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A Censored likelihoods

Here we detail forms of censored likelihoods for the models proposed in Section 7. For
simplicity they are presented in standardized (σ = 1, γ = 0) form, i.e.,

hC(xD\C ,vC ; 1,0) =

∫
×j∈C(−∞,vj ]

h(x; 1,0) dxC , (A.1)

for vj ≤ 0 and h corresponding to either hT or hU . The generalized form of a censored
likelihood is easily obtained from (A.1) as

hC(xD\C ,vC ;σ,γ) = hC
(

1
γD\C

log(1 + γD\CxD\C/σD\C), 1
γC

log(1 + γCvC/σC); 1,0
)
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×
∏

j∈D\C

1

σj + γjxj
.

The support for each density is {x ∈ Rd : x 6≤ 0}, and we let |C| denote the cardinality of
the set C.

Generators with independent Gumbel components

Case fT = fV .

hC(xD\C ,vC ; 1,0) = e−max(x)

×
∫ ∞

0

t−1
∏
j∈C

e−(tevj−βj )−αj
∏

j∈D\C

αj
(
texj−βj

)−αj
e−(texj−βj )−αj dt.

If all αj are equal to α:

hC(xD\C ,vC ; 1,0) = e−max(x)
αd−|C|−1Γ(d− |C|)

∏
j∈D\C e

−α(xj−βj)(∑
j∈C e

−α(vj−βj) +
∑

j∈D\C e
−α(xj−βj)

)d−|C| .
Case fU = fV .

hC(xD\C ,vC ; 1,0) =

∫∞
0

∏
j∈C e

−(tevj−βj )−αj
∏

j∈D\C αj
(
texj−βj

)−αj e−(texj−βj )−αj dt∫∞
0

(
1−

∏d
j=1 e

−(t/eβj )−αj
)

dt
.

If all αj are equal to α:

hC(xD\C ,vC ; 1,0) =
αd−|C|−1Γ(d− |C| − 1/α)

(∑d
j=1 e

βjα
)−1/α∏

j∈D\C e
−α(xj−βj)

Γ(1− 1/α)
(∑

j∈C e
−α(vj−βj) +

∑
j∈D\C e

−α(xj−βj)
)d−|C|−1/α

.

Generators with independent reverse exponential components

Case fT = fV .

hC(xD\C ,vC ; 1,0) = e−max(x)×
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∫ e
−maxj∈D\C (xj+βj)

0

t−1
∏
j∈C

min(tevj+βj , 1)αj
∏

j∈D\C

αj(te
xj+βj)αj dt (A.2)

To evaluate this, consider two cases: (i) maxj∈C(vj + βj) < maxj∈D\C(xj + βj); and (ii)
let v(1) + β(1) > . . . > v(k) + β(k) > maxj∈D\C(xj + βj) > v(k+1) + β(k+1) > . . . for j ∈ C and
k ≤ |C|. In case (i), we have

hC(xD\C ,vC ; 1,0) = e−max(x)

∏
j∈C e

αj(vj+βj)
∏

j∈D\C αje
αj(βj+xj)(∑d

j=1 αj

)
(emaxj∈D\C(xj+βj))

∑d
j=1 αj

,

since on the range t ∈ (0, e−maxj∈D\C(xj+βj)) the term
∏

j∈C min(tevj+βj , 1)αj in (A.2) is

equal to
∏

j∈C(tevj+βj)αj . In case (ii) this term will vary over that range, and one needs to
split the integral as follows:∫ e

−(v(1)+β(1))

0

+

∫ e
−(v(2)+β(2))

e
−(v(1)+β(1))

+ · · ·+
∫ e

−maxj∈D\C (xj+βj)

e
−(v(k)+β(k))

.

An evaluation of each integral yields that emax(x)hC(xD\C ,vC ; 1,0) is equal to∏
j∈C e

αj(vj+βj)
∏

j∈D\C αje
αj(xj+βj)(∑d

j=1 αj

)
(ev(1)+β(1))

∑d
j=1 αj

+
k−1∑
i=1

{∏
j∈C(i)

eαj(vj+βj)
∏

j∈D\C αje
(xj+βj)/αj∑

j∈C(i)
αj +

∑
j∈D\C αj

×
[ (
ev(i+1)+β(i+1)

)−∑
j∈C(i)

αj−
∑
j∈D\C αj −

(
ev(i)+β(i)

)−∑
j∈C(i)

αj−
∑
j∈D\C αj

]}

+

∏
j∈C(k)

eαj(vj+βj)
∏

j∈D\C αje
αj(xj+βj)∑

j∈C(k)
αj +

∑
j∈D\C αj

×
[ (
emaxj∈D\C(xj+βj)

)−∑
j∈C(k)

αj−
∑
j∈D\C αj −

(
ev(k)+β(k)

)−∑
j∈C(k)

αj−
∑
j∈D\C αj

]
with C(i) = C \ {(1), . . . , (i)}, i.e., with the indices corresponding to the i largest vj + βj
removed.
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Case fU = fV . Is found similarly by noting the relation between these two approaches.

Generators with independent log-gamma components

Case fT = fV . Let Fj denote the cumulative distribution function of a Gamma(αj, 1)
random variable. Then

hC(xD\C ,vC ; 1,0) = e−max(x)
∏

j∈D\C

eαjxj

Γ(αj)

∫ ∞
0

t−1

 ∏
j∈D\C

tαje−te
xj

(∏
j∈C

Fj(te
vj)

)
dt.

Case fU = fV . Defining Cd =
∫

∆d−1
max(u1, . . . , ud)

∏d
j=1 u

αj−1
j du1 · · · dud−1, we have

hC(xD\C ,vC ; 1,0) =
C−1
d

Γ
(∑d

j=1 αj + 1
) ∏
j∈D\C

eαjxj
∏
j∈C

Γ(αj)

×
∫ ∞

0

 ∏
j∈D\C

tαje−te
xj

(∏
j∈C

Fj(te
vj)

)
dt.

Generators with multivariate Gaussian components

Case fT = fV . For the Gaussian model, using abbreviated notation, the key observation
is ∫

×j∈C(−∞,vj ]
h(x) dxC = hD\C(xD\C)

∫
×j∈C(−∞,vj ]

h(x)

hD\C(xD\C)
dxC , (A.3)

and the ratio in the second integral can be written as a proper Gaussian density function
(with parameters that depend on xD\C). The integrand is

h(x)

hD\C(xD\C)
=
emaxj∈D\C xj

emax(x)

(1TΣ−1
D\C1)1/2

(1TΣ−11)1/2

|ΣD\C |1/2

|Σ|1/2
(2π)(d−|C|−1)/2

(2π)(d−1)/2

× exp

{
−1

2

[
(x− β)TA(x− β)− (xD\C − βD\C)TAD\C(xD\C − βD\C)

]}
(A.4)

with

AD\C = Σ−1
D\C −

Σ−1
D\C11TΣ−1

D\C

1TΣ−1
D\C1

.
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Firstly note that
emaxj∈D\C xj = emax(x)

as the maximum will not occur among the censored components. By a completion of the
square it can be shown that expression (A.4) is in fact equal to

(2π)(|C|−d)/2

|Γ|1/2
exp

{
−1

2
(xC − µ)TΓ−1(xC − µ)

}
with

µ = −(KT
CAKC)−1KCAKD\C(xD\C − βD\C)

and
Γ = (KT

CAKC)−1,

where KC (respectively KD\C) is a d × |C| [respectively d × (d − |C|)] matrix of 0s with
1s in the (Ck, l)

th position, for Ck the kth index in C and k = 1, . . . , |C|, l = 1, . . . , |C|
(similarly for KD\C). Therefore equation (A.3) resolves as

hD\C(xD\C) Φ|C|(vC − βC ;µ,Γ)

with Φ|C|( · ;µ,Γ) the cdf of a |C|-variate multivariate Gaussian distribution with location
vector µ and covariance matrix Γ.

Case fU = fV . Again this can be found similarly to the above noting the relation between
these two forms; see also Wadsworth and Tawn (2014).

Generators with structured components

Recall that since this is a model on the random vector R, we need to differentiate between
γ = 0 and γ > 0. We present the case γ = 0 only, since the case γ > 0 is very similar.
Moreover, we set v = v1 as in Section 6.2.

Case γ = 0. The censored likelihood has an analytical expression but is tedious to write
down. Note that, since the density h(x; 1,0) is non-zero only for x1 < . . . < xd, we censor
in |C| = k components if x1 < . . . < xk < v < xk+1 < . . . < xd. If k = 1, then for
1(v < x2 < . . . < xd) and 1(xd > 0),

hC(x2:d, v; 1,0) =
d!
∏d

j=1 λj∑d
j=1 λ

−1
j

∫ v

−∞

∏d
j=1 e

xj(∑d
j=1(λj − λj+1)exj

)d+1
dx1
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=
(d− 1)!e

∑d
j=2 xj

∏d
j=1 λj

(λ1 − λ2)
∑d

j=1 λ
−1
j

{( d∑
j=2

(λj − λj+1)exj
)−d

−
(

(λ1 − λ2)ev +
d∑
j=2

(λj − λj+1)exj
)−d}

,

where x2:d = (x2, . . . , xd). Expressions for k > 1 follow naturally by repeated integration
of the above result.
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B Bivariate tail dependence coefficients

We present analytical expressions for the bivariate tail dependence coefficient χ = χ1:2,
where available in closed form, for the models detailed in the paper.

Generators with independent Gumbel components

Case fT = fV . If α1 = α2 = α > 0 and β1 = β2, then

χ = 2− 1∫ 1

0
(1 + uα)−1 du

.

Case fU = fV . If α1 = α2 = α ≥ 1, then

χ = 2− 21/α.

Generators with independent reverse Gumbel components

Case fT = fV . If α1 = α2 = α > 0 and β1 = β2, then

χ = 2− 1∫ 1

0
(1 + uα)−1 du

.

This expression is the same as for the corresponding independent Gumbel model.

Case fU = fV . If α1 = α2 = α > 0, then

χ = 2−1/α.

Generators with independent reverse exponential components

Case fT = fV . If α1 = α2 = α > 0 and β1 = β2, then

χ = 1− 1

1 + 2α
.

For general parameters α1 > 0 and α2 > 0,

χ = 1−

(
1 + α−1

(1)

1 + α−1
(2)

)1+α(2)

α(1)

α(2)

1

1 + α1 + α2

,

where α(1) = max(α1, α2) and α(2) = min(α1, α2).
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Case fU = fV . The expressions for χ are the same as the ones given in the case fT = fV .

Figure 1 displays the value of χ for a common value of α in the preceding examples.
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iid (reverse) Gumbel or reverse Exponential generators

α

χ

T/U model, reverse exponential
T model, (reverse) Gumbel
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Figure 1: χ as a function of common dependence parameter α1 = α2 = α in the independent
Gumbel, reverse Gumbel and reverse exponential examples.

Generators with independent log-gamma components

No closed form expression has been found in this case.

Generators with multivariate Gaussian components

Case fT = fV . Assume (T1, T2) is bivariate Gaussian with means β1, β2, variances σ2
1, σ

2
2,

and correlation ρ. Let S = T2 − T1 ∼ N (∆, τ 2) with

τ 2 = var(S) = σ2
1 − 2ρσ1σ2 + σ2

2,
∆ = E(S) = β2 − β1 ≥ 0.

If β1 = β2, i.e., ∆ = 0,

χ = 2

(
1− 1

1 + 2eτ2/2Φ(−τ)

)
.
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For the general case, without loss of generality assume β2 ≥ β1. Then ∆ = β2 − β1 ≥ 0.
We have

χ = (a−)−1e∆+τ2/2Φ(−τ −∆/τ)
+ (a−)−1 (Φ((−∆ + ln(a−/a+))/τ)− Φ(−∆/τ))

+ (a+)−1e−∆+τ2/2Φ(−τ − (−∆ + ln(a−/a+))/τ),

where (x)+ = max(x, 0) and (x)− = (−x)+ = −min(x, 0) denote the positive and negative
parts of a scalar x, and

a+ = E[e−(S)+ ] = Φ(−∆/τ) + e−∆+τ2/2Φ(−τ + ∆/τ),

a− = E[e−(S)− ] = Φ(∆/τ) + e∆+τ2/2Φ(−τ −∆/τ).

Case fU = fV . Assume (U1, U2) is bivariate Gaussian with means (β1, β2), variances
σ2

1, σ
2
2, and correlation ρ. Then

χ = 2Φ(−τ/2),

with τ 2 = var(U1 − U2) = σ2
1 − 2ρσ1σ2 + σ2

2. Note that

2Φ

(
−σ1 + σ2

2

)
≤ χ ≤ 2Φ

(
−|σ1 − σ2|

2

)
.

Suppose σ1 = σ2 = 1; then τ 2 = 2(1− ρ), and thus

χ = 2Φ
(
−
√

(1− ρ)/2
)
.

Figures 2 and 3 display the variation of χ with τ , as well as ρ for fixed unit variance.

Structured components model

These expressions are presented in Section F.2.
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Figure 2: χ as a function of τ in the model with bivariate Gaussian components. In case
fT = fV , it is supposed that the expectations of T1 and T2 are the same.
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Figure 3: χ as a function of ρ in the model with standard Gaussian components, with
common unit standard deviation for Tj and Uj.
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C Numerical illustrations of models

To exhibit the performance of censored likelihood estimation we present results of a simu-
lation experiment. For each of the models (7.1), (7.3), and (7.5) in the paper, we generated
200 datapoints from the model and then fitted all three models to the dataset using censored
likelihood with v = 0 in dimension d = 3. This was repeated 100 times for each model.
Figure 4 displays boxplots of θ̂ − θ, where the parameters were θ = (α1, α2, α3, β1, β2) =
(2, 1, 2, 0, 0) for model (7.1), θ = (α1, α2, α3, β1, β2) = (1/2, 1, 1/2, 0, 0) for model (7.3), and
θ = (ρ1, ρ2, ρ3, β1, β2) = (−0.1, 0.5, 0.7, 0, 0) or θ = (ρ1, ρ2, ρ3, β1, β2) = (0.1, 0.5, 0.7, 0, 0)
for model (7.5), where the multivariate Gaussian vector V had covariance matrix

Σ =

 1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1


Margins were not estimated. All boxplots are approximately centered around zero indicat-
ing unbiased estimation, as should be expected when simulating from and fitting the same
model. The quality of estimation was poorest for the model with multivariate Gaussian
generator, (7.5), with negative correlation parameter. Estimation appears improved when
the correlations are all positive.
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Figure 4: Maximum censored likelihood estimates of parameters, using the correct model,
with the true parameter values subtracted. Left-right models (7.1), (7.3), (7.5) (ρ1 = −0.1)
and (7.5) (ρ1 = 0.1). Boxplots based on 100 repetitions.

Table 1 displays the proportion of times that the AIC selects the correct model out of
the three options. As all models here have five estimated parameters, this is equivalent to
the proportion of times that the likelihood was highest for the correct model.
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Table 1: Proportion of times AIC picked the correct model

Model (7.1) Model (7.3) Model (7.5) (ρ1 = −0.1) Model (7.5) (ρ1 = 0.1)
Proportion 0.93 0.98 0.98 0.95

D Scatterplots and density contours
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Gumbel with α1 = α2 = 1.4
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Reverse Exponential with α1 = α2 = 0.93
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Figure 5: Scatterplots and density contours for the bivariate Gumbel hT (left), the reverse
exponential hT (middle) and the Gaussian hT (right) models, where σ = (1, 1) and γ =
(0, 0) (top) or γ = (0, 0.2) (bottom) and the dependence parameters are chosen such that
χ1:2 = 0.65.
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Figure 6: Negative UK bank returns: estimate of χHLRB(q) with HSBC (H), Lloyds (L),
RBS (R) and Barclays (B). Approximate 95% pointwise confidence intervals are obtained
by bootstrapping from {Yt : t = 1, . . . , n}.
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Figure 7: Negative UK bank returns: marginal QQ-plots using the fitted GP distribution.
From left to right: HSBC, Lloyds, RBS and Barclays. The 95% pointwise confidence
intervals are obtained by a transformation of the beta distributed order statistics of a
uniform distribution.
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Figure 8: Negative UK bank returns: QQ-plots for GP distribution fitted by maximum
likelihood to (6.1) (left) and for GP distribution with scale and shape parameter determined
by the multivariate fit and Proposition 5.7 of Rootzén et al. (2018) (right). The 95%
pointwise confidence intervals are obtained by a transformation of the beta distributed
order statistics of a uniform distribution.
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Figure 9: ES estimates and pointwise 95% delta-method confidence intervals for portfolio
losses based on the weights given as the figure title. Estimates based on the multivariate
GP fit are on the left of a pair; estimates based on the univariate fit are on the right.

F Supporting information for Section 6

F.1 Time trend and marginal QQ plots

We investigate the question whether there is a trend in the daily, two-day or three-day
rainfall amounts by fitting a univariate GP distribution with a fixed shape parameter γ
but a loglinear trend for the scale parameter, log σ(t) = a+bt for t ∈ (0, 1], to the marginal
components of the series (Yi)

n
i=1. To this end, we need to select marginal thresholds above

which we fit the univariate GP distributions. For the first component, we take u1 = 12
as found previously; for the second and third components, we take u2 = 13.5 and u3 = 14
respectively, based on inspection of parameter stability plots. For the first component, the
time t corresponds to the indices i ∈ {1, . . . , N} for which Pi > u1; for the second and third
component, we use the time corresponding to max(Pi, Pi+1) and max(Pi, Pi+1, Pi+2).

In Table 2, we report the parameter estimates for the univariate GP fit above these
thresholds. The final line shows the deviance, i.e., −2 times the difference in log-likelihood
with respect to a model with σ(t) ≡ σ. We compare to the 95% quantile of a χ2

1 distribution,
given by 3.84. Likelihood ratio tests show that the absence of a linear trend in the logarithm
of the scale parameter cannot be rejected.
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Table 2: Precipitation data in Abisko: estimates of the parameters of marginal GP models
with log σ(t) = a+ bt and shape γ for thresholds u = 12, u = 13.5 and u = 14 respectively;
standard errors in parentheses.

Yi1 Yi2 Yi3

γ̂ -0.09 (0.06) -0.05 (0.06) -0.03 (0.06)
â 2.01 (0.12) 2.13 (0.11) 2.21 (0.11)

b̂ 0.24 (0.21) 0.24 (0.19) 0.21 (0.17)
deviance 1.17 1.49 1.46
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Figure 10: Precipitation data in Abisko: QQ-plots for the univariate GP distributions
of the three variables Yi1, Yi2 and Yi3 (left to right) for the model with γ = 0 with pa-
rameters implied by Table 4. The 95% pointwise confidence intervals are obtained by a
transformation of the beta distributed order statistics of a uniform distribution.

F.2 Pairwise and trivariate χ

For the three-dimensional structured components model fitted in Section 6.2, the depen-
dence measures χ12, χ13, χ23 and χ123 are

χ12 = 1− λ1

2(λ1 + λ2)

χ13 = 1− λ1(λ2 + λ3)3

(λ3 + 2λ2)(λ2 + 2λ3)(λ2λ3 + λ1λ3 + λ1λ2)
,

χ23 = 1− λ1λ2(λ1 + λ2)2

(λ1 + 2λ2)(λ2 + 2λ1)(λ2λ3 + λ1λ3 + λ1λ2)
,
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χ123 = 1− λ1

2(λ1 + λ2)
− λ1λ2(4λ1λ2 + λ1λ3 + 3λ2

2 + λ2λ3)

3(2λ1 + λ2)(2λ2 + λ3)(λ1λ2 + λ1λ3 + λ2λ3)
.

Some properties of the structured components model can be inferred from the expression
for χ12; when λ1 = λ2, then χ12 = 0.75 regardless of the value of the parameter. If λ1 � λ2,
then χ12 → 0.5; if λ2 � λ1, then χ12 → 1. It is natural that this model cannot approach
asymptotic independence, since it is based on cumulative sums.
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Figure 11: Precipitation data in Abisko: pairwise and trivariate χ̂(q) (dots) and model-
based limiting χ (horizontal lines) for u = 24, with parameters implied by Table 4 for
γ = 0. Approximate 95% pointwise confidence intervals are obtained by bootstrapping
from {Yi : i = 1, . . . ,Yn}.
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