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A Censored likelihoods

Here we detail forms of censored likelihoods for the models proposed in Section 7. For
simplicity they are presented in standardized (¢ = 1, v = 0) form, i.e.,

he(xp\c,ve;1,0) = / h(x;1,0) dzc, (A1)

X jec(—o0,v;]

for v; < 0 and A corresponding to either hr or hy. The generalized form of a censored
likelihood is easily obtained from (A.1) as

he(xp\c,vo;o,y) = hC (ﬁ log(1 4+ vp\c®p\c/TD\C), .%C log(1 4+ ~ycve/oc); 1, 0)
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The support for each density is {x € R? : £ 0}, and we let |C| denote the cardinality of
the set C.

Generators with independent Gumbel components

Case fr = fy.
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Generators with independent reverse exponential components

Case fr = fy.

hc(wl)\o, Vo, 1, 0) =e max() X
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To evaluate this, consider two cases: (1) max;ec(v; + ;) < maxjeD\c(x] + 5;); and (ii)
let va) + ,3(1) > > v+ /B(k) > HlaneD\C(ZL‘] + ﬁ]) > V(k+1) T+ B(k—i-l . for j € C' and
k < |C|. In case (i), we have
- max(@) H]E e (Vi +5;) H jep\o @€ e (Bj+z;)

(E‘? ) aj> (emaxjeD\c(Ij+5j))Z?:1 a;’
]:

he(xp\c,ve;1,0) =

since on the range ¢t € (0,e”m®en\c@i+4)) the term [Ljccmin(te’s*%,1)% in (A.2) is
equal to [] jec(te”ﬁﬁj)aﬂ' . In case (ii) this term will vary over that range, and one needs to
split the integral as follows:

~CaytPw) @) —maxjep\c (@ +h5)
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An evaluation of each integral yields that emax(‘”)hc(azD\c, ve; 1,0) is equal to

HjECe o555 H jeD\C aje e%i j(xi+8;)
(Z?:l « ) (Gv(1)+5(1))2j:1 j
N Z { jeC e (vi+5;) HjeD\C Olje(ijrBj)/O‘j

Z]GC@) Oé] + Z]GD\C O[]
X {(e”<i+1>+ﬂ<i+1>)_zmm T 2gen\0 % _ (e”m+ﬂ<i>)_zj€"<i> VTR }}

o (vi+5;5) Laj(zi+B5)
HjEC’(k)e VTP HjGD\Caje i\ T +0;
Zjec(k) aj+ Y iep\c @

X {(ema"jeD\c(ﬂﬁﬁﬁj))ZjGC(k) @ =2jep\e ¥ (ev(k>+5(k))7zjec(k) =2 jep\c 0‘7}

with C;y = C'\ {(1),...,(¢)}, i.e., with the indices corresponding to the i largest v; + 5;
removed.



Case fy = fy. Is found similarly by noting the relation between these two approaches.

Generators with independent log-gamma components

Case fr = fy. Let F; denote the cumulative distribution function of a Gamma(a;, 1)
random variable. Then

C . _ ,—max(x) et - -1 aj —tes (4,05
h™(zp\c,ve;1,0) =€ H —F(aj)/o t H t%e (H F;(te J)) dt.
jeED\C jeED\C Jjec
Case fy = fy. Defining Oy = fAFH max(uy, ..., ug) H;l:l u?j_l duy - - - dug_1, we have

Cct .
he(xp\o,ve;1,0) = — IT e 1T ()
r (Zj:l a; + 1) jED\C jec

x/oo IT toe (H}«}(m”ﬁ)) dt.

jED\C jec

Generators with multivariate Gaussian components

Case fr = fy. For the Gaussian model, using abbreviated notation, the key observation
is

h(x
/ h(ac) dwc = hD\C’(wD\C)/ —h ( ) dwc, (Ag)
X,jEC(foovvj] Xjec(foo,vj] D\C(mD\C)

and the ratio in the second integral can be written as a proper Gaussian density function
(with parameters that depend on xp\¢). The integrand is

h(z) emexjepve s (1S5 (1)Y2 5 6|2 (27r)(@-IC1-D/2

hD\c(ivD\c)_ emax(z) (1Ts-11)1/2  |n[1/2 (2r)[@-D/2

1
X exp {—5 [(x — B)"A(x — B) — (xp\c — Bpro) Apve(@prc — Bpro)] } (A4)
with . S
P
D@ ™ <\ 175,51



Firstly note that

eMaXjeD\c %) — 6max(:c)

as the maximum will not occur among the censored components. By a completion of the
square it can be shown that expression (A.4) is in fact equal to

9 (C1=d)/2 1 )
wwexp {—5(1;0 — ) T Yo — u)}
with
p=—(KLAKe) ' KcAKp\e(zpc — Bp\c)
and

I'= (KLAKe) ™,
where K¢ (respectively Kp\¢) is a d x |C| [respectively d x (d — |C|)] matrix of Os with
1s in the (Cy,1)™ position, for Cj, the kth index in C' and k = 1,...,|C|, I = 1,...,|C]|
(similarly for Kp\¢). Therefore equation (A.3) resolves as

hove(p\c) Pioj(ve — Bes p, 1)

with @j¢((-; u,I") the cdf of a |C-variate multivariate Gaussian distribution with location
vector p and covariance matrix I'.

Case fy = fy. Again this can be found similarly to the above noting the relation between
these two forms; see also Wadsworth and Tawn (2014).

Generators with structured components

Recall that since this is a model on the random vector R, we need to differentiate between
~ =0 and v > 0. We present the case v = 0 only, since the case v > 0 is very similar.
Moreover, we set v = v1 as in Section 6.2.

Case v = 0. The censored likelihood has an analytical expression but is tedious to write
down. Note that, since the density h(x;1,0) is non-zero only for z; < ... < x4, we censor
in |C| = k components if 1 < ... < zp < v < Ty < ... < zq. If kK =1, then for
I(v <xy <...<uzq) and 1(zg > 0),

d

d!H;lzl Aj /v Hj:lexj
d -1 d+1
2=t A e (00 = e )

j=1

hC<$2:d,U; 1,0) = dz,
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where 9.4 = (x9,...,24). Expressions for k£ > 1 follow naturally by repeated integration
of the above result.



B Bivariate tail dependence coefficients

We present analytical expressions for the bivariate tail dependence coefficient y = x1.2,
where available in closed form, for the models detailed in the paper.

Generators with independent Gumbel components
Case fr = fy. If ag =ay;=a>0and g; = (s, then

1
f01<1 +ut) "t du

X=2-

Case fy = fy. Ifa; =ay;=a > 1, then
x =2—2Ye

Generators with independent reverse Gumbel components
Case fr=fy. Ifa;=ay=a>0and B; = [, then
1
fol(l +ue)tdu

This expression is the same as for the corresponding independent Gumbel model.

X =2

Case fy = fyv. lfa; =ay=a >0, then
x =27

Generators with independent reverse exponential components

Case fr=fy. Ifa;=ay=a>0and ; = 5, then

For general parameters oy > 0 and ay > 0,

_ 14+
x=1- Ttag) Yag 1
1+ag o) L+ o1 4 ay’

where o) = max (o, az) and o) = min(oy, az).
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Case fy = fy. The expressions for x are the same as the ones given in the case fr = fy.

Figure 1 displays the value of y for a common value of « in the preceding examples.

iid (reverse) Gumbel or reverse Exponential generators

T/U model, reverse exponential
—— T model, (reverse) Gumbel
—— U model, reverse Gumbel
- L —— U model, Gumbel

0 1 2 3 4 5

Figure 1: x as a function of common dependence parameter ar; = s = v in the independent
Gumbel, reverse Gumbel and reverse exponential examples.

Generators with independent log-gamma components

No closed form expression has been found in this case.

Generators with multivariate Gaussian components

Case fr = fy. Assume (T}, 7)) is bivariate Gaussian with means 3y, 82, variances o2, 03,

and correlation p. Let S =T, — T1 ~ N (A, 72) with

2 = var(S) = 0? — 2po0y + 03,

A = E(S)=pF—-p=20.

If B = Bo, ie., A =0,

1
=9211— .
X ( 1+2a”%ﬂ—ﬂ)



For the general case, without loss of generality assume 8y > ;. Then A = gy — 31 > 0.
We have )
X = (a )71 RR(—1 — A7)
+(a-) " H(R((=A + In(a-/a4))/7) = 2(=A/7))
+(ap) e AT RO(—7 — (A + In(a-/ay))/7),
where (z); = max(z,0) and (z)- = (—x) = —min(z,0) denote the positive and negative
parts of a scalar x, and

ay = Ele®+] = &(=A/7) +e 27 2(—1 + AJ7),
a. = Ele®-] = ®(A/7) 4 ATTR0(—1 — AJ7T).

Case fy = fy. Assume (Up,Us;) is bivariate Gaussian with means (51, 82), variances

0%, 02, and correlation p. Then

X = 2@(—7‘/2)’
with 72 = var(U; — Uy) = 0% — 2po105 + 05. Note that

2 (—01 ;LU?) <y <20 (—@) .

Suppose 0, = 05 = 1; then 72 = 2(1 — p), and thus

v =20 (-/1T=7)/2).

Figures 2 and 3 display the variation of x with 7, as well as p for fixed unit variance.

Structured components model

These expressions are presented in Section F.2.



T- and U-parametrization, bivariate Gaussian generators

—— T model
—— U model

1.0

0.8

0.2
I

0 2 4 6 8 10
fvar(T,-T1) =+var(U, - Uy)

For the T model, the two means are supposed to be equal

Figure 2: y as a function of 7 in the model with bivariate Gaussian components. In case
fr = fv, it is supposed that the expectations of 77 and T5 are the same.

T- and U-parametrizations, standard Gaussian generators

1.0

0.8
I

0.2

—— T model
—— U model
T T

T
-1.0 -0.5 0.0 0.5 1.0
cor(Ty, T2) = cor(Ug, Uy)

0.0
|

Figure 3: x as a function of p in the model with standard Gaussian components, with
common unit standard deviation for 7T; and Uj.
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C Numerical illustrations of models

To exhibit the performance of censored likelihood estimation we present results of a simu-
lation experiment. For each of the models (7.1), (7.3), and (7.5) in the paper, we generated
200 datapoints from the model and then fitted all three models to the dataset using censored
likelihood with v = 0 in dimension d = 3. This was repeated 100 times for each model.
Figure 4 displays boxplots of @ — 8, where the parameters were 8 = (a1, ag, as, 51, f2) =
(2,1,2,0,0) for model (7.1), @ = (a1, g, a3, 1, f2) = (1/2,1,1/2,0,0) for model (7.3), and
0 = (ph P2, P3, 61, ﬁg) = (—0.1, 05, 07, 0, 0) or 6 = (pl, P2, P3, ﬁl, 52) = (01, 05, 07, O, O)

for model (7.5), where the multivariate Gaussian vector V' had covariance matrix

L p1 p2
Y=\ pm 1 ps
p2 ps 1

Margins were not estimated. All boxplots are approximately centered around zero indicat-
ing unbiased estimation, as should be expected when simulating from and fitting the same
model. The quality of estimation was poorest for the model with multivariate Gaussian
generator, (7.5), with negative correlation parameter. Estimation appears improved when
the correlations are all positive.
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Figure 4: Maximum censored likelihood estimates of parameters, using the correct model,
with the true parameter values subtracted. Left-right models (7.1), (7.3), (7.5) (p1 = —0.1)
and (7.5) (p1 = 0.1). Boxplots based on 100 repetitions.

Table 1 displays the proportion of times that the AIC selects the correct model out of
the three options. As all models here have five estimated parameters, this is equivalent to
the proportion of times that the likelihood was highest for the correct model.
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Table 1: Proportion of times AIC picked the correct model

Model (7.1) Model (7.3) Model (7.5) (p1 = —0.1) Model (7.5) (py = 0.1)

Proportion 0.93 0.98 0.98 0.95

D Scatterplots and density contours

Gumbel witha, =0, =1.4 Reverse Exponential with a; = a, = 0.93 Gaussian with p = 0.32

Gumbel witha;, =0, =1.4 Reverse Exponential with a; = a, = 0.93 Gaussian with p = 0.32

Figure 5: Scatterplots and density contours for the bivariate Gumbel Az (left), the reverse
exponential hr (middle) and the Gaussian hg (right) models, where o = (1,1) and v =
(0,0) (top) or v = (0,0.2) (bottom) and the dependence parameters are chosen such that
X1:2 = 0.65.
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E Supporting information for Section 5
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Figure 6: Negative UK bank returns: estimate of xgrrp(q) with HSBC (H), Lloyds (L),
RBS (R) and Barclays (B). Approximate 95% pointwise confidence intervals are obtained

by bootstrapping from {Y; : ¢t =1,...,n}.
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Figure 7: Negative UK bank returns: marginal QQ-plots using the fitted GP distribution.
From left to right: HSBC, Lloyds, RBS and Barclays. The 95% pointwise confidence
intervals are obtained by a transformation of the beta distributed order statistics of a

uniform distribution.
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Figure 8: Negative UK bank returns: QQ-plots for GP distribution fitted by maximum
likelihood to (6.1) (left) and for GP distribution with scale and shape parameter determined
by the multivariate fit and Proposition 5.7 of Rootzén et al. (2018) (right). The 95%
pointwise confidence intervals are obtained by a transformation of the beta distributed
order statistics of a uniform distribution.
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Figure 9: ES estimates and pointwise 95% delta-method confidence intervals for portfolio
losses based on the weights given as the figure title. Estimates based on the multivariate
GP fit are on the left of a pair; estimates based on the univariate fit are on the right.

F  Supporting information for Section 6

F.1 Time trend and marginal QQ plots

We investigate the question whether there is a trend in the daily, two-day or three-day
rainfall amounts by fitting a univariate GP distribution with a fixed shape parameter ~
but a loglinear trend for the scale parameter, log o (t) = a+ bt for t € (0, 1], to the marginal
components of the series (Y;)" ;. To this end, we need to select marginal thresholds above
which we fit the univariate GP distributions. For the first component, we take u; = 12
as found previously; for the second and third components, we take us = 13.5 and ug = 14
respectively, based on inspection of parameter stability plots. For the first component, the
time ¢ corresponds to the indices i € {1,..., N} for which P; > uy; for the second and third
component, we use the time corresponding to max(P;, P;y1) and max(P;, Pi11, Pi12).

In Table 2, we report the parameter estimates for the univariate GP fit above these
thresholds. The final line shows the deviance, i.e., —2 times the difference in log-likelihood
with respect to a model with o(t) = 0. We compare to the 95% quantile of a x? distribution,
given by 3.84. Likelihood ratio tests show that the absence of a linear trend in the logarithm
of the scale parameter cannot be rejected.
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Table 2: Precipitation data in Abisko: estimates of the parameters of marginal GP models

with log o(t) = a+ bt and shape ~ for thresholds u = 12, u = 13.5 and u = 14 respectively;
standard errors in parentheses.

Y Y Y
~ -0.09 (0.06) -0.05 (0.06) -0.03 (0.06)
a 2.01 (0.12) 2.13 (0.11)  2.21 (0.11)
b 0.24 (0.21) 0.24 (0.19) 0.21 (0.17)
deviance 1.17 1.49 1.46
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Figure 10: Precipitation data in Abisko: QQ-plots for the univariate GP distributions
of the three variables Yy, Y;» and Y3 (left to right) for the model with v = 0 with pa-
rameters implied by Table 4. The 95% pointwise confidence intervals are obtained by a
transformation of the beta distributed order statistics of a uniform distribution.

F.2 Pairwise and trivariate y

For the three-dimensional structured components model fitted in Section 6.2, the depen-
dence measures Y12, X13, X23 and X123 are

A1
X2 =1— m
X13=1-— M & Xo) ;
(A3 4+ 2X9) (A2 + 2X3) (A2As + A1 A3 + A A2)
Yo = 1 — Ao AL + Ag)?

(A1 4+ 2X2)(Ag + 2X1) (AaAs + M Az + A o)
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A1 Mo (4A1 00 4+ Az + 32 + Aa)s)

=1 — .
Xz 200 + A2) B2+ ) (2 + As) (M he + Mg + Aohg)

Some properties of the structured components model can be inferred from the expression
for y12; when A1 = \o, then yi2 = 0.75 regardless of the value of the parameter. If A\; > Ao,
then x12 — 0.5; if Ay > Ay, then Y2 — 1. It is natural that this model cannot approach
asymptotic independence, since it is based on cumulative sums.
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923(‘4)
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q q q q

Figure 11: Precipitation data in Abisko: pairwise and trivariate X(¢q) (dots) and model-
based limiting x (horizontal lines) for v = 24, with parameters implied by Table 4 for
v = 0. Approximate 95% pointwise confidence intervals are obtained by bootstrapping
from {Y;:i=1,...,Y,}.
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