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Supplemental Material

Appendix A

When yg in the Equation (1) of the main text has an AR(1) process, yi(t) — i has a ARMA(1,1)
process. To prove this, we introduce a new variable v;;, and rewrite yg — p; in a ARMA(1,1) form. That is,

we replace the function of measurement error e;; and shock variable z;; by a MA(1) process of v,

(¥ — ) — <15z( — W) = eit — Giii—1) + Zit
ey
= vit + 0ivi(4—1)-
To simplify the equation, we denote m;; = (y — ;) — @( — p;). Based on the first line of
Equation (1), the autocovariance of m;; can be calculated based on ¢;, e;;, and z;,
mi(0) = var(ey — giei—1) + zit)
(2)
=02+ (1+¢})o?
Ymi(1) = cov(eir — gi€it—1) + Zit, €itr1) — Pi€it + Zi(t+1))

(3)

= —¢io?

On the other hand, based on the second line of Equation (1), m; is also equal to v;; + ini(t_l), which is a

MA(1) process, thus the autocovariance of m;; also can be calculated based on v;; and 6;,
mi(0) = op;(1+67), )

Ymi(1) = 6;02,. (5)

V1
Solve the Equations (2), (3), (4), and (5), we can calculate the coefficients for the ARMA(1,1) process
9 7m2 \/’sz (0) - 4772m (1)
29mi(1) ’
2 _ Ymi(1)
v 01 ‘




Supplemental Material 3

Thus the moving average coefficient of individual ¢ (6;) and the variance of v;; are respectively

U;—i—(l—i—(f)?)az—\/oéi—i-g ¢4 4+2Uzzae+2 i zz e ¢

0, — 6
; “iea? , (©)
_¢,02
i = g ™
As a result, the population autocorrelation at lag h of yg is poyi(h) = qﬁLh'*lpoyi(l) (h > 2). And the
population variance, covariance at lag 1, and autocorrelation at lag 1 of yg for individual 7 can be
expressed by the coefficients for the ARMA(I,1) process (i.e., 8;, ¢;, and o ;) respectively
2 (¢i + 6:)°
_ 1 8
O0yi = G[“‘ 1_¢12 s ()
Tou(1) = 4 1(6s+ ) + L0 ©
1—¢;
(¢i +6:) (1 + ¢ibs)
(1) = . 10
pOyz( ) 1+2¢i9i+9i2 ( )
Appendix B
Since ISD? = S%(yk + eit), the reliability of 1.SD? is
2
2 _ cov(S?(yk+eit),02) (11)
PIsp2 \/var(SQ(yZ?;Jreit))var(a?) ’
The numerator is
2 2
(cov(S2(yf +ewr),02))” = (E[S*(yh + eiw)o?] — E (S*(y)} + i) E(07))
, ) 2
= (E[E(S*(yfy +en)o? | 9)] — E (S*(yjy + ex) | i) E(07))
2
= (E[o*(yi; +ei)o?] — E (o (v + eir)) E(07))
2
= (cov (*(yi; + eir), 07))
= (Uar )
Therefore we can rewrite Equation (11) as
2
var(o;
Prspe = ) (12)

var (S2(yk + eir))
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The denominator is complex. The step by step derivation is as follows,

var (S*(yip +en)) = E (S +ein)) — B> (S (i + eir)) (13)

It is easy to obtain E2 (S2(y, + eir)) = (E(0?) + 03)2, and then we solve S*(yL + eit),

2
T
wT 2 (wiprei— (@ +ei))?
— t=
SHyi +eir) = =
T 2 2 2 T T T 4
th: (ylt'l'ezt) =27 yzt""ezt) tgl ylt‘l'ezt tg:l(yit‘i‘eit)
- 2(T—-1)2
5 T T T T T ” .
T Z Z (yltl'i‘eztl) (y1t2+ezt2 =27 Z yltl"l‘eitl) Z Z (yit2+eit2)(yit3+eit3)
o t1=1t2=1 tl=1 t2=1t3=1
- T2(T )2

T T T T
+> > > El(yiTtlJreitl)(yiTthreim) yhsteis)(yh teia)

(14)
Because yZ; is a Gaussian process, when |¢;| < 1, it is a strictly stationary Gaussian process. All of the

multivariate functions for y;f';’s agree with their counterparts for any number of time lags shifted (e.g.,

E ((y£)2 (y£)2> =F <(y£)2 (y£)2> ). And ygz has the same moments as a random variable in a normal

2
distribution, but ¥ is not independently distributed (i.e., E <(y£)2 ] z) =02 =% = E((yzt)3 | i) =0,

E ((yg )4 ] ) =30! =3 (1 ¢2) ). The expectation of the first numerator component of S*(y} + e;) is

T T T T
2 2
TQE[Z > (y£1+€it1) (921;2"'6%2) ] = T2E[Z > (ym) (3/52) + Z Z eztleth
t1=1t2=1 t1=1t2=1 tl 127
+4 Z Z yztlyzt281t161t2+2 Z Z (ym)

t1=1t2—1 t1=1t2=1

2 L& T\2(, T \2 4 3\ -4

= T2F ﬂzlt; (i)™ (i)™ ) + (T* +27%) o

+ (4T3 + 2T*) 62E (0?) ,
(15)

zt2
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where
(55 6h)08)) = TB(60)")+20- 08 ((h) 68)°) 20 - 28 ((5) 65)°)
o+ 28 () h)’)

_ 4 g (@182 pta—¢; ")
— 3TE(o!) +6E <g( N
o8 [ o (1—-¢2)T(T-1) n (T-1)¢2 -7 ¢?(1—¢5(T72))
i 2(1-)° (1—¢:)? (1-92)

(2(7-1)¢i—¢T)  2¢2(1-¢]?)
1_¢i (17(1)2‘)2

2isi _ 4 N p((@-De-¢  ota-ei"?)
when o isindependentof ¢; = 3TFE (O‘Z-) +6F (O‘i) E < g7 — (1_¢?)2
2(T—2))

4 (=)T(T-)) | @-ner-gr 914
2k (Ui>E< 2(1-¢:)° (1—¢:)" (1-¢7)(1-6:)°

(=)eu-DaeT) 2 (=2) (=1 )
(1-¢i)° (1—¢:)* ’

(16)
The expectations of the second and third numerator components of S*(y% + e;) can be obtained in the
same way. They have much more tedious forms but still functions of O',L-2, 02, T, and ;. Especially, when
o? is independent of ¢;, E (S*(y}} + ;) is a function of E(c7}) (implies var(c?)), E(0?), 02, T, and
distribution of ¢;. And o7 is a function of E(0?), 0., and p7. Because of Equations (12), (13), (14), (15),

and (16), overall the reliability of 1.5 D? depends on the joint distribution of o7 and ¢;, and values of 02, T,

and pj.
Appendix C
The asymptotic distribution for p;(1) is given by Shumway & Stoffer (2010),
A 1
pi(1) ~ AN (poyi(1), Ewi)-

For the time series model in the current study,
oo

wi = Y [poyi(u+ 1)+ poyi(u — 1)poyi(u+ 1) + 2p0yi(1)?poyi(u)* — 4poyi(1)poyi(uw)poyi(u+1)]

U=—0Q

7¢2—3 8p;

a7
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Appendix D
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Figure Captions

Figure 1. Comparing reliabilities of §, ISD, ISD?, p(1), and M SSD when o2 =01
Figure 2. Comparing reliabilities of §, ISD, ISD?, p(1), and M SSD when o2 =5

Figure 3. Comparing reliabilities of ¢, ISD, ISD?, p(1), and M SSD when o2 =10
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