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A Assumptions, Theoretical Results, and Proofs

A.1 Assumptions and Regularity Conditions

The following assumptions and standard regularity conditions are used throughout the paper

unless specified otherwise.

For functions b(·) and θ(·) in the GLM density (5), their third derivatives exist and are

continuous on R. The composite function b′ ◦ θ(·), which links E(Y ) and η, is strictly

monotonic. The variance function b′′ ◦ θ(·) ≥ 0, and the equality can only occur on the

boundary ±∞.

Finite MLEs α̂M, β̂M exist and are unique, under all subset models M.

The design matrix X under the full model is known and has a full column rank p. Here, p

is fixed. The column space C(X) does not contain 1n. When studying asymptotics, we

assume that for i = 1, . . . , n the norm of the ith row ‖xi‖2 is bounded by a constant,

and for all n, the smallest eigenvalue of XTX/n is bounded from below by a positive

constant. These conditions assure weak consistency (convergence in probability) and

asymptotic normality for MLEs (Fahrmeir and Kaufmann 1985).

The true model MT is among the 2p subset models to be selected under consideration. In

MT , true values of the intercept and regression coefficients are denoted by α∗MT
and

β∗MT
, respectively.
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A.2 Proof of Proposition 1

Proof. We first approximate the likelihood by a second order Taylor expansion at the MLE,

p(Y | α,βM,M)

≈ p(Y | α̂M, β̂M,M)

· exp

−1

2

 α− α̂M

βM − β̂M


T  1TnJn(η̂M)1n 1TnJn(η̂M)XM

XT
MJn(η̂M)1n XT

MJn(η̂M)XM


 α− α̂M

βM − β̂M




= p(Y | α̂M, β̂M,M) exp

{
−1

2
(α− α̂M + m)T

(
1TnJn(η̂M)1n

)
(α− α̂M + m)

−1

2

(
βM − β̂M

)T
Φ
(
βM − β̂M

)}
,

where the above approximation is precise up to a multiplicative term [1 +O(n−1)], m =(
1TnJn(η̂M)1n

)−1 (
1TnJn(η̂M)XM

) (
βM − β̂M

)
, and

Φ = XT
MJn(η̂M)XM −

(
XT
MJn(η̂M)1n

) (
1TnJn(η̂M)1n

)−1 (
1TnJn(η̂M)XM

)
.

In the above approximate likelihood, the matrix Φ acts like a precision matrix of βM. By

using the orthogonal projection P̂1n = 1n
(
1TJn(η̂M)1

)−1
1TJn(η̂M), we can rewrite it as

Φ = XT
MJn(η̂M)XM −XT

MP̂T1nJn(η̂M)P̂1nXM

= XT
M(In − P̂1n)TJn(η̂M)(In − P̂1n)XM = Jn(β̂M).

Under the flat prior p(α) ∝ 1, an integrated Laplace approximation yields the marginal
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likelihood density conditional on βM:

p(Y | βM,M) =

∫
p(Y | α,βM,M)p(α)dα

∝ p(Y | α̂M, β̂M,M) exp

{
−1

2

(
βM − β̂M

)T
Jn(β̂M)

(
βM − β̂M

)}
·
∫

exp

{
−1

2
(α− α̂M + m)T

(
1TnJn(η̂M)1n

)
(α− α̂M + m)

}
dα

∝ p(Y | α̂M, β̂M,M)
[
1TnJn(η̂M)1n

]− 1
2 exp

{
−1

2

(
βM − β̂M

)T
Jn(β̂M)

(
βM − β̂M

)}
.

A.3 Asymptotic Behavior of the Observed Information

Lemma A.1. For any subset model M,

(1) ifM⊃MT , then Jn(α̂M) = OP (n) and Jn(β̂M) = OP (n). More specifically, Jn(α̂M)/n−

In(α̂M)/n
P−→ 0, and Jn(β̂M)/n− In(β̂M)/n

P−→ 0.

(2) if M 6⊃MT , then Jn(α̂M) = OP (nτM) and Jn(β̂M) = OP (nτM), where 0 ≤ τM ≤ 1.

Proof. First, we study the asymptotic of MLEs. The assumptions on the design matrix of the

full model X remain to hold for the design matrix XM under all subset models, i.e., xM,i are

bounded for all i = 1, . . . , n, and as n tends to infinity, the smallest eigenvalue of XT
MXM/n

is bounded from below by a positive constant. Since these are stronger than the condition

Rc in Fahrmeir and Kaufmann (1985, pp. 355), we have weak consistency and asymptotic

normality for MLEs under any M⊃MT , i.e., as n→∞,

(
α̂M, β̂M

)
P−→ (α∗M,β

∗
M) , In(β∗M)

1
2

(
β̂M − β∗MT

)
d−→ N(0, IpM). (A.1)

Here, α∗M = α∗MT
, and β∗M = β∗MT

in the sense that all entries in β∗M that correspond

to predictors not in MT are filled with zero. Therefore, if M ⊃ MT , then η∗M,i = α∗M +
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xTM,iβ
∗
M = α∗MT

+ xTMT ,i
β∗MT

= η∗MT ,i
, for all i = 1, . . . , n. On the other hand, if M 6⊃ MT ,

Self and Mauritsen (1988) and van der Vaart (2000, pp. 45, Theorem 5.7) suggest that the

limits of MLEs still exist, i.e.,
(
α̂M, β̂M

)
P−→ (α∗M,β

∗
M), but the linear predictors in the

limit η∗M,i 6= η∗MT ,i
.

Under non-canonical links, observed information matrices are functions of Y, therefore we

need a weak law of large numbers for independently but non-identically distributed random

variables. In Resnick (1999, pp. 205), by Theorem 7.2.1 and the proof of special case (a), we

have that for a sequence of independent random variables Y1, . . . , Yn, if their variances are

bounded, then as n→∞,

1

n

n∑
i=1

Yi −
1

n

n∑
i=1

E(Yi)
P−→ 0. (A.2)

Next we show asymptotic results for Jn(α̂M). In (10), for i = 1, . . . , n, the ith diagonal

entry of Jn(η̂M) can be rewritten as di = b′′ ◦ θ(η̂M,i) [θ′(η̂M,i)]
2 + [b′ ◦ θ(η̂M,i)− Yi] θ′′(η̂M,i).

Hence, for any model M,

1

n
Jn(α̂M) =

1

n
1nJ (η̂M)1n =

1

n

n∑
i=1

di

=
1

n

{
n∑
i=1

b′′ ◦ θ(η̂M,i) [θ′(η̂M,i)]
2

+ [b′ ◦ θ(η̂M,i)− Yi] θ′′(η̂M,i)

}
P−→ 1

n

{
n∑
i=1

b′′ ◦ θ(η̂M,i) [θ′(η̂M,i)]
2

+
[
b′ ◦ θ(η̂M,i)− b′ ◦ θ(η∗MT ,i

)
]
θ′′(η̂M,i)

}
P−→ 1

n

{
n∑
i=1

b′′ ◦ θ(η∗M,i)
[
θ′(η∗M,i)

]2
+
[
b′ ◦ θ(η∗M,i)− b′ ◦ θ(η∗MT ,i

)
]
θ′′(η∗M,i)

}
, (A.3)

where the second last line is given by (A.2) and the fact E(Yi) = b′ ◦ θ(η∗MT ,i
), for all i =

1, . . . , n, and the last line is given by the continuous mapping theorem. Since for all i =

1, . . . , n, xi is bounded, η∗M,i and η∗MT ,i
are also bounded. For each term in the summation

of (A.3), it is bounded due to the continuity assumptions on the third derivatives of b(·) and

θ(·). Therefore, Jn(α̂M)/n is bounded in probability.
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If M⊃MT , (A.3) becomes

1

n
Jn(α̂M)

P−→ 1

n

n∑
i=1

b′′ ◦ θ(η∗MT ,i
)
[
θ′(η∗MT ,i

)
]2

=
1

n
In(α∗M), (A.4)

which is also the limit of In(α̂M)/n. Because we assume that b′ ◦ θ(·) is strictly monotonic,

θ(·) is also strictly monotonic. For each term in the summation of (A.4), it is positive

because θ′(·) 6= 0 and b′′ ◦ θ(η) is positive for finite η. Therefore by (A.4), if M⊃MT , then

Jn(α̂M)/n is positive and bounded in probability, i.e., Jn(α̂M) = OP (n). On the other hand,

if M 6⊃ MT , then only (A.3) holds but not (A.4). Each term in the summation of (A.3)

can be either positive, zero, or negative. In this case, by (A.3), Jn(αM)/n is bounded in

probability, and it may equal to zero. Therefore, Jn(α̂M) is on the order of O(nτM), where

τn ≤ 1, so that it tends to ∞ at a rate no faster than OP (n).

Last, we show asymptotic results regarding the matrix

Jn(β̂M) = XcT
MJ (η̂M)Xc

M = XT
M(In − P̂1n)TJ (η̂M)(In − P̂1n)XM

= XT
M

[
J (η̂M)− J (η̂M)1n

(
1TnJn(η̂M)1n

)−1
1TnJ (η̂M)

]
XM.

For the (j, k)th entry, 1 ≤ j < k ≤ pM,

1

n

[
Jn(β̂M)

]
j,k

=
1

n

n∑
i=1

dixi,jxi,k −
1

n

(
n∑
i=1

dixi,j

)(
n∑
i=1

di

)−1( n∑
i=1

dixi,k

)

=
1

n

n∑
i=1

dixi,jxi,k −

(
1

n

n∑
i=1

dixi,j

)(
1

n

n∑
i=1

di

)−1(
1

n

n∑
i=1

dixi,k

)

is bounded since all xi are bounded. Therefore, Jn(β̂M)/n is bounded in probability.

To show that for any M ⊃ MT , Jn(β̂M)/n does not reduce to zero, we will show that

it is a positive definite matrix. For any given non-zero vector a ∈ RpM , we denote XMa =

(t1, . . . , tn)T , whose entries are all bounded. WhenM⊃MT , by (A.4), all di’s have a positive
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lower bound, hence simple calculation gives

1

n
aTJn(β̂M)a =

1

n

n∑
i=1

dit
2
i −

(
1

n

n∑
i=1

di

)−1(
1

n

n∑
i=1

diti

)2

≥ 0.

Here the quality only holds if all ti’s are equal for i = 1, . . . , n, which is impossible here because

of the assumption 1n 6∈ C(XM). For large n, the assumption that the smallest eigenvalue of

XTX/n being bounded from below by a positive constant suggests that XT
MXM/n is positive

definite, so aTJn(β̂M)a/n 6−→ 0.

Furthermore, arguing similarly to (A.4), we also have

1

n

n∑
i=1

dit
k
i

P−→ 1

n

n∑
i=1

b′′ ◦ θ(η∗MT ,i
)
[
θ′(η∗MT ,i

)
]2
tki ,

for k = 0, 1, 2. Therefore, for any vector a, if M⊃MT , then

1

n
aTJn(β̂M)a− 1

n
aTIn(β̂M)a

P−→ 0.

i.e., Jn(β̂M)/n and In(β̂M)/n are asymptotically the same.

A.4 Proof of Proposition 2

Proof. We first use proof by contradiction to show that for M, the MLE of the intercept is

unique. If both (α̂1, β̂1) and (α̂2, β̂2) maximize the likelihood for model M, where α̂1 6= α̂2,

then

α̂11n + XMβ̂1 = α̂21n + XMβ̂2 =⇒ (α̂1 − α̂2)1n = XM(β̂2 − β̂1),

which is contradicted with 1n 6∈ C(XM). Similarly, we can show this MLE is the same as the

one for model M′, i.e., α̂M = α̂M′ .
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By (25), between the two models M and M′,

Jn(α̂M) = Jn(α̂M′), zM = zM′ .

So we just need to show QM = QM′ . Since α̂M = α̂M′ , (25) suggests that

xTM,iβ̂M = xTM′,iβ̂M′ , i = 1, . . . , n.

Hence,

Xc
Mβ̂M = XMβ̂M −

(
n∑
i=1

wix
T
M,iβ̂M

)
1n

= XM′β̂M′ −

(
n∑
i=1

wix
T
M′,iβ̂M′

)
1n = Xc

M′β̂M′ ,

where wi = di/(
∑n

r=1 dr). Therefore, we have

QM =
[
Xc
Mβ̂M

]T
Jn(η̂M)

[
Xc
Mβ̂M

]
=
[
Xc
M′β̂M′

]T
Jn(η̂M′)

[
Xc
M′β̂M′

]
= QM′ .

A.5 Proof of Proposition 3

Proof. The marginal likelihood of the mixture of g-priors is obtained by integrating out g

from the marginal likelihood of the g-prior, i.e.,

p(Y | M) =

∫ ∞
0

p(Y | M, g)p(g)dg
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Here p(Y | M, g) is obtained under the integrated Laplace approximation as in (19). Because

of the one-to-one mapping between g and u, we rewrite this integral in terms of u.

p(Y | M) =

∫ 1

0

p(Y | M, u)p(u)du

∝
∫ 1

0

p(Y | α̂M, β̂M,M)Jn(α̂M)−
1
2u

pM
2 e−

QM
2
u

·
v
a
2 exp

(
s

2v

)
B
(
a
2
, b

2

)
Φ1

(
b
2
, r, a+b

2
, s

2v
, 1− κ

) ua2−1(1− vu)
b
2
−1e−

s
2
u

[κ+ (1− κ)vu]r
1{0<u< 1

v
} du

= p(Y | α̂M, β̂M,M)Jn(α̂M)−
1
2

v
a
2 exp

(
s

2v

)
B
(
a
2
, b

2

)
Φ1

(
b
2
, r, a+b

2
, s

2v
, 1− κ

)
·
∫ 1

0

u
a+pM

2
−1(1− vu)

b
2
−1e−

s+QM
2

u

[κ+ (1− κ)vu]r
1{0<u< 1

v
} du.

Since the above integrand is proportional to a tCCH density (27) with updated parameters,

the above integral equals B
(
a+pM

2
, b

2

)
Φ1

(
b
2
, r, a+b+pM

2
, s+QM

2v
, 1− κ

)
v−

a+pM
2 exp

(
− s+QM

2v

)
.

A.6 Proof of Proposition 4

Proof. The marginal prior on βM after integrating g out is

p(βM | M) ∝
∫ ∞

0

g−
pM

2 exp

[
−
‖βM‖2

Jn
2g

]
g
b
2
−1

(
1

1 + g

)a+b
2

exp

[
sg

2(1 + g)

]
dg (A.5)

We will show that as ‖βM‖Jn → ∞, both a lower bound and an upper bound of (A.5) are

proportional to
(
‖βM‖2

Jn

)−a+pM
2 . Since s ≥ 0, a lower bound of of the right side of (A.5) is

∫ ∞
0

g−
pM

2 e−
‖βM‖

2
Jn

2g g
b
2
−1

(
1

1 + g

)a+b
2

dg =

∫ ∞
0

(
g

1 + g

)a+b
2
(

1

g

)a+pM−2

2

e−
‖βM‖

2
Jn

2g d

(
1

g

)
.

Then according to the Watson’s Lemma (Olver 1997, pp. 71), as ‖βM‖Jn →∞, the limit of

this lower bound is proportional to
(
‖βM‖2

Jn

)−a+pM
2 . Next we find an upper bound of the
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right side of (A.5) as

∫ ∞
0

g−
pM

2 exp

[
−
‖βM‖2

Jn
2(1 + g)

]
g
b
2
−1

(
1

1 + g

)a+b
2

exp

[
sg

2(1 + g)

]
dg

= e−
‖βM‖

2
Jn

2 B

(
b− pM

2
,
a+ pM

2

)
1F1

(
b− pM

2
,
a+ b

2
,
s+ ‖βM‖2

Jn
2

)
.

According to Abramowitz and Stegun (1970) formula (13.1.4),

1F1(a, b, s) =
Γ(b)

Γ(a)
exp(s)sa−b[1 +O(|s|−1)], when Real(s) > 0, (A.6)

hence as ‖βM‖Jn →∞, the limit of the above upper bound converges to

exp

[
−
‖βM‖2

Jn
2

]
Γ

(
a+ pM

2

)
exp

[
s+ ‖βM‖2

Jn
2

]
·
(
s+ ‖βM‖2

Jn
2

)−a+pM
2

∝
(
‖βM‖2

Jn

)−a+pM
2 .

Therefore, as ‖βM‖Jn increases, or equivalently, as ‖βM‖ increases, both the lower bound

and upper bound of p(βM | M) are proportional to
(
‖βM‖2

Jn

)−a+pM
2 .

A.7 Special Functions: Definition and Useful Properties

We first review a list of special functions, including their definitions and relevant properties,

that will be needed in the proof of Proposition 5.

• Confluent hypergeometric function (Abramowitz and Stegun 1970, eq 13.2.1): for γ > α >

0,

1F1(α, γ, x) =
1

B(γ − α, α)

∫ 1

0

uα−1(1− u)γ−α−1exu du.

– By (Abramowitz and Stegun 1970, eq 13.2.27): 1F1(α, γ, x) = ex · 1F1(γ − α, γ,−x).

– By (Abramowitz and Stegun 1970, eq 6.5.12), the incomplete Gamma function:

γ(a, s) =

∫ s

0

ta−1e−tdt = 1F1(a, a+ 1,−s)s
a

a
.
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– 1F1(α, γ, 0) = 1.

• Confluent hypergeometric function of two variables (Gordy 1998)1: for γ > α > 0 and

y < 1,

Φ1(α, β, γ, x, y) =
1

B(γ − α, α)

∫ 1

0

uα−1(1− u)γ−α−1(1− yu)−βexu du,

Special cases:

– If x = 0, then Φ1(α, β, γ, 0, y) = 2F1(β, α; γ; y).

– If β = 0 or y = 0, then Φ1(α, 0, γ, x, y) = Φ1(α, β, γ, x, 0) = Φ1(α, 0, γ, x, 0) = 1F1(α, γ, x).

– If x = 0 and y = 0, then Φ1(α, β, γ, 0, 0) = 1.

• Hypergeometric function (Abramowitz and Stegun 1970, eq 15.3.1): for γ > α > 0

2F1(β, α; γ;x) =
1

B(γ − α, α)

∫ 1

0

uα−1(1− u)γ−α−1(1− xu)−β du.

– By (Abramowitz and Stegun 1970, eq 15.3.3): in the definition of 2F1 function above,

let w = 1−u
1−xu , then

2F1(β, α; γ;x) = (1− x)γ−β−α 2F1(γ − β, γ − α; γ;x)

– 2F1(0, α; γ, x) = 2F1(β, α; γ, 0) = 1

– 2F1(β, 1; β, x) = (1− x)−1
2F1(0, β − 1; β, x) = (1− x)−1

– By (Abramowitz and Stegun 1970, eq 15.3.4): 2F1(β, α; γ;x) = (1−x)−β2F1

(
β, γ − α; γ, x

x−1

)
– By (Abramowitz and Stegun 1970, eq 15.3.5): 2F1(β, α; γ;x) = (1−x)−α2F1

(
α, γ − β; γ, x

x−1

)
1Note: the definition in Gordy (1998) is slightly different from that in Gradshteyn and Ryzhik (2007).
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• Hypergeometric function of two variables (Appell function) (Weisstein 2009): for γ > α > 0,

F1(α; β, β′; γ;x, y) =
1

B(γ − α, α)

∫ 1

0

uα−1(1− u)γ−α−1(1− xu)−β(1− yu)−β
′
du.

A.8 Proof of Proposition 5

Proof. To begin we establish that the marginal likelihood conditional on g is well defined

under the g-prior when the design matrix is not full rank for a general linear model. We will

assume the inner product space defined by the vector space Rn equipped with inner product

uTWv for two vectors u,v ∈ Rn where W is a real, n×n symmetric positive definite matrix.

Similarly, ‖u‖2
W ≡ uTWu.

For the model

Y = 1nβ0 + XMβM + ε, with ε | φ ∼ N(0n, φ
−1W−1),

let P1 = 1n(1TnW1n)−11TnW denote the orthogonal projection onto the column space of 1n

and without loss of generality reparameterize the model

Y = 1nα + Xc
MβM + ε

where Xc
M = (In −P1n)XM and α ≡ β0 − (1TnW1n)−11TnWXMβM. Adopting the g-prior of

the form

βM | α, φ, g ∼ N

(
0,
g

φ
(XcT
MWXc

M)−
)
,

where (XcT
MWXc

M)− is any generalized inverse, standard normal theory for the linear combi-

nation Xc
MβM + ε can be used to show that Y is equal in distribution

Y | α, φ, g,M∼ N
(
1nα, φ

−1(In + gPXc
M

)W−1
)

(A.7)
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where PXc
M

= Xc
M(XcT

MWXc
M)−XcT

MW is the ρM ≤ pM orthogonal projection onto the

column space Xc
M in the inner product space. As the projection PXc

M
does not depend on

the choice of generalized inverse, this establishes that the marginal likelihood for the model

will not depend on the choice of generalized inverse employed in defining the g-prior.

Continuing with integration with respect to α, φ under the independent Jeffreys prior

p(α, φ) ∝ φ−1,

p(Y | g,M) =

∫∫
(2π)−

n
2 |In + gPXc

M
|−

1
2 |W|

1
2φ

n
2
−1e
−φ

2

{
(Y−1nα)TW(In− g

1+g
PXcM

)(Y−1nα)
}
dα dφ

(A.8)

rearrangement of terms can be used to show that

p(Y | g,M) = p(Y | Mø)(1 + g)
n−ρM−1

2

{
1 + g(1−R2

M)
}−n−1

2

where R2
M is defined in (40) and

p(Y | Mø) = (2π)−
n−1

2 Γ

(
n− 1

2

)
|W|

1
2 (1TnW1n)−

1
2

[
‖(In − P1n)Y‖2

W

2

]−n−1
2

is the marginal under the null model. Note that in (A.8), the determinant |In + gPXc
M
| =

(1+g)ρM , because the eigenvalues of the orthogonal projection PXc
M

are one with a multiplicity

of ρM and zero with a multiplicity of pM − ρM. The Bayes Factor for comparing M to Mø

is thus

BF[M,Mø] = (1 + g)
n−ρM−1

2

{
1 + g(1−R2

M)
}−n−1

2 ,

which will be one for any model M where R2
M = 1 and ρM = n− 1.

For simplicity in the rest of proof, we omit the subscript M when there is no ambiguity.

We now show part (1). In the tCCH distribution, if r = 0 or κ = 1, then

Φ1

(
b

2
, r,

a+ b

2
,
s

2v
, 1− κ

)
= Φ1

(
b

2
, 0,

a+ b

2
,
s

2v
, 0

)
= 1F1

(
b

2
,
a+ b

2
,
s

2v

)
.
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Then the marginal likelihood becomes

p(Y | M) =
p(Y | Mø) v

a
2 exp

(
s

2v

)
B
(
a
2
, b

2

)
1F1

(
b
2
, a+b

2
, s

2v

) ∫ 1/v

0

u
a+ρ

2
−1(1− vu)

b
2
−1e−

su
2

[(1−R2) +R2u]
n−1

2

du

=
p(Y | Mø) v

a
2 exp

(
s

2v

)
B
(
a
2
, b

2

)
1F1

(
b
2
, a+b

2
, s

2v

) ∫ 1/v

0

u
a+ρ

2
−1(1− vu)

b
2
−1e−

su
2{[

1−
(
1− 1

v

)
R2
] [

1−R2

1−(1− 1
v )R2

+ R2/v

1−(1− 1
v )R2

· (vu)

]}n−1
2

du

=
p(Y | Mø) v

a
2 exp

(
s

2v

)
B
(
a
2
, b

2

)
1F1

(
b
2
, a+b

2
, s

2v

) · B
(
a+ρ

2
, b

2

)
Φ1

(
b
2
, n−1

2
, a+b+ρ

2
, s

2v
, R2/v

1−(1− 1
v )R2

)
v
a+ρ

2 exp
(
s

2v

) [
1−

(
1− 1

v

)
R2
]n−1

2

= p(Y | Mø) ·
B
(
a+ρ

2
, b

2

)
Φ1

(
b
2
, n−1

2
, a+b+ρ

2
, s

2v
, R2/v

1−(1− 1
v )R2

)
v
ρ
2

[
1−

(
1− 1

v

)
R2
]n−1

2 B
(
a
2
, b

2

)
1F1

(
b
2
, a+b

2
, s

2v

) .
Here the second last equality is given by the propriety of the tCCH density function (27).

Then we show part (2). In the tCCH distribution, when s = 0, then

Φ1

(
b

2
, r,

a+ b

2
, 0, 1− κ

)
= 2F1

(
r,
b

2
;
a+ b

2
; 1− κ

)
.

Hence, the marginal likelihood becomes

p(Y | M) =
p(Y | Mø) v

a
2

B
(
a
2
, b

2

)
2F1

(
r, b

2
; a+b

2
; 1− κ

) ∫ 1/v

0

u
a+ρ

2
−1(1− vu)

b
2
−1

[(1−R2) +R2u]
n−1

2 [κ+ (1− κ)vu]r
du

(A.9)

For simplification, we denote x = 1 − 1/κ and w = 1 − (1 − vu)/(1 − xvu). By change of

variable,

u =
w

v(1− x+ xw)
,

du

dw
=

1− x
v(1− x+ xw)2

,

13



and the integral in (A.9) is

∫ 1/v

0

u
a+ρ

2
−1(1− vu)

b
2
−1

[(1−R2) +R2u]
n−1

2 [κ+ (1− κ)vu]r
du

=

∫ 1

0

[
w

v(1−x+xw)

]a+ρ
2
−1 [

(1−x)(1−w)
1−x+xw

] b
2
−1

1−x
v(1−x+xw)2{

(1−R2)v(1−x)+[(1−R2)vx+R2]w
v(1−x+xw)

}n−1
2 (

1
1−x+xw

)r dw
=

(1− x)
b
2 v

n−1−a−ρ
2

[(1−R2)v(1− x)]
n−1

2 (1− x)
a+b+ρ+1−n−2r

2

∫ 1

0

w
a+ρ

2
−1(1− w)

b
2
−1[

1− (1−R2)vx+R2

(1−R2)v(x−1)
w
]n−1

2 (
1− x

x−1
w
)a+b+ρ+1−n−2r

2

dw

=
κ
a+ρ−2r

2 v−
a+ρ

2

(1−R2)
n−1

2

B

(
a+ ρ

2
,
b

2

)
·

F1

(
a+ ρ

2
;
a+ b+ ρ+ 1− n− 2r

2
,
n− 1

2
;
a+ b+ ρ

2
; 1− κ, (1−R2)v(1− κ)−R2κ

(1−R2)v

)
.

A.9 Derivation of (44)

Proof. Similar to (19), we apply integrated Laplace approximation to obtain p(Y | φ,M, g),

then marginalize φ out as follows.

p(Y | M, g) =

∫ ∞
0

p(Y | φ,M, g)p(φ)dφ

∝
∫ ∞

0

p(Y | α̂M, β̂M, φ,M) [φJn(α̂M)]−
1
2 (1 + g)−

pM
2 e−

φQM
2(1+g)φ−1dφ

∝ [Jn(α̂M)]−
1
2 (1 + g)−

pM
2

∫ ∞
0

φ
n−1

2
−1e

φ
{
− QM

2(1+g)
+
∑n
i=1[Yi(θ̂i−ti)−b(θ̂i)+b(ti)]

}
dφ

∝ [Jn(α̂M)]−
1
2 (1 + g)−

pM
2

{
QM

2(1 + g)
−

n∑
i=1

[
Yi(θ̂i − ti)− b(θ̂i) + b(ti)

]}−n−1
2

∝ [Jn(α̂M)]−
1
2 u

pM
2{

uQM + 2
∑n

i=1

[
Yi(ti − θ̂i)− b(ti) + b(θ̂i)

]}n−1
2

.

Here, the last step replaces g with u = 1/(1 + g).
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A.10 Proof of Model Selection Consistency

We first show a lemma about a non-central χ2 distribution, which is useful to prove some

of the following lemmas and theorems. Here the symbol χ2
k(m) denotes a non-central χ2

distribution with degrees of freedom k and non-centrality parameter m.

Lemma A.2. If a sequence of random variables {Xn : n = 1, 2, . . .} have independent non-

central χ2 distributions: Xn ∼ χ2
k(nAn), where random variables An

D−→ a0 ∈ R+ ∪ {0}, then

as n −→∞, Xn/n
P−→ a0.

Proof. For any n ∈ N, the characteristic function of Xn/n evaluated at t ∈ R is

φXn/n(t) = E
(
eitXn/n

)
= EAn

[
E
(
eitXn/n | An

)]
= EAn

[
exp

(
itAn

1− 2it/n

)
(1− 2it/n)−

k
2

]
= (1− 2it/n)−

k
2 · EAn

[
exp

(
itAn

1− 2it/n

)]
.

Denote a complex valued random variable Bn = An/(1 − 2it/n). Since the limit of An is a

constant, for the series {An : n ∈ N}, convergence in distribution is equivalent to convergence

in probability. Because of the continuous mapping theorem, Bn
P−→ a0, or equivalently,

convergence in distribution. Denote the bounded and continuous function h(Bn) = exp (itBn),

then according to Portmanteau lemma, E [h(Bn)]−→E [h(a0)] = h(a0). So for any t ∈ R,

lim
n→∞

φXn/n(t) = lim
n→∞

(1− 2it/n)−k/2 · lim
n→∞

E [h(Bn)] = h(a0) = exp (ita0) ,

where the limit is the characteristic function of a degenerated distribution at a0. Therefore,

Xn/n converge in distribution to a constant a0, which implies convergence in probability.

In order to show the asymptotic performance of the Bayes factor BFMT :M, we first study

asymptotic behaviors of the terms in the Bayes factors in the following lemmas. When testing

nested models, the log likelihood ratio between MT and M converges in distribution to a
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central (non-central) χ2 distribution, when the smaller (larger) model is true. The following

lemma studies asymptotic behaviors of the likelihood ratio, which does not require models

M and MT to be nested.

Lemma A.3. Denote the the likelihood ratio by

ΛMT :M
4
=
p(Y|α̂MT

, β̂MT
,MT )

p(Y|α̂M, β̂M,M)
= exp

(
zMT

− zM
2

)
(A.10)

As the sample size n increases,

1) if MT ⊂M, then ΛMT :M = OP (1).

2) if MT 6⊂ M, then ΛMT :M = OP (ecMn), where cM is a positive constant.

Proof. In the first case whereM⊃MT , from the well-known results of likelihood ratio test,

zM−zMT
has a central chi-square distribution χ2

pM−pMT
. Therefore, the limiting distribution

of the log-likelihood ratio does not depend on n, i.e., ΛMT :M = OP (1).

In the second case where M 6⊃ MT , we first examine the sub-case where M ⊂ MT .

According to the power calculation results for GLM in Self et al. (1992) and Shieh (2000),

when testing nested models, if the larger model is true, then we have that zMT
−zM converges

in distribution to a non-central χ2 of degrees of freedom pMT
− pM. The non-centrality

parameter Ψ is approximately

Ψ ≈
n∑
i=1

b′(θ∗MT ,i
)
(
θ∗i,MT

− θ∗i,M
)
−
[
b(θ∗i,MT

)− b(θ∗i,M)
]
,

where θ∗i,M = θ(η∗i,M), for i = 1, . . . , n. By a Taylor expansion, there exist a θ̃i between θ∗MT ,i

and θ∗M,i, such that b(θ∗i,M) = b(θ∗i,MT
) + b′(θ∗MT ,i

)
(
θ∗i,MT

− θ∗i,M
)

+ b′′(θ̃i)
(
θ∗i,MT

− θ∗i,M
)2
/2.

This combined with the assumption b′′(·) > 0 gives that limn→∞Ψ/n converges to a positive

constant cM. Then by Lemma A.2, (zMT
− zM)/n

P−→ cM, and hence ΛMT :M = OP (ecMn).

In the case where M and MT are not nested, we introduce a third model M′ which

16



includes all the predictors in both M and MT . Using a similar method as in Self et al.

(1992), we can treat M′ also as the true model (although with some redundant predictors)

when comparing with M and easily show that ΛM′:M also has a non-central χ2 distribution.

Hence we decompose ΛMT :M = ΛMT :M′ · ΛM′:M. Since both pairs (MT ,M′) and (M′ :M)

are nested models, we can apply the previous results twice: ΛMT :M′ = OP (1) and ΛM′:M =

OP (ecMn). Therefore, we can conclude that ΛMT :M = OP (1) ·OP (ecMn) = OP (ecMn).

The Bayes factors contain the Wald statistics QMT
and QM. We next study their asymp-

totic behaviors.

Lemma A.4. The Wald statistic QM = OP (nξM), where 0 ≤ ξM ≤ 1. In particular,

1) If MT 6=Mø, then for any M⊃MT , ξM = 1.

2) if MT =Mø, then for any model M, ξM = 0.

Proof. For any M ⊃ MT , we have shown in the proof of Lemma A.1 that the MLE β̂M

converges in probability to the true value β∗M, and Jn(β̂M)/n is a finite positive definite

matrix and converges to In(β∗M)/n in probability. By Lemma A.1 and Slutsky’s theorem, we

can rewrite the asymptotic normality (A.1) as

Jn(β̂M)
1
2

(
β̂M − β∗M

)
d−→ N(0, IpM).

Therefore, QM = β̂
T

MJn(β̂M)β̂M converges in distribution to a non-central χ2 random vari-

able with degrees of freedom pM and non-centrality parameter β∗TMIn(β∗M)β∗M, which is O(n)

if β∗M 6= 0, and zero otherwise. Since β∗M = β∗MT
in the sense that all entries in β∗M that

correspond to predictors not inMT are filled with zero, β∗M = 0 is equivalent toMT =Mø.

Therefore, by Lemma A.2, ifMT 6=Mø, then QM = OP (n); ifMT =Mø, then QM = OP (1).

For any M 6⊃ MT , since convergence in probability is preserved under addition and

multiplication (Resnick 1999, pp. 175), we have QM − β∗TMJn(β̂M)β∗M
P−→ 0, i.e., QM is at
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most on the same order of Jn(β̂M). By Lemma A.1, we have ξM = τM if β∗M 6= 0, and

ξM = 0 if β∗M = 0.

Based on the results of Lemma A.4, the next lemma discusses the asymptotic properties

of ΩCH
MT :M, a term that appears in the Bayes factor under the CH prior.

Lemma A.5. Under the CH prior, denote the term in BFMT :M:

ΩCH
MT :M

4
=
B
(
a+pMT

2
, b

2

)
1F1

(
a+pMT

2
,
a+b+pMT

2
,− s+QMT

2

)
B
(
a+pM

2
, b

2

)
1F1

(
a+pM

2
, a+b+pM

2
,− s+QM

2

) . (A.11)

1) If MT 6=Mø, then as n increases,

ΩCH
MT :M =


OP

(
n
ξMpM−pMT

−a(1−ξM)

2

)
if b is fixed, and s is fixed

OP

(
n
pM−pMT

2

)
if b = O(n), or s = O(n)

In particular, if M⊃MT , then ΩCH
MT :M = OP

(
n
pM−pMT

2

)
for all b and s.

2) If MT =Mø, then as n increases,

ΩCH
MT :M =


OP (1) if b is fixed, and s is fixed

OP

(
n
pM−pMT

2

)
if b = O(n), or s = O(n)

Proof. We first show Case 1) where MT 6= Mø, by Lemma A.4, ξMT
= 1. We consider the

following three scenarios about parameters b and s being fixed or O(n).

Scenario 1: Both b, s are fixed. By Abramowitz and Stegun (1970) formula (13.1.5),

1F1(a, b, s) =
Γ(b)

Γ(b− a)
(−s)−a[1 +O(|s|−1)], when Real(s) < 0. (A.12)
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Continuous mapping theorem suggests that for any model M whose QM = OP (nξM),

ΩCH
MT :M ≈

Γ
(
a+pMT

2

)(
s+QMT

2

)−a+pMT
2

Γ
(
a+pM

2

) (
s+QM

2

)−a+pM
2

∝ (s+QMT
)−

a+pMT
2

(s+QM)−
a+pM

2

= OP

(
n
ξMpM−pMT

−a(1−ξM)

2

)
.

(A.13)

Scenario 2: b is fixed, and s = O(n). Since s + QMT
= O(n) and s + QM = O(n), then

by (A.13), ΩCH
MT :M = OP

(
n
pM−pMT

2

)
.

Scenario 3: b = O(n). Lemma A.4 indicates that QM is between OP (1) and OP (n). By

Slater (1960) formula (4.3.3): if b is large, and a, s are bounded, then

1F1(a, b, s) = 1 +O(|b|−1) is bounded; (A.14)

and by Slater (1960) formulas (4.3.7): if b is large, s = by, and a, y are bounded, then

1F1(a, b, s) = (1− y)−a

[
1− a(a+ 1)

2b

(
y

1− y

)2

+O(|b|−2)

]
is also bounded. (A.15)

Therefore, under the CH prior when parameter b = O(n),

ΩCH
MT :M =

B
(
a+pMT

2
, b

2

)
1F1

(
a+pMT

2
,
a+b+pMT

2
,− s+QMT

2

)
B
(
a+pM

2
, b

2

)
1F1

(
a+pM

2
, a+b+pM

2
,− s+QM

2

) P−→ C ·
B
(
a+pMT

2
, b

2

)
B
(
a+pM

2
, b

2

) .
According to the Stirling’s Formula Γ(n) = e−nnn−

1
2 (2π)

1
2 (1 + O(n−1)), the above ratio be-

comes OP

(
n
pM−pMT

2

)
.

Next we examine Case 2) where MT =Mø. In this case, Lemma A.4 suggests that both

QMT
and QM are on the same order OP (1). Hence in Scenario 1, where both b and s are

fixed, ΩCH
MT :M = OP (1); In Scenario 2, since both s + QMT

and s + QM are on the order of

OP (n), the same deviation and result as in Case 1) Scenario 2 apply. In Scenario 3, both

s+QMT
and s+QM are OP (1) if s is fixed, and OP (n) if s = O(n), so the same derivation

and result as in Case 1) Scenario 3 apply.
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Lemma A.6. Under the robust prior, denote the term in BFMT :M:

ΩR
MT :M

4
=

(
pM + 1

pMT
+ 1

) 1
2

·
Q
−
pMT

+1

2
MT

Q
− pM+1

2
M

·
γ
(
pMT

+1

2
,
QMT

(pMT
+1)

2(n+1)

)
γ
(
pM+1

2
, QM(pM+1)

2(n+1)

) . (A.16)

As the sample size n increases, ΩR
MT :M = OP

(
n
pM−pMT

2

)
.

Proof. By Abramowitz and Stegun (1970) formula (6.5.12), the incomplete Gamma function

γ(a, s) =
∫ s

0
ta−1e−tdt can be expressed using the 1F1 function

γ(a, s) = 1F1(a, a+ 1,−s)s
a

a
. (A.17)

Therefore, (A.16) becomes

(
pM + 1

pMT
+ 1

) 1
2

·
Q
−
pMT

+1

2
MT

Q
− pM+1

2
M

·

(
pMT

+1

2

)−1 (QMT
(pMT

+1)

2(n+1)

) pMT
+1

2

1F1

(
pMT

+1

2
,
pMT

+3

2
,−QMT

(pMT
+1)

2(n+1)

)
(
pM+1

2

)−1
(
QM(pM+1)

2(n+1)

) pM+1

2

1F1

(
pM+1

2
, pM+3

2
,−QM(pM+1)

2(n+1)

)
Since 1F1(a, b, 0) = 1, and both QMT

/n,QM/n are bounded, the ratio between the 1F1

functions is bounded as n increases. Therefore we further simplify ΩR
MT :M ∝ (n+1)

pM−pMT
2 =

OP

(
n
pM−pMT

2

)
. This result holds no matter whether MT =Mø or not.

Lemma A.7. Under the intrinsic prior, denote the term in BFMT :M:

ΩI
MT :M

4
=

(
n+pM+1
pM+1

) pM
2

e
QM(pM+1)
2(n+pM+1) B

(
pMT

+1

2
, 1

2

)
Φ1

(
1
2
, 1,

pMT
+2

2
,
QMT

(pMT
+1)

2(n+pMT
+1)

,−pMT
+1

n

)
(
n+pMT

+1

pMT
+1

) pMT
2

e

QMT (pMT
+1)

2(n+pMT
+1) B

(
pM+1

2
, 1

2

)
Φ1

(
1
2
, 1, pM+2

2
, QM(pM+1)

2(n+pM+1)
,−pM+1

n

)

As the sample size n increases, ΩI
MT :M = OP

(
n
pM−pMT

2

)
.
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Proof. Since pMT
, pM are bounded, andQMT

/n,QM/n are bounded in probability, as n→∞,

ΩI
MT :M

P−→ C ·

(
n+pM+1
pM+1

) pM
2

(
n+pMT

+1

pMT
+1

) pMT
2

= OP

(
n
pM−pMT

2

)
.

Lemma A.8. Under the local EB, denote the term in BFMT :M:

ΩLEB
MT :M

4
=

max

{
exp

(
−QMT

2

)
,
(
QMT

pMT

)− pMT
2

exp
(
−pMT

2

)}

max

{
exp

(
−QM

2

)
,
(
QM
pM

)− pM
2

exp
(
−pM

2

)} . (A.18)

1) If MT 6= Mø, then as n increases, ΩLEB
MT :M = OP

(
n
ξMpM−pMT

2

)
. In particular, if

M⊃MT , then ΩLEB
MT :M = OP

(
n
pM−pMT

2

)
.

2) If MT =Mø, then as n increases, ΩLEB
MT :M = OP (1).

Proof. Case 2) is straightforward, because whenMT =Mø, QMT
= OP (1) and QM = OP (1).

Now let us focus on Case 1). In (A.18), the numerator equals exp(−QMT
/2) if and only if

QMT
≤ pMT

, and the denominator follows the same rule when we replacing MT with M.

Since MT 6= Mø, QM = OP (n) is greater than pM for large n. Hence the numerator

of (A.18) is proportional to (QMT
/pMT

)−
pMT

2 exp (−pMT
/2) = OP (n−

pMT
2 ). For model M

whoseQM = OP (nξM), if ξM > 0, then when n is large enough, QM > pM, so the denominator

is OP (n−
ξMpM

2 ). If ξM = 0, then the denominator is OP (1), which can also be written as

OP (n−
ξMpM

2 ).

We now examine the model selection consistency.

Proof of Theorem 1
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Proof. By Lemma A.1, Jn(α̂M) = OP (nτM), where 0 ≤ τM ≤ 1, and τM = 1 if M ⊃ MT .

Hence, [
Jn(α̂MT

)

Jn(α̂M)

]− 1
2

= OP

(
n−

1−τM
2

)
.

For the CH prior,

BFMT :M =

[
Jn(α̂MT

)

Jn(α̂M)

]− 1
2

· ΛMT :M · ΩCH
MT :M · [1 +OP (1/n)]. (A.19)

We first consider the case where both b and s are fixed, by using the results in Lemma A.3

and A.5. In the case where MT 6=Mø, for any non-true model M⊃MT , then pM > pMT
,

τM = 1, and ξM = 1, hence

BFMT :M = OP (1) ·OP (1) ·OP

(
n
pM−pMT

2

)
· [1 +OP (1/n)]

P−→∞.

On the other hand, if M 6⊃MT , then

BFMT :M = OP

(
n−

1−τM
2

)
·OP (ecMn) ·OP

(
n
ξMpM−pMT

−a(1−ξM)

2

)
· [1 +OP (1/n)]

P−→∞.

In contrast, if MT = Mø, then for any model M, since M ⊃ MT , τM = 1. So the Bayes

factor

BFMT :M = OP (1) ·OP (1) ·OP (1) · [1 +OP (1/n)]

is bounded, which suggests the selection consistency does not hold when MT =Mø.

Next consider the case where b = O(n) or s = O(n). For any model M 6⊃MT , the proof

is similar as above. If M⊃MT , then τM = 1 and pM > pMT
, so

BFMT :M = OP (1) ·OP (1) ·OP

(
n
pM−pMT

2

)
· [1 +OP (1/n)]

P−→∞,

which holds even when MT =Mø.
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For the robust prior, the intrinsic prior, and local EB, their Bayes factor are given by

(A.19), with ΩCH
MT :M replaced by ΩR

MT :M, ΩI
MT :M, and ΩLEB

MT :M, respectively. By Lemma A.6,

A.7, and A.8, the proofs are similar to the CH prior, hence omitted.

A.11 Proof to Proposition 6

Proof. If b = O(n) then by (A.14) or (A.15),

E(1/g) =
B
(
a
2

+ 1, b
2
− 1
)

1F1

(
a
2

+ 1, a+b
2
,− s

2

)
B
(
a
2
, b

2

)
1F1

(
a
2
, a+b

2
,− s

2

) (A.20)

∝
B
(
a
2

+ 1, b
2
− 1
)

B
(
a
2
, b

2

) −→ a

b− 2
= O(1/n).

If b is fixed and s = O(n), then by (A.12) and (A.20),

E(1/g) ≈
B
(
a
2

+ 1, b
2
− 1
)

Γ
(
b
2

) (
s
2

)a
2

B
(
a
2
, b

2

)
Γ
(
b
2
− 1
) (

s
2

)a
2

+1
∝ 1

s
= O(1/n).

A.12 Proof of Proposition 7

Proof. For the CH prior, according to (32), the conditional posterior of z = 1− u is

z | Y,M D−→ CH

(
b

2
,
a+ pM

2
,−s+QM

2

)
, (A.21)

and its characteristic function is

φz(t) = E
(
eitz
)

=

∫
z
b
2
−1(1− z)

a+pMT
2

−1e

(
s+QMT

2
+it

)
z

B( b
2
,
a+pMT

2
) 1F1( b

2
,
a+b+pMT

2
,
s+QMT

2
)
dz =

1F1( b
2
,
a+b+pMT

2
,
s+QMT

2
+ it)

1F1( b
2
,
a+b+pMT

2
,
s+QMT

2
)
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Lemma A.4 shows that if MT 6= Mø, then s + QMT
= OP (n). If b = O(1), then by (A.6)

and the continuous mapping theorem, for any t ∈ R, as n goes in to infinity,

φz(t) −→
exp(

s+QMT

2
+ it) · ( s+QMT

2
+ it)−

a+pMT
2

exp(
s+QMT

2
) · ( s+QMT

2
)−

a+pMT
2

P−→ exp(it).

If b = O(n), then using formula (A.15), we can obtain the same limit.

For the robust prior, we examine the characteristic function of u = 1− z. Based on (37),

φu(t) = E
(
eitu
)

=

∫ pMT
+1

n+1

0

u
pMT

+1

2
−1e

(
it−

QMT
2

)
u
du∫ pMT

+1

n+1

0

u
pMT

+1

2
−1e−

QMT
u

2 du

=
γ
(
pMT

+1

2
,

(QMT
−2it)(pMT

+1)

2(n+1)

)
γ
(
pMT

+1

2
,
QMT

(pMT
+1)

2(n+1)

) ·
(
QMT

− 2it

QMT

)− pMT
+1

2

.

Since QMT
= OP (n), for any fixed t ∈ R, the ratio of the incomplete Gamma functions goes

to 1, and so does the second fraction. Therefore, φu(t)
P−→ 1, which is the characteristic

function of the degenerate distribution at 0.

For the intrinsic prior, by (30) and Table 1, the conditional posterior of u is

u | Y,MT ∼ tCCH

(
pMT

+ 1

2
,
1

2
, 1,

QMT

2
,
n+ pMT

+ 1

pMT
+ 1

,
n+ pMT

+ 1

n

)
, (A.22)

and hence its characteristic function for any t ∈ R is

φu(t) = exp

{
it(pMT

+ 1)

n+ pMT
+ 1

} Φ1

(
1
2
, 1,

pMT
+2

2
,

(QMT
−2it)(pMT

+1)

2(n+pMT
+1)

,−pMT
+1

n

)
Φ1

(
1
2
, 1,

pMT
+2

2
,
QMT

(pMT
+1)

2(n+pMT
+1)

,−pMT
+1

n

) . (A.23)

Since QMT
= OP (n) and

(QMT
− 2it)(pMT

+ 1)

2(n+ pMT
+ 1)

− QMT
(pMT

+ 1)

2(n+ pMT
+ 1)

P−→ 0,
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by continuous mapping theorem, the ratio of the two Φ1 functions in (A.23) converges to one

in probability. Therefore, under the intrinsic prior, φu(t)
P−→ 1.

A.13 Proof of Theorem 2

Proof. For the CH prior, we will prove the BMA estimation consistency in two steps: 1)MT 6=

Mø and 2) MT = Mø. When MT 6= Mø, the model selection consistency always holds, so

we just need to show the estimation consistency under the true model MT . For notation

simplicity, we denote Σn,M = Jn(β̂M)−1. According to (17) and (A.21), the characteristic

function of the posterior distribution p(βMT
| MT ,Y) is

φβMT
(t) =

∫
eit

TβMT p(βMT
|MT ,Y) dβMT

=

∫
eit

TβMT

{∫
p(βMT

|z,MT ,Y) p(z|MT ,Y)dz

}
dβMT

=

∫ {∫
eit

TβMT p(βMT
|z,MT ,Y) dβMT

}
p(z|MT ,Y)dz

=

∫
ez(it

T β̂MT
− 1

2
tTΣn,MT

t) p(z|MT ,Y)dz

In the above calculation, the integrand eit
TβMT has a bounded modulus, so according to

Fubini’s Theorem, the two integrals (with respect to z and βMT
) can be interchanged. Since

QMT
= OP (n) and Σn,MT

= OP (n−1), using methods similar to the proof of Proposition 7

and asymptotic normality of MLE, we can show that for any vector t,

φβMT
(t) −→ eit

T β̂MT
− 1

2
tTΣn,MT

t P−→ eit
Tβ∗MT .

On the other hand, whenMT =Mø, under the CH prior model selection consistency does

not hold if both b and s are fixed. Hence we need to examine the limit of posterior distribution

of βM under all models. Under any model M, the true model is nested in it, so the MLE

of the coefficient β̂M converges to the true parameters 0 in probability as n goes to infinity.
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Since the modulus of eit
TβM is bounded by a constant 1, which is integrable if regarded as a

function of z, so according to the dominated convergence theorem, the characteristic function

of the posterior distribution p(βM | Y,M) evaluated at any vector t ∈ Rp is

φβM(t) =

∫
ez(it

T β̂M− 1
2
tTΣn,Mt) p(z | M,Y)dz

P−→
∫ [

ez(it
T 0− 1

2
tT 0t)

]
p(z | M,Y)dz = 1.

For the robust and intrinsic priors, model selection consistency always holds. So we just

need to consider under MT . Based on (37) and (A.22), proofs similar to the above proof of

the CH prior can show that either MT 6= Mø or MT = Mø, the characteristic function of

p(βMT
| MT ,Y) converges to eit

Tβ∗MT or 1 in probability, respectively.

B Test-Based Bayes Factors

B.1 Test-Based Bayes Factor under the g-Prior

In Bayesian hypothesis testing, while the traditional Bayes factor computes the ratio between

marginal likelihoods of data (referred to as data-based BF, or DBF in short), another type

of Bayes factor, defined as the ratio between marginal likelihoods of a test statistic, has also

been introduced (Johnson 2005, 2008). In particular, based on the likelihood ratio statistic,

the test-based Bayes factor (TBF) has been applied in model selection under the g-prior (Hu

and Johnson 2009; Held et al. 2015, 2016), where models with high TBFs are preferable.

To compute the TBF based on the likelihood ratio deviance zM (22), first, asymptotic

theory (Davidson and Lever 1970) suggests that the limit distribution of zM under the null

model Mø and under a local alternative model M are central and non-central Chi-squares,

respectively,

zM | Mø ∼ χ2
pM
, zM | M ∼ χ2

pM
(λM), where λM = βTMIn(βM = 0)βM.
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Then, as p(zM | M,βM) depends on βM through the non-centrality parameter λM, integrat-

ing βM out under its prior density yields the marginal likelihood p(zM | M). Last, the TBF

is defined as the ratio

TBFM:Mø =
p(zM | M)

p(zM | Mø)
=

∫
p(zM | βM,M)p(βM | M)dβM

p(zM | Mø)
. (B.1)

To conduct model selection in GLMs, Held et al. (2015) derive the TBF under the g-

prior (8), in whose density, βM appears in the format of λM. Thus the conjugacy permits a

tractable marginal likelihood p(zM | M) as a Gamma distribution. Therefore, the resulting

TBF has a closed form expression as in (23).

B.2 Comparing Data-Based and Test-Based Bayes Factors

The TBF (23) has a similar expression to the DBF (21). In fact, the two Bayes factors would

be the same if zM = QM and Jn(α̂Mø) = Jn(α̂M). Naturally, it is interesting to examine

how different the two Bayes factors are.

We compare DBF (21) and TBF (23) empirically through a logistic regression toy example,

with g = n and a single covariate generated from independent standard normal distributions.

With the intercept set to α = 0.5, three scenarios are studied with different coefficients

β = 0, 20/
√
n, 2, which correspond to the null, local alternative, and alternative, respec-

tively. To study asymptotics, various sample sizes n = 100, 500, 1000, 5000 are taken. For

each combination of β and n, 100 independent datasets are generated. To obtain an accu-

rate approximation to the DBF, in addition to the integrated Laplace approximation (ILA)

formula (21), we also implement importance sampling (IS), which can be viewed as a gold

standard if the number of samples drawn is large. Here we draw m = 10000 samples α(t), β(t),

independently from Student-t distributions with degrees of freedom 4, with location and scale

parameters matching those in the corresponding conditional posteriors (17), (18).

Figure 1 shows that when the null or the local alternative is true, TBF (23) is asymp-
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Figure 1: From top to bottom: TBF versus DBF approximated by IS, DBF approximated by
ILA vs DBF approximated by IS, and TBF versus DBF approximated by ILA. From left to
right: the null, local alternative, and alternative hypotheses.
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Figure 2: Wald statistic QM versus the deviance zM.

totically the same as the DBF computed under either IS or ILA (21). In contrast, when

the alternative is true, TBF differs from DBF by a relatively small but systematic amount.

Comparison between the Wald statistic QM (20) and the deviance zM (22) suggests a similar

phenomenon (Figure 2). They are asymptotically the same under the null or local alternative,

but different under the alternative.

In addition to the similarity between the two Bayes factors under g-priors, we notice that

as a function of g, the test-based marginal likelihood would have the same kernel p(zM |

M) ∝ (1 + g)−pM/2 exp (−zM/[2(1 + g)]) as its data-based counterpart (19) if zM = QM.

Therefore, all empirical Bayes and fully Bayes approaches on g, discussed in Section 2.6 and

Section 3, can be readily applied to test-based methods with minimal changes. Held et al.

(2015) apply local empirical Bayes, p(zM | M) = maxg≥0 p(zM | g,M), and fully Bayes,

p(zM | M) =
∫
p(zM | g,M)p(g)dg to compute marginal likelihoods for TBFs. However, we

find that these optimized and integrated versions of TBF may no longer be coherent, in the

sense that results change with the choice of the baseline model. Elaborating, when testing

nested models M1 ⊂M2,

TBFM2:M1 6=
TBFM2:Mø

TBFM1:Mø

,
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if one computes the left hand side TBF under baselineM1, but computes the right hand side

TBFs under baseline Mø. The main reason for this incoherence is that for model M, unlike

the data-based marginal likelihood which only depends onM itself, the test statistic zM also

depends on the baseline model. On the other hand, coherence exists for the TBF (23) under

fixed g, since zM2:M1 = zM2:Mø − zM1:Mø (Johnson 2008). Hence, change of baseline models

does not affect the results of the TBF under fixed g, which is also the case with the DBF.

C Additional Simulation Examples

We first include some additional results from the logistic regression simulation example that

are examined in Section 5.1 (see Table C.1) and then introduce a different simulation study

on Poisson regressions.

The simulation setup of the Poisson regression example is similar to that of the logistic

regression in Section (5.1). True values of coefficients (including the intercept) are set to

one-fifth of those in the logistic regression, to avoid occasional extremely large values in Y.

Tables C.2-C.4 display model selection and parameter estimation performance. Comparison

among priors on βM leads to similar conclusions to the logistic regression example. For the

Poisson regression, overall model selection accuracy is not as high as the logistic regression

when MT 6=Mø, which is likely due to the smaller magnitude of coefficients.
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Table C.1: Logistic regression simulation example: average size of selected models, out of 100
realizations.
p 20 100
p(M) Uniform Uniform BB(1, 1)
pMT

0 5 10 20 5 5
r 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75
CH(a = 1/2, b = n) 0 0 5 4 10 8 17 13 17 15 5 3
CH(a = 1, b = n) 0 0 5 5 10 8 17 13 18 15 5 3
CH(a = 1/2, b = n/2) 0 0 6 5 10 9 17 14 25 20 5 3
CH(a = 1, b = n/2) 0 0 6 5 10 9 17 14 26 22 5 3
Beta-prime 0 0 5 4 10 8 17 13 19 15 5 3
ZS adapted 0 0 5 5 10 8 17 13 18 15 5 3
Benchmark 0 0 6 6 11 10 18 15 27 24 5 3
Robust 0 0 6 5 11 9 18 14 34 30 21 10
Intrinsic 0 0 6 5 11 9 18 14 32 30 14 5
Hyper-g/n 0 1 6 5 11 10 18 15 69 56 99 80
DBF, g = n 0 0 5 4 9 7 15 11 7 5 5 3
TBF, g = n 0 0 5 4 9 7 15 11 7 5 5 3
Jeffreys 3 3 6 6 11 10 18 15 70 60 99 91
Hyper-g 4 4 6 6 11 10 18 15 70 61 100 93
Uniform 4 4 7 6 12 10 18 15 70 61 100 97
Local EB 19 19 6 6 11 10 18 15 71 60 100 96
AIC 3 3 8 7 12 11 18 15 34 34 6 4
BIC 0 0 5 4 9 7 15 11 7 5 5 3
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Table C.2: Poisson regression simulation example: number of times the true model are selected
out of 100 realizations. Column-wise maximum is in bold type.

p 20 100
p(M) Uniform Uniform BB(1, 1)
pMT

0 5 10 20 5 5
r 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75
CH(a = 1/2, b = n) 94 92 10 2 10 0 0 0 2 0 1 0
CH(a = 1, b = n) 87 89 10 2 10 0 0 0 11 1 1 0
CH(a = 1/2, b = n/2) 91 89 11 2 10 0 0 0 3 0 1 0
CH(a = 1, b = n/2) 82 85 11 2 9 0 0 0 5 2 2 0
Beta-prime 94 92 10 2 10 0 0 0 7 0 1 0
ZS adapted 87 89 10 2 11 0 0 0 6 0 1 0
Benchmark 97 93 7 0 12 1 0 0 4 0 1 0
Robust 91 89 9 2 11 0 0 0 1 0 3 0
Intrinsic 85 88 8 2 12 1 0 0 1 0 3 0
Hyper-g/n 84 87 9 0 12 1 0 0 1 0 3 0
DBF, g = n 84 88 7 0 8 0 0 0 11 0 1 0
TBF, g = n 84 88 7 0 8 0 0 0 14 0 1 0
Jeffreys 0 0 7 1 12 1 0 0 0 0 3 0
Hyper-g 6 7 7 0 13 1 0 0 0 0 3 0
Uniform 4 2 7 0 13 1 0 0 1 1 3 0
Local EB 0 0 7 0 13 1 0 0 0 0 3 0
AIC 4 4 3 0 6 1 1 0 0 0 8 0
BIC 84 88 7 0 8 0 0 0 13 1 1 0
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Table C.3: Poisson regression simulation example: average size of selected models, out of 100
realizations.

p 20 100
p(M) Uniform Uniform BB(1, 1)
pMT

0 5 10 20 5 5
r 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75
CH(a = 1/2, b = n) 0 0 4 3 9 5 13 7 12 7 3 2
CH(a = 1, b = n) 0 0 4 3 9 5 13 7 13 8 3 2
CH(a = 1/2, b = n/2) 0 0 5 3 9 6 13 8 16 10 3 2
CH(a = 1, b = n/2) 0 0 5 3 9 6 13 8 17 10 3 2
Beta-prime 0 0 4 3 9 5 13 7 13 7 3 2
ZS adapted 0 0 4 3 9 5 13 7 13 7 3 2
Benchmark 0 0 5 4 10 7 14 9 17 7 3 1
Robust 0 0 5 3 9 6 14 8 20 14 3 2
Intrinsic 0 0 5 3 10 6 14 8 22 13 3 2
Hyper-g/n 0 0 5 4 9 7 14 9 24 31 3 4
DBF, g = n 0 0 4 2 8 5 12 6 5 3 3 2
TBF, g = n 0 0 4 2 8 5 12 6 6 4 3 2
Jeffreys 2 3 5 4 10 7 14 10 29 36 3 18
Hyper-g 3 4 5 5 10 7 15 10 30 37 3 24
Uniform 4 4 6 5 10 7 15 10 30 38 3 34
Local EB 19 19 5 5 10 7 15 10 32 74 3 76
AIC 3 3 7 6 11 8 16 11 30 28 4 2
BIC 0 0 4 2 8 5 12 6 5 3 3 2
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Table C.4: Poisson regression simulation example: 1000 times the average SSE =
∑p

j=1(β̃j−
β∗j,MT

)2 of 100 realizations. Column-wise minimum is in bold type.

p 20 100
p(M) Uniform Uniform BB(1, 1)
pMT

0 5 10 20 5 5
r 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75
CH(a = 1/2, b = n) 5 8 24 61 34 120 58 198 66 132 37 103
CH(a = 1, b = n) 6 9 24 61 34 120 58 197 66 134 37 98
CH(a = 1/2, b = n/2) 7 11 24 61 33 116 56 188 75 148 36 97
CH(a = 1, b = n/2) 7 13 24 61 33 115 55 187 77 135 36 94
Beta-prime 5 8 24 61 34 120 58 197 66 132 37 103
ZS adapted 6 9 24 61 34 119 55 197 66 125 37 99
Benchmark 8 18 26 65 33 108 51 170 74 150 36 133
Robust 7 13 25 63 33 115 51 183 88 182 36 97
Intrinsic 8 14 25 63 33 115 51 182 90 183 35 94
Hyper-g/n 5 12 25 65 33 109 52 172 84 162 36 97
DBF, g = n 5 6 25 63 37 132 68 231 40 83 39 101
TBF, g = n 5 6 25 63 37 132 68 231 40 84 39 101
Jeffreys 4 9 26 67 33 108 51 169 87 165 35 97
Hyper-g 4 7 26 68 33 108 51 168 87 164 34 112
Uniform 3 7 26 70 33 108 51 168 87 164 34 121
Local EB 2 4 26 71 33 108 51 168 99 256 34 222
AIC 17 40 28 74 34 115 46 171 120 284 37 79
BIC 5 6 25 63 37 132 68 231 40 84 39 100
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