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All section and equation numbers in this supplementary document are preceded by the

letter A, while section and equation numbers without an A refer to the main paper.

A.1 Generalized Lasso via Constrained Lasso

As stated by Theorem 1 in Section 2, it is always possible to reformulate and solve a

generalized lasso as a constrained lasso. Here we provide the supporting proof.

Proof. Assume that rank(D) = r, and consider the singular value decomposition (SVD)

D = UΣV T =
(
U1,U2

)Σ1 0

0 0

V T
1

V T
2

 = U1Σ1V
T
1 ,

where U1 ∈ Rm×r, U2 ∈ Rm×(m−r), Σ1 ∈ Rr×r, V1 ∈ Rp×r, and V2 ∈ Rp×(p−r). We define

an augmented matrix

D̃ =

U1Σ1V
T
1

V T
2

 =

U1Σ1 0

0 Ip−r

V T
1

V T
2

 =

U1Σ1 0

0 Ip−r

V T

and use the following change of variablesα
γ

 = D̃β =

U1Σ1V
T
1

V T
2

β, (A.1)
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where α ∈ Rm and γ ∈ Rp−r.

Since the matrix V T
2 forms a basis for the nullspace of D, N (D), it has rank p− r and

its columns are linearly independent of the columns of D. Thus, the augmented matrix D̃

has full column rank, and the new variables

α
γ

 uniquely determine β via

β = (D̃TD̃)−1D̃T

α
γ


=

V
Σ1U
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1 0
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V T
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=
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V T
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γ
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1 0
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1 U
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1 α+ V2γ

= D+α+ V2γ,

where D+ denotes the Moore-Penrose inverse of the matrix D. However, since the original

change of variables is

α
γ

 = D̃β, β is uniquely determined if and only if

α
γ

 ∈ C(D̃) = C

U1Σ1 0

0 Ip−r

 ,
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if and only if

α ∈ C(U1Σ1) = C(U1) = C(D),

if and only if

UT
2 α = 0m−r,

where C(D) is the column space of the matrix D. Therefore, the generalized lasso problem

(3) is equivalent to a constrained lasso problem

minimize
1

2

∥∥y −XD+α−XV2γ
∥∥2
2

+ ρ‖α‖1 (A.2)

subject to UT
2 α = 0m−r,

where γ remains unpenalized.

A.2 Constrained Lasso via Generalized Lasso

As detailed in Appendix A.1, it is always possible to reformulate and solve a generalized

lasso as a constrained lasso. In this section, we demonstrate that it is not always possible to

transform a constrained lasso to a generalized lasso. However, we first examine a situation

where it is in fact possible to transform a constrained lasso to a generalized lasso.

A.2.1 Reparameterization

Consider a constrained lasso with only equality constraints and b = 0q,

minimize
1

2
‖y −Xβ‖22 + ρ‖β‖1 (A.3)

subject to Aβ = 0q,

where A ∈ Rq×p with rank(A) = q. Consider a matrix D ∈ Rp×p−q whose columns span

the null space of A. For example, we can use Q2 from the QR decomposition of AT . Then

we can use the change of variables

β = Dθ,
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so the objective function becomes

minimize
1

2
‖y −XDθ‖22 + ρ‖Dθ‖1, (A.4)

and the constraints can be written as

Aβ = ADθ = 0θ = 0q.

Thus the constraints vanish, as they hold for all θ, and we are left with an unconstrained

generalized lasso (A.4). This result is not surprising in light of the result in Section 2, which

showed that a generalized lasso reformulated as a constrained lasso has the constraints

UT
2 α = 0m−r. That is a case where b = 0q and the resulting constrained lasso solution

can be translated back to the original generalized lasso parameterization via an affine

transformation, in line with the result in this section that this is a situation where the

constrained lasso can in fact be transformed to a generalized lasso.

Now consider the more general case with an arbitrary b 6= 0q. We can re-arrange the

equality constraints as

Aβ = b

Aβ − b = 0q(
A,−Iq

)β
b

 = Ãβ̃ = 0q,

and then apply the above result using D̃ = Q̃2 from the QR decomposition of ÃT . However,

now the reparameterized problem is

β̃ = D̃θ̃

D̃1θ̃1

D̃2θ̃2

 =

β
b

 ,

we are still left with the constraint D̃2θ̃2 = b. Therefore, for equality constraints with

b 6= 0q, a constrained lasso can be transformed into a constrained generalized lasso. This

result is trivial, however, since a constrained lasso is always a constrained generalized lasso

with D = Ip.
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A.2.2 Null-Space Method

Another common method for solving least squares problems with equality constraints (LSE)

is the null-space method (Björck, 2015). To apply this method to the constrained lasso,

we again restrict our attention to a constrained lasso with only equality constraints for the

time being,

minimize
1

2
‖y −Xβ‖22 + ρ‖β‖1 (A.5)

subject to Aβ = b.

We will show that the application of the null-space method results in a shifted generalized

lasso. Consider the QR decomposition of AT ∈ Rp×q, where rank(A) = q,

AT = Q

R
0

 with QQ′ = Ip,

and Q ∈ Rp×p, R ∈ Rq×q, and 0 ∈ Rp−q×q. Let

XQ =
(
X1,X2

)
and Q′β =

α1

α2

 ,

with X1 ∈ Rn×q, X2 ∈ Rn×p−q, α1 ∈ Rq×1, and α2 ∈ Rp−q×1, then

Xβ = XQQTβ =
(
X1,X2

)α1

α2

 = X1α1 +X2α2.

As for the constraints, we have

A =
(
RT ,0T

)
QT ⇒ Aβ =

(
RT ,0T

)
QTβ =

(
RT ,0T

)α1

α2

 = RTα1.

Lastly, the penalty term becomes

‖β‖1 = ‖Q

α1

α2

 ‖1 = ‖Q1α1 +Q2α2‖1.

Thus, putting these pieces together we can re-write (A.5) as

minimize
1

2
‖(y −X1α1)−X2α2‖22 + ρ‖Q1α1 +Q2α2‖1 (A.6)

subject to RTα1 = b.
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Since RT is invertible, we can further directly incorporate the constraints in the objective

function by plugging in α1 = (RT )−1b,

minimize
1

2
‖(y −X1(R

T )−1b)−X2α2‖22 + ρ‖Q1(R
T )−1b+Q2α2‖1, (A.7)

or more concisely as

minimize
1

2
‖ỹ −X2α2‖22 + ρ‖c+Q2α2‖1, (A.8)

with ỹ = y − X1(R
T )−1b and c = Q1(R

T )−1b. So (A.8) resembles an unconstrained

generalized lasso problem with D = Q2, but it has been shifted by a constant vector

c = Q1(R
T )−1b that can not be decoupled from the penalty term. Therefore, it once

again is not possible to solve a constrained lasso by reformulating it as an unconstrained

generalized lasso. It should be noted that such a transformation is not possible even in

the presence of only equality constraints, and the addition of inequality constraints would

only further complicate matters. As pointed out by Gentle (2007), there is no general

closed-form solution to least squares problems with inequality constraints.

A.3 Subgradient Violations

As pointed out in Section 3.3, there is the potential for the subgradient conditions (9)

to become violated if an inactive coefficient is moving too slowly. Here we provide the

supporting derivations for this result and what is meant by too slowly. To preview the

result, an inactive coefficient, j ∈ Ac, with subgradient sj = ±1 is moved to the active set

if sj · ddρ [ρsj] < 1. To see this, without loss of generality assume that sj = −1 for some

inactive coefficient βj, j ∈ Ac. As given in Table 1, since ρ is decreasing, sj is updated

along the path via

[ρ(t+1)s
(t+1)
j ] = ρ(t)s

(t)
j −∆ρ · d

dρ
[ρsj],

which implies

s
(t+1)
j =

(
ρ(t)s

(t)
j −∆ρ · d

dρ
[ρsj]

)
/ρ(t+1). (A.9)
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Since ρ is decreasing, ρ(t) > ρ(t+1), but we define ∆ρ > 0 which implies that ∆ρ = ρ(t) −

ρ(t+1). Using this and s
(t)
j = −1, then for a given inactive coefficient j ∈ Ac, (A.9) becomes

s
(t+1)
j =

(
−ρ(t) − (ρ(t) − ρ(t+1))

d

dρ
[ρsj]

)
/ρ(t+1). (A.10)

To identify the trouble ranges for d
dρ

[ρsj] that would result in a violation of the subgradient

conditions, we can rearrange (A.10) as follows,

s
(t+1)
j =

(
−ρ(t) − (ρ(t) − ρ(t+1))

d

dρ
[ρsj]

)
/ρ(t+1)

= − d

dρ
[ρsj]

(
ρ(t)

ρ(t+1)
− 1

)
− ρ(t)

ρ(t+1)

= − d

dρ
[ρsj]

(
ρ(t)

ρ(t+1)
− 1

)
− ρ(t)

ρ(t+1)
+ 1− 1

= − d

dρ
[ρsj]

(
ρ(t)

ρ(t+1)
− 1

)
+

(
1− ρ(t)

ρ(t+1)

)
− 1

=

(
d

dρ
[ρsj] + 1

)(
1− ρ(t)

ρ(t+1)

)
− 1. (A.11)

The second term in the product in (A.11) is always negative, since ρ(t) > ρ(t+1) ⇒

ρ(t)/ρ(t+1) > 1⇒ 0 > 1−
(
ρ(t)/ρ(t+1)

)
. Now, consider different values for d

dρ
[ρsj]:

i) d
dρ

[ρsj] > −1: When d
dρ

[ρsj] > −1, then
(
d
dρ

[ρsj] + 1
)
> 0, so the product term

in (A.11) involves a positive number multiplied by a negative number and is thus

negative. However, this would lead to sj < −1 when 1 is subtracted from the product

term, which is a violation of the subgradient conditions.

ii) d
dρ

[ρsj] = −1: This is fine as it maintains sj = −1, since d
dρ

[ρsj] = −1⇒
(
d
dρ

[ρsj] + 1
)

=

0⇒ s
(t+1)
j = −1.

iii) d
dρ

[ρsj] < −1: This situation is also fine as d
dρ

[ρsj] < −1 ⇒
(
d
dρ

[ρsj] + 1
)
< 0, so the

product term in (A.11) is positive and the subgradient is moving towards zero, which

is fine since j ∈ Ac.

The only issue, then, arises when d
dρ

[ρsj] > −1. These results can be summarized visually

by looking at a plot of ρsj as a function of ρ (Figure A.1). Starting at point A in the graph,

which corresponds to the point (ρ(t),−ρ(t)) since sj = −1, we see that d
dρ

[ρsj] ≤ −1 is fine
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because it would result in sj moving towards 0, which is valid. However, d
dρ

[ρsj] > −1

would result in sj < −1 and a violation of the subgradient conditions at the next kink.

The main issue is the range −1 < d
dρ

[ρsj] < 0 (lower triangle in Figure A.1), in which the

coefficient is moving in the correct direction but too slowly. Otherwise, for d
dρ

[ρsj] > 0,

the coefficient would have already become active. The corresponding range for j ∈ Ac but

sj = 1 is d
dρ

[ρsj] < −1, which is derived similarly. Combining these two situations, the

range to monitor can be written more succinctly as sj · ddρ [ρsj] < 1. Thus, to summarize, an

inactive coefficient j ∈ Ac with subgradient sj = ±1 and sj · ddρ [ρsj] < 1 needs to be moved

back into the active set, A, before the path algorithm proceeds to prevent a violation of

the subgradient conditions (9).

A− ρ(t)

− ρ(t+1)

0

ρ(t+1)

ρ(t+1) ρ(t)

ρ

ρs
j

Valid

Violation

Figure A.1: Diagram of the event that needs to be monitored along the path to ensure the

subgradient conditions are satisfied for sj = −1. Starting at point A, as ρ decreases the lower

triangle represents the range of d
dρ [ρsj ] that would result in a subgradient violation at kink ρ(t+1).

A.4 Additional Simulation 1 Results

Figure A.2 shows the objective value errors (percent relative to QP), using original (left

panel) and log (right panel) scales, of the path algorithm and ADMM in simulation 1 at

(n, p) = (500, 1000). The results are qualitatively the same for the other combinations of

(n, p).
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Figure A.2: Path algorithm yields solutions with smaller errors than ADMM. Objective value

errors (percent) are relative to quadratic programing (QP) on the original scale (left panel) and

log scale (right panel) at different values of ρscale = ρ/ρmax for (n, p) = (500, 1000). Although the

accuracy of ADMM decreases as ρscale increases, the error is generally less than 0.005% and thus

is very low overall. The results are qualitatively the same for the other combinations of (n, p).

A.5 Additional Simulation 3 Results

Figure A.3 is similar to the Figure 2(c) of the main text, except with an extra setting

(n, p) = (2000, 4000). The results from this larger problem size show a similar pattern.

ADMM outperforms QP as the problem size grows while the solution path algorithm con-

sistently displays superior performance.
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Figure A.3: Extra setting at (n, p) = (2000, 4000) for simulation 3 shows a similar pattern as

Figure 2(c) in the main text. The runtimes for the solution path algorithm are averaged across

the number of kinks in the path to make the runtimes more comparable to the other algorithms

estimated at one value of the tuning parameter, ρ = ρscale · ρmax. ADMM outperforms QP as the

problem size grows while the solution path algorithm consistently displays superior performance.

A.6 Microbiome Data

Figures A.4 and A.5 display the solution paths and the observed vs. fitted values of

the optimal model chosen using the extended Bayesian Information Criterion (EBIC) for

the microbiome data discussed in Section 5.3. The EBIC includes an additional tuning

parameter, which we set to 0.5 based on the results in the literature (Chen and Chen,

2008, 2012).
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Figure A.4: Constrained lasso (left panel) and zero-sum regression (right panel) yield nearly

identical solution paths for the microbiome dataset. The maximum absolute difference between

the two solution paths is equal to 0.1785, at which the objective values differ by 0.0102.
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Figure A.5: The model with minimal EBIC occurs at ρ = 120.14 and yields predicted R2 = 0.703

for urinary levels of 3-indoxyl sulfate (3-IS) in the microbiome dataset.

A.7 Housing Data

Here we describe how we preprocessed the Ames housing dataset, which has 2,930 obser-

vations and 80 variables. (1) As per the data’s documentation, the value NA represents
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the absence of a housing characteristic for most of the factor variables. In this case, NA

values were replaced by a new factor level corresponding to “none” to distinguish them

from missing entries. In situations where NA was not defined in the documentation, it was

treated as a missing value. (2) For the majority of the factor variables, missing values were

imputed using the variable’s mode. For a handful of the factor variables, such as multiple

variables describing the house’s garage or basement, it was possible to infer the missing

value based on the value of a closely-related variable. This was also done for continuous

variables when possible, but two continuous variables had a large number of missing values

and were handled differently. For “lot frontage,” which has 490 missing entries, imputa-

tion was performed using the neighborhood’s median value. The other continuous variable,

“year garage was built,” was imputed using “year built” since both variables are highly

correlated (r = .84). After addressing the missing data, five houses were removed since they

are either true outliers or represent unusual sales. Removal of these five houses was also

encouraged by De Cock (2011). (3) For some factors, such as “roof material,” more than

98% of the values are the same. Since factors with near-zero variance are relatively unin-

formative in terms of prediction, they were removed. The variables removed were “street,”

“utilities,” “roof material,” “heating,” “pool quality,” and “proximity to various conditions

given more than one is present.” (4) Highly-skewed variables were log transformed. They

include “lot frontage,” “overall quality,” and “above ground living area,” among others.

(5) Indicator variables were constructed for each level of a factor variable. After the above

data preprocessing, the dataset used in the analysis contains 2925 observations and 324

variables. Once the coefficient path is obtained from the path algorithm, we compute the

regular BIC for each ρ to select the final model. We found the lowest BIC at ρ = 28.853

with the predicted R2 = 0.893 (based on the PRESS statistic). Figure A.6 shows the

coefficient estimates for the 38 selected features at the optimal ρ. Based on the magnitude

of the estimated coefficients, the two most important predictors are “overall quality” and

“above ground living area,” which is intuitive.
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Figure A.6: The model with lowest BIC reveals 38 selected features. Blue and red bars indicate

variables with positive and negative coefficient, respectively.
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