User’s Guide to the R Packages Attached to
the lasvdGP Paper

April 14, 2018

DynamicGP-package GP Models for Large-Scale Dynamic Computer Experiments

Description

This R package provides three functions for emulating dynamic computer experiments. The func-
tion svdGP fits full SVD-based GP model which is computationally demanding for large-scale dyan-
mic computer experiments. As is well known, the time complexity of fitting a GP model is O(N?)
where NV is the number of training/design points. Since fitting a common GP model for really large
N would be computationally burdensome, we fit local SVD-based GP models on a sequentially
selected small neighborhood set for every test inputs. The function knnsvdGP fits K-nearest neigh-
bor SVD-based GP models which selects neighborhood sets based on the Euclidean distance with
repect to the test points. The function 1asvdGP fits local approximate SVD-based GP model using
the new algorithm proposed by Zhang et al. (2017).

The lasvdGP is an extension of the local approximate GP (1aGP) model developed by Gramacy and
Lee (2015) for the emulation of large-scale scalar valued computer experiments. The neighborhood
selection and SVD-based GP model fitting algorithm is suitable for parallelization. We use the
R package "parallel" for this task. The parallelization can achieve nearly linear speed since the
procedure on each test point is independent and identical.

Author(s)

Ru Zhang <heavenmarshal@gmail.com>,
C. Devon Lin <devon.lin@queensu.ca>,

Pritam Ranjan <pritam.ranjan@gmail.com>

References
Gramacy, R. B. and Apley, D. W. (2015) Local Gaussian process approximation for large computer
experiments, Journal of Computational and Graphical Statistics 24(2), 561-578.

Zhang, R., Lin, C. D. and Ranjan, P. (2018) Local Gaussian Process Model for Large-scale Dy-
namic Computer Experiments, arXiv:1611.09488.

2 forretal

environ The Simulation Function of Example 2

Description

Evaluate the synthesized dynamic computer simulator in Example 2 one design point at a time.

Usage

environ(xx,timepoints)

Arguments

XX five dimensional vector of the design input.

timepoints a vector of time-points with arbitrary length on which to evaluate the simulator.
Value

It returns a vector of time-series outputs with the same length as timepoints.

Author(s)

Ru Zhang <heavenmarshal@gmail . com>

Examples

library("lhs")

library("simfuncs”)

generate a design matrix of 100 points

design <- maximinLHS(100,5)

specify the timepoints

timepoints <- seq(@.3,60,0.3)

evaluate the simulator on the 100 design points
resp <- apply(design,1,environ,timepoints)

forretal The Simulation Function of Example 1

Description

Evaluate the synthesized dynamic computer simulator in Example 1 one design point at a time.

Usage

forretal (xx, timepoints)

Arguments

XX three dimensional vector of the design input.

timepoints a vector of time-points with arbitrary length on which to evaluate the simulator.

knnsvdGP

Value

It returns a vector of time-series outputs with the same length as timepoints.

Author(s)

Ru Zhang <heavenmarshal@gmail.com>

Examples

library(”lhs")

library("simfuncs")

generate a design matrix of 100 points

design <- maximinLHS (109, 3)

specify the timepoints

timepoints <- seq(@,1,1en=200)

evaluate the simulator on the 100 design points
resp <- apply(design,1,forretal,timepoints)

knnsvdGP

K-nearest neighbor SVD-Based GP model

Description

Fits a K-nearest neighbour SVD-based GP model on a test set X0, training set design and response
matrix resp. The local neighbourhood sets consist of nn points which are selected by the Euclidean
distance with respect to the test points. See Zhang et al. (2017) for details.

Usage

knnsvdGP (design, resp, X0=design, nn=20, nsvd = nn, frac = .9,

Arguments

design

resp

X0

nn

nsvd

frac

gstart

gstart = 0.0001, nstarts = 5,centralize=FALSE, maxit=100, verb=0,
nthread = 4, clutype="PSOCK")

An N by d matrix of [V training/design inputs.

An L by N response matrix of design, where L is the length of the time series
outputs, IV is the number of design points.

An M by d matrix of M test inputs. The localized SVD-based GP models will
be fitted on every point (row) of X@. The default value of X0 is design.

The number of neighborhood points selected by the Euclidean distance. the
default value is 20.

The number of design points closest to the test points on whose response matrix
to perform the initial singular value decomposition. The default value is nn.

The threshold in the cumulative percentage criterion to select the number of
SVD bases. The default value is 0.9.

The starting number and upper bound of for estimating the nugget parame-
ter. If gstart = sqrt(.Machine$double.eps), the nugget will be fixed at
sqrt(.Machine$double.eps), since the it is the lower bound of the nugget
term. The default value is 0.0001.

nstarts

centralize

maxit

verb

nthread

clutype

Value

pmean

ps2

Author(s)

knnsvdGP

The number of starting points used in the numerical maximization of the poste-
rior density function. The larger nstarts will typically lead to more accurate
prediction but longer computational time. The default value is 5.

If centralize=TRUE the response matrix will be centralized (subtract the mean)
before the start of the algorithm. The mean will be added to the predictive mean
at the finish of the algorithm. The default value is FALSE.

Maximum number of iterations in the numerical optimization algorithm for
maximizing the posterior density function. The default value is 100.

A nonnegative integer indicates the level of printing on the screen. If verb=0
the function is executed in silence. The default value is 0.

The number of threads (processes) used in parallel execution of this function.
nthread=1 implies no parallelization. The default value is 4.

The type of cluster in the R package "parallel" to perform parallelization. The
default value is "PSOCK". Required only if nthread>1.

An L by M matrix of posterior predicted mean for the response at the test set
X.

An L by M matrix of posterior predicted variance for the response at the test set
Xo.

Ru Zhang <heavenmarshal@gmail.com>,

C. Devon Lin <devon. lin@queensu.ca>,

Pritam Ranjan <pritam.ranjan@gmail.com>

References

Zhang, R., Lin, C. D. and Ranjan, P. (2018) Local Gaussian Process Model for Large-scale Dy-
namic Computer Experiments, arXiv:1611.09488.

See Also

lasvdGP, svdGP.

Examples

library("lhs")

forretal <- function(x,t,shift=1)

y <= (par1*t-2)*2*sin(par2xt-par3)

{
par1l <- x[1]*6+4
par2 <- x[2]*16+4
par3 <- x[3]*6+1
t <- t+shift

3

timepoints <- seq(@,1,1len=200)

design <- lhs::randomLHS(100,3)

test <- lhs::randomLHS(20,3)

evaluate the response matrix on the design matrix

lasvdGP 5

resp <- apply(design,1,forretal,timepoints)

nn <- 20

gs <- sqgrt(.Machine$double.eps)

knnsvdGP with mutiple (5) start points for GP model estimation

It use the R package "parallel” for parallelization

retknnmsp <- knnsvdGP(design,resp,test,nn,frac=.95,gstart=gs,
centralize=TRUE,nstarts=5,nthread=2,clutype="PSOCK")

knnsvdGP with single start point for GP model estimation

It does not use parallel computation

retknnss <- knnsvdGP(design,resp,test,nn,frac=.95,gstart=gs,
centralize=TRUE,nstarts=1,nthread=1)

lasvdGP Local Approximate SVD-Based GP Models

Description

Fits a local approximate SVD-based GP model on a test set X0, training/design set design and
response matrix resp. The local neighborhood sets consist of nn out of which n@ points are selected
by the Euclidean distance with respect to the test points. The remaining nn-n@ neighborhood points
are selected sequentially by a greedy algorithm proposed by Zhang et al. (2017).

Usage

lasvdGP(design, resp, X@=design, n@=1@, nn=20,
nfea = min(1000,nrow(design)),
nsvd = nn, nadd = 1, frac = .9, gstart = 0.0001,
resvdThres = min(5, nn-n@), every = min(5,nn-no),
nstarts = 5,centralize=FALSE, maxit=100, verb=0,
nthread = 4, clutype="PSOCK")

Arguments

design An N by d matrix of N training/design inputs.

resp An L by N response matrix of design, where L is the length of the time series
outputs, IV is the number of design points.

X0 An M by d matrix of M test inputs. The localized SVD-based GP models will
be fitted on every point (row) of X@. The default value of X@ is design.

ne The number of points in the initial neighborhood set. The initial neighborhood
set is selected by the Euclidean distance. The default value is 10.

nn The total number of neighborhood points. The nn-n@ points are selected se-
quentially by the proposed algorithm. The default value is 20.

nfea The number of feasible points within which to select the neighborhood points.
This function will only consider the nfea design points closest to the test point
in terms of Euclidean distance when selecting neighborhood points. The default
value is the minimum of N and 1000.

nsvd The number of design points closest to the test points on whose response matrix

to perform the initial singular value decomposition. The default value is nn.

nadd

frac

gstart

resvdThres

every

nstarts

centralize

maxit

verb

nthread

clutype

Value

pmean

ps2

Author(s)

lasvdGP

The number of neighborhood points selected at one iteration. The default value
is 1.

The threshold in the cumulative percentage criterion to select the number of
SVD bases. The default value is 0.9.

The starting number and upper bound of for estimating the nugget parame-
ter. If gstart = sqrt(.Machine$double.eps), the nugget will be fixed at
sqrt(.Machine$double.eps), since the it is the lower bound of the nugget
term. The default value is 0.0001.

The threshold to re-perform SVD. After every resvdThres points have been
included into the neighborhood set, the SVD of the response matrix will be re-
performed and the SVD-based GP model will be refitted. The default value is
the minimum of nn-n@ and 5.

The threshold to refit GP models without re-perform SVD. After every every
points have been included into the neighborhood set, the GP models will be
refitted. But the SVD will not be re-performed. It is suggested every <=
resvdThres. The default value is the minimum of nn-n@ and 5.

The number of starting points used in the numerical maximization of the poste-
rior density function. The larger nstarts will typically lead to more accurate
prediction but longer computational time. The default value is 5.

If centralize=TRUE the response matrix will be centralized (subtract the mean)
before the start of the algorithm. The mean will be added to the predictive mean
at the finish of the algorithm. The default value is FALSE.

Maximum number of iterations in the numerical optimization algorithm for
maximizing the posterior density function. The default value is 100.

A nonnegative integer indicates the level of printing on the screen. If verb=0
the function is executed in silence. The default value is O.

The number of threads (processes) used in parallel execution of this function.
nthread=1 implies no parallelization. The default value is 4.

The type of cluster in the R package "parallel" to perform parallelization. The
default value is "PSOCK". Required only if nthread>1.

An L by M matrix of posterior predicted mean for the response at the test set
X0.

An L by M matrix of posterior predicted variance for the response at the test set
Xo.

Ru Zhang <heavenmarshal@gmail.com>,

C. Devon Lin <devon.lin@queensu.ca>,

Pritam Ranjan <pritam.ranjan@gmail.com>

References

Zhang, R., Lin, C.D. and Ranjan, P. (2018) Local Gaussian Process Model for Large-scale Dynamic
Computer Experiments, arXiv:1611.09488.

Iscalemse 7

See Also
knnsvdGP, svdGP.

Examples

library("lhs")
forretal <- function(x,t,shift=1)

{

par1l <- x[1]*6+4

par2 <- x[2]*16+4

par3 <- x[3]*6+1

t <- t+shift

y <= (par1*t-2)*2*sin(par2*t-par3)
3

timepoints <- seq(@,1,1en=200)

design <- lhs::randomLHS(100,3)

test <- lhs::randomLHS(20,3)

evaluate the response matrix on the design matrix
resp <- apply(design,1,forretal,timepoints)

ne <- 15
nn <- 20
gs <- sqgrt(.Machine$double.eps)

lasvdGP with mutiple (5) start points for GP model estimation,

It use the R package "parallel” for parallelization

retlamsp <- lasvdGP(design,resp,test,n@,nn,frac=.95,gstart=gs,
centralize=TRUE,nstarts=5,nthread=2,clutype="PSOCK")

lasvdGP with single start point for GP model estimation,

It does not use parallel computation

retlass <- lasvdGP(design,resp,test,n@,nn,frac=.95,gstart=gs,
centralize=TRUE,nstarts=1,nthread=1)

lscalemse Evaluating the NMSPE criterion

Description

Evaluate the NMSPE criterion for the matrix of predictive mean of the time-series valued responses
on a test set.

Usage

lscalemse(yreal, ypred)

Arguments
yreal an L x M matrix of real responses on the test set, where L is the length of the
time series and M is the number of input points in the test set.
ypred an L x M matrix of predictive mean for the responses on the test set. The size

of ypred must be equal to that of yreal.

8 readdata

Value

It returns a vector of length M contains the values of NMSPE at each test point, where M is the
number of test points.

Author(s)

Ru Zhang <heavenmarshal@gmail.com>

Examples

library("lhs")

library("lasvdgp”)

library(”"simfuncs™)

generate a design and a test matrix of each 100 points
design <- maximinLHS(100,5)

test <- maximinLHS(100,5)

specify the timepoints

timepoints <- seq(0.3,60,0.3)

evaluate the simulator on the design and test set.
resp <- apply(design,1,environ,timepoints)

tres <- apply(test,1,environ,timepoints)

perform lasvdGP

retg <- lasvdgpWorker(test,design,resp,15,30)

evaluate the NMSPE

nmse <- lscalemse(tres,retg$pmean)

readdata Read the Serialized Arrays from a Serialization File

Description

It read all the written arrays from a serialization file and return a list of arrays. The length of the list
is the same as the number of array names in the header line. The sizes of the arrays in the list are
specified by the header line.

Usage
readdata(filename)
Arguments
filename a string of the name of the serialization file to be read.
Value
1st a list of arrays written in the serialization file. The names and the sizes of the
arrays are determined by the header line. The readdata function will fill NA for
the positions not written in the serialization file.
Author(s)

Ru Zhang <heavenmarshal@gmail . com>

scoring 9

Examples

library("serialization")

we intend to write two matrices into the serialization file
mats <- c("matl1”,"mat2")

dim(mat1)=c(2,3), dim(mat2)=c(4,2)

dims <- list(c(2,3),c(4,2))

fcon <- writeheader("mats.txt"”,mats,dims)

flush(fcon)

mats.txt has been created the first line is

headerline:mat1,2,3;mat2,4,2;

write data
writedata(fcon,"mat1",c(1,1),0)
writedata(fcon, "mat1"”,c(1,2),1)
writedata(fcon, "mat2",c(1,1),2)

close connection

close(fcon)

read the file and obtain the matrices
1st <- readdata("mats.txt")

show the names of the loaded matrices
names(1lst)

print(lst)

scoring Evaluating the Proper Scoring Rule

Description

Evaluate the proper scoring rule for the predictions of the time-series valued responses on a test set.

Usage

scoring(yreal,predmean, predsd)

Arguments
yreal an L x M matrix of real responses on the test set, where L is the length of the
time series and M is the number of input points in the test set.
predmean an L x M matrix of predictive mean for the responses on the test set. The size
of predmean must be equal to that of yreal.
predsd an L x M matrix of predictive standard deviation for the responses on the test
set. The size of predsd must be equal to that of yreal.
Value

It returns a vector of length M contains the values of the proper scoring rule at each test point,
where M is the number of test points.

Author(s)

Ru Zhang <heavenmarshal@gmail . com>

10 svdGP

Examples

library(”"lhs")

library("lasvdgp")

library("simfuncs”)

generate a design and a test matrix of each 100 points

design <- maximinLHS(100,5)

test <- maximinLHS(100,5)

specify the timepoints

timepoints <- seq(0.3,60,0.3)

evaluate the simulator on the design and test set.

resp <- apply(design,1,environ,timepoints)

tres <- apply(test,1,environ,timepoints)

perform lasvdGP

retg <- lasvdgpWorker(test,design,resp,15,30)

evaluate the proper scoring rule. Note that lasvdgpWorker returns predictive
variance, to evaluate proper scoring rule, we must take square root.
score <- scoring(tres,sqrt(retg$ps2))

serialization-package A Package for Data Serialization

Description

This package is designed to record the intermediate results of the simulation study. It writes the
results of the simulation coming out from each repetition into a text file. In the meantime or after
the simulation, we can load the serialized arrays that recording the results from the serialization file
to the memory as a list of arrays.

Author(s)

Ru Zhang <heavenmarshal@gmail . com>

svdGP Full SVD-Based GP Models

Description

This function fits a full SVD-based GP model with test set X@, design set design and response
matrix resp.

Usage

svdGP (design,resp,X0=design,nstarts=5,d=NULL,gstart=0.0001,
frac=.9,centralize=FALSE,nthread=4,clutype="PSOCK")

svdGP

Arguments

design

resp

X0

nstarts

gstart

frac

centralize

nthread

clutype

Value

pmean

ps2

Author(s)

11

An N by d matrix of IV training/design inputs.

An L by N response matrix of design, where L is the length of the time series
outputs, IV is the number of design points.

An M by d matrix of M test inputs. The default value of X0 is design.

The number of starting points used in the numerical maximization of the poste-
rior density function. The larger nstarts will typically lead to more accurate
prediction but longer computational time. The default value is 5.

the start value of lengthscale parameter of GP models, a length ¢ vector of posi-
tive values. If d=NULL, the start value will be selected automatically. The default
value is NULL.

The starting number and upper bound of for estimating the nugget parame-
ter. If gstart = sqrt(.Machine$double.eps), the nugget will be fixed at
sqrt(.Machine$double.eps), since the it is the lower bound of the nugget
term. The default value is 0.0001.

The threshold in the cumulative percentage criterion to select the number of
SVD bases. The default value is 0.9.

If centralize=TRUE the response matrix will be centralized (subtract the mean)
before the start of the algorithm. The mean will be added to the predictive mean
at the finish of the algorithm. The default value is FALSE.

The number of threads (processes) used in parallel execution of this function.
nthread=1 implies no parallelization. The default value is 4.

The type of cluster in the R package "parallel” to perform parallelization. The
default value is "PSOCK". Required only if nthread>1.

An L by M matrix of posterior predicted mean for the response at the test set
Xe.

An L by M matrix of posterior predicted variance for the response at the test set
X.

Ru Zhang <heavenmarshal@gmail. com>,

C. Devon Lin <devon.lin@queensu.ca>,

Pritam Ranjan <pritam.ranjan@gmail.com>

See Also

knnsvdGP, 1asvdGP.

Examples

library(”lhs")

forretal <- function(x,t,shift=1)

{

par1l <- x[1]*6+4
par2 <- x[2]*16+4
par3 <- x[3]*6+1

12 writedata

t <- t+shift
y <= (parl1*t-2)*2xsin(par2*t-par3)
3
timepoints <- seq(@,1,1en=200)
design <- lhs::randomLHS(50,3)
test <- lhs::randomLHS(50,3)
evaluate the response matrix on the design matrix
resp <- apply(design,1,forretal,timepoints)

fit full SVD-based GP model
ret <- svdGP(design,resp,test,frac=.95,
centralize=TRUE,nthread=2)

writedata Write One Entry of an Array into the Serialization File

Description

This function write one entry of one array to the serialization file, this entry takes up one line in the
file. The format is

arrname,dim1,dim2:data

where arrname is the name of the array to be serialized, dim1 and dim2 are the positions of the data
in terms of the first and the second dimension of the array, data is value of this entry.

Usage

writedata(fcon,itemname,dim,value)

Arguments
fcon the file connection object of the serialization file created by the writeheader
function.
itemname a string of the name of the array (vector or matrix) to be written.
dim a numerical vector indicates the position of the entry to be written.
value the value of the entry to be written, currently only support numerical value.
Author(s)

Ru Zhang <heavenmarshal@gmail . com>

Examples

library("”serialization")

we intend to write two matrices into the serialization file
mats <- c("matl1”,"mat2")

dim(mat1)=c(2,3), dim(mat2)=c(4,2)

dims <- list(c(2,3),c(4,2))

fcon <- writeheader("mats.txt"”,mats,dims)

flush(fcon)

mats.txt has been created the first line is

headerline:mat1,2,3;mat2,4,2;

writeheader 13

write data

writedata(fcon, "mat1"”,c(1,1),0)
writedata(fcon, "mat1"”,c(1,2),1)
writedata(fcon,"mat2",c(1,1),2)
close connection

close(fcon)

the mats.txt becomes

headerline:mat1,2,3;mat2,4,2;
matl1,1,1:0

matl1,1,2:1

mat2,1,1:2

writeheader Write a Header Line to the Serialization File

Description

Write a header line to the serialization file. The header line indicate the name of the arrays written
into this file. The format is

headerline:arrl,row1,coll;arr2,row2,col2;

where arrl is the name of the first array, row1 and coll are the numbers of rows and columns of
arrl. information for different arrays are separated by semicolon.

Usage

writeheader(filename,items,dims)

Arguments
filename a string of the name of the file for serialization.
items a vector of strings, each string is a name of an array to be saved in the serializa-
tion file.
dims a list of vectors, each vector indicates the size of an array to be saved in the
serialization file. The length of dims must be equal to the length of items or 1.
When dims=1, all the arrays are the same size.
Value
fcon

a connect object to the serialization file.

Author(s)

Ru Zhang <heavenmarshal@gmail . com>

14 writeheader

Examples

library("serialization")

we intend to write two matrices into the serialization file
mats <- c("matl1”,"mat2")

dim(mat1)=c(2,3), dim(mat2)=c(4,2)

dims <- list(c(2,3),c(4,2))

fcon <- writeheader("mats.txt"”,mats,dims)

flush(fcon)

mats.txt has been created the first line is

headerline:mat1,2,3;mat2,4,2;

write data
writedata(fcon,"mat1"”,c(1,1),0)
writedata(fcon, "mat1"”,c(1,2),1)
writedata(fcon, "mat2",c(1,1),2)
close connection

close(fcon)

the mats.txt becomes

headerline:mat1,2,3;mat2,4,2;
mat1,1,1:0

matl1,1,2:1

mat2,1,1:2

	DynamicGP-package
	environ
	forretal
	knnsvdGP
	lasvdGP
	lscalemse
	readdata
	scoring
	serialization-package
	svdGP
	writedata
	writeheader

