 .132 .104
(9, 6) 500 D1 .039 .045 .052 .063 .098 .154 .227 .286 .334 .359 .375

RF .856 .984 .990 .980 .980 .964 .946 .914 .862 .834 .786
1000 D1 .018 .019 .019 .021 .021 .026 .032 .044 .062 .072 .089
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