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This document presents proof of Proposition 1 (of the main article) in Section A.

Section B contains two algorithms (in the formal algorithm format) for fitting local ap-

proximate SVD-based GP models (lasvdGP) described in Sections 2 and 3 of the article.

Section C summarizes simulation results for establishing the reliability of the estimated

range parameters (or equivalently, the correlation parameters) for the proposed lasvdGP

model fits in Examples 1 and 2 of the main article.
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A. Proof Of Proposition 1

Following (7), the inner expectation in (10) can be written as

E
[∥∥y(x0)− ŷ(x0|c(x),V ∗(k), Θ̂(k))

∥∥2∣∣∣c(x),V ∗(k), Θ̂(k), (σ̂(k))2
]

=tr
(
B(k)Λ

(
V ∗(k)(x), Θ̂(k)

)
(B(k))T + (σ̂(k))2IL

)
=(σ̂(k))2L+ tr

(
Λ
(
V ∗(k)(x), Θ̂(k)

)
(B(k))TB(k)

)
=(σ̂(k))2L+

pk∑
i=1

(d
(k)
i )2σ̂2

i

(
x0|v(k)i (x), θ̂

(k)
i

)
,

(A.1)

where V ∗(k)(x) = [(V ∗(k))T , c(x)]T and d
(k)
i is the ith largest singular value of Y (k),

Λ
(
V ∗(k)(x), Θ̂(k)

)
= diag

(
σ̂2
1

(
x0|v(k)1 (x), θ̂

(k)
1

)
, . . . , σ̂2

pk

(
x0|v(k)pk

(x), θ̂(k)pk

))
,

and

σ̂2
i

(
x0|v(k)i (x), θ̂

(k)
i

)
=
ρ
(k)
i (x0,x)

αi + k

(
βi + ψ

(k)
i (x)

)
,

for i = 1, . . . , pk, where ψ
(k)
i (x) = v

(k)
i (x)TK̃−1i (x)v

(k)
i (x), and v

(k)
i (x) = [(v

(k)
i )T , ci(x)]T

is the ith column of V ∗(k)(x).

The first equality of (A.1) follows from Theorem 3.2b.1 of Mathai and Provost (1992).

The third equality is derived from the column-orthogonality of B(k), i.e. (B(k))TB(k) =

(D∗(k))2. Plugging (A.1) into (10), we get

J(x0,x) = E
[
(σ̂(k))2L+

pk∑
i=1

(d
(k)
i )2σ̂2

i

(
x0|v(k)i (x), θ̂

(k)
i

)∣∣∣V ∗(k), Θ̂(k), (σ̂(k))2
]

= (σ̂(k))2L+

pk∑
i=1

(d
(k)
i )2

(ρ(k)i (x0,x)

αi + k

(
βi + E[ψ

(k)
i (x)|V ∗(k), Θ̂(k), (σ̂(k))2]

))
= (σ̂(k))2L+

pk∑
i=1

(d
(k)
i )2

(ρ(k)i (x0,x)

αi + k

(
βi + E[ψ

(k)
i (x)|v(k)i , θ̂

(k)
i ]
))

= (σ̂(k))2L+

pk∑
i=1

(d
(k)
i )2

(ρ(k)i (x0,x)

αi + k

(
βi +

αi + k

αi + k − 1
ψ

(k)
i

))
.

The second equality holds because ρ
(k)
i (x0,x) is a deterministic function of x0, x and θ̂

(k)
i .

The third equality follows from the independence among ci’s. The validity of the fourth

equality is due to Gramacy and Apley (2015).
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B. Algorithms

Algorithm 1 summarizes the key steps required for estimating the necessary parameters in

the posterior predictive distribution (Equation (9) of the main article) of a full SVD-based

GP model fitted to a training data of size N .

Algorithm 1: SVD-based GP model

Input : (1) Training set: XN×q, (2) response matrix: YL×N , (3) threshold γ,

(4) prior parameters: α = [α1, . . . , αp, α]T , β = [β1, . . . , βp, β]T .

Output: (1) Basis BN×p, (2) singular values D∗p×p, (3) coefficients V ∗,

(4) correlation parameters Θ̂, (5) variance σ̂2.

1 Function svdGP(X,Y ,α,β,γ)

2 [B,D∗,V ∗, p]← buildBasis(Y ,γ)

3 r ← vec(Y )− (IN ⊗B)vec(V ∗T )

4 σ̂2
i (x0|vi,θi) = (βi + ψi)

(
1− kT

i (x0)K
−1
i ki(x0)

)
/(αi +N),

σ̂2 ←
(
rTr + β

)
/(NL+ α + 2)

5 Θ̂← inference(V ∗, p, α, β)

6 return B, D∗, V ∗, Θ̂, σ̂2

7 Subroutine buildBasis(Y ,γ)

8 [U ,D,V ]←SVD(Y ) /* perform SVD on matrix Y . */

9 p← min
{
m :

∑m
i=1 di∑k
i=1 di

> γ
}

/* where D = diag(d1, . . . , dN ), k = min{N,L} */

10 B ← U ∗D∗ /* as in Section 2.1 */

11 return B, D∗, V ∗, p

12 Subroutine inference(V ∗, p, α, β)

13 for i← 1 to p do

14 θ̂i ← argmax
θi

π(θi|vi) /* fit p independent GPs by finding the MAPs */

15 return Θ̂ = [θ̂1, . . . , θ̂p]
T

3



Algorithm 2 presents the steps required for fitting the proposed local approximate SVD-

based GP model (lasvdGP) with the neighbourhood points selected using the J-criterion

in Section 3.1 of the main article.

Algorithm 2: Proposed local SVD-based GP model

Input : (1) Training set: XN×q, (2) response matrix: YL×N , (3) test set X∗M×q,

(4) neighborhood size n, (5) initial neighborhood size n0, (6) threshold γ,

(7) prior parameters α = [α1, . . . , αp, α]T and β = [β1, . . . , βp, β]T .

Output: (1) The predicted mean response, and (2) the associated posterior variance

in estimating y(x0) for each x0 ∈X∗.

1 for each x0 ∈X∗ do

2 X(n0) ← {xi, i = 1, . . . , n0} /* n0 nearest neighbours of x0 in X as in knn */

3 Y (n0) ← {y(x) : x ∈X(n0)}

4 for k ← n0 to n− 1 do

5 [B(k),D∗(k),V ∗(k), pk, Θ̂
k, (σ̂(k))2, (σ̂(k))2]←svdGP(X(k),Y (k),α,β,γ)

6 x∗k+1 ← argmin
x∈X\X(k)

J(x0,x)

7 X(k+1) ←X(k) ∪ x∗k+1

8 Y (k+1) ← Y (k) ∪ y(x∗k+1)

9 [B(n),D∗(n),V ∗(n), pn, Θ̂
(n), (σ̂(n))2, (σ̂(n))2]← svdGP(X(n),Y (n),α,β,γ)

10 Predict y(x0) through π(y(x0)|V ∗(n), Θ̂(n), (σ̂(n))2, (σ̂(n))2) in Eqn. (9)

C. Additional Simulation Results

We now investigate the reliability of the estimated range parameters (or equivalently,

the correlation parameters) for the proposed local approximate SVD-based GP model

(lasvdGP) fits in Examples 1 (Forrester et al., 2008 – q = 3, N = 10000,M = 2000,

n = 40 and n0 = 20) and 2 (Bliznyuk et al., 2008 – q = 5, N = 10000,M = 2000, n = 50

and n0 = 25) of the main article.

To explain the results, recall that for each point in the test set, the SVD-based GP model
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fitted on the neighbourhood set is represented using a p-dimensional basis as in Equation

(1), where p is selected by the cumulative percentage criterion (Equation (2)). That is,

for each test point, p independent GP models for each ci(x) are fitted in the respective

neighbourhood searched. The value of p may be different for different test points. The

frequency table of the number of leading basis functions for 2,000 test points for each of

the two examples are displayed in Table S.1.

p

3 4 5 6 7 8 total

Example 1 266 1734 0 0 0 0 2000

Example 2 15 161 873 825 124 2 2000

Table S.1: Frequency of p among the 2,000 test points in Examples 1 and 2.

For simplicity, we only report the estimated range parameters in the GP models cor-

responding to c1(x), c2(x) and c3(x) from the final fits, i.e., after n− n0 follow-up points

were added. Figures S.1 and S.2 display the boxplots of those 2,000 estimates for each

range parameter in Examples 1 and 2, respectively.
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Figure S.1: The boxplots of the 2,000 estimates of the log-range parameters in the GP

models for c1(x), c2(x) and c3(x) in Example 1 (Forrester et al., 2008).
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Figure S.2: The boxplots of the 2,000 estimates of the log-range parameters in the GP

models for c1(x), c2(x) and c3(x) in Example 2 (Bliznyuk et al., 2008).
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