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7 Sensitivity to weight specification

In this section, we repeat the simulations from Section 4 for Model 1 to assess our method’s
sensitivity to the choice of weight matrices wj,m. The weighting choices we compare are
the following:

• Adaptive. The weights we suggest in Section 2.1 (Guo, 2010), i.e., w−1
j,m = |x̄j − x̄m|

for 1 ≤ j < m ≤ J ;

• Constant. The weights are set so that every element of wj,m equals one for all 1 ≤
j < m ≤ J ;

• Random. The weights are chosen so that wj,m has entries which are a realization of
rc independent copies of a Uniform(0,1) random variable;

• Oracle. The weights are chosen with knowledge of the population sparsity pattern:
wj,m = 1r×c (µ∗j = µ∗m) , where 1r×c : Rr×c → Rr×c is the indicator function.

We also include the matrix-normal maximum likelihood estimator (MN) and the Bayes rule
(Bayes) described in Section 4.2.

Average misclassification rates are displayed in Figure 1. We found that the Adaptive
weights did only slightly worse than PMN with Oracle weights. In terms of misclassification
accuracy, the Adaptive weights were similar to the Constant weights, however, when we
compare the TNR and TPR of the Adaptive and Constant weights in Table 1, we saw that
the Adaptive weights tend to have lower TPR and higher TNR.
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Figure 1: Misclassification rates averaged over 100 replications; (a) and (b) for Model 1
using the weight choices described in Section 7.

Table 1: TNR/TPR percentages averaged over the 100 replications for Model 1 using the
weight choices described in Section 7.

Model 1 (r, c)
Weights (8,8) (16,16) (32,32) (64,64) (32,8) (32,16) (32,64) (32,126)

Adpative 89.4/81.4 96.3/81.0 98.9/75.8 99.5/73.0 98.2/73.4 98.3/76.5 99.4/73.4 99.7/70.9
Constant 79.7/91.9 89.3/87.8 95.8/86.6 98.4/84.8 88.7/87.5 93.0/88.6 97.6/85.2 98.3/85.1
Random 59.9/92.0 75.1/84.4 84.6/82.8 89.6/73.5 72.9/85.8 80.4/82.6 86.8/79.1 89.1/73.0

Oracle 93.9/100 93.7/100 98.4/100 99.4/100 95.2/100 96.3/100 99.3/100 99.4/100

8 Comparison to alternative methods

8.1 Comparison to vector-valued sparse linear discriminant methods

In this section, we compare our proposed method to multiple vector-valued sparse linear
discriminant methods applicable for arbitrary number of response categories J . For the
methods that are not specifically designed for matrix-valued predictors, we treat the pre-
dictor as an rc-variate vector. In addition to Bayes, MN, and PMN defined in Section 4.2,
we use the following methods for classification:

• Witten. The L1-penalized Fisher-linear-discriminant method proposed by Witten
and Tibshirani (2011) with tuning parameter and dimension chosen to minimize the
misclassification rate on the validation set;

• Clemmensen. The sparse optimal scoring method proposed by Clemmensen et al.
(2011) with tuning parameter chosen to minimize the misclassification rate on the
validation set;

• Mai. The multiclass sparse linear discriminant analysis method proposed by Mai
et al. (2018) with tuning parameter chosen to minimize the misclassification rate on
the validation set.
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Figure 2: Misclassification rates averaged over 100 replications for Model 1.

Mai et al. (2018) provide a brief review of these three methods and how they differ. We
emphasize that these three methods were not designed specifically for classification when
the predictor is matrix-valued.

We are aware of only one other method for penalized linear discriminant analysis
with matrix-valued predictors: the penalized matrix-variate discriminant analysis (PMDA)
method proposed by Zhong and Suslick (2015). However, PMDA treats row and column
variables differently by either including or excluding entire rows of the predictor. Since the
majority of both row and column variables are irrelevant for Model 1, we would not expect
PMDA to perform well and thus, we exclude it from comparison in this section. In the next
section, we compare our method to the methods proposed by Zhong and Suslick (2015),
including PMDA, under different data generating models.

We compare methods in terms of classification accuracy for Model 1 described in Sec-
tion 4.1. In Figure 2, we display misclassification rates averaged over 100 replications for
each of the competing methods with varying r and c. When r = c, the matrix-normal
maximum likelihood estimator outperformed some of the vector-valued sparse linear dis-
criminant analysis methods when r = 8 and r = 16. In general, the method of Mai et al.
(2018) tended to perform best amongst the vector-valued sparse linear discriminant meth-
ods, all of which were outperformed by our proposed method, PMN. We did not measure
TPR or TNR since these methods do not actually fit (1).

8.2 Comparison to Zhong and Suslick (2015)

In this section, we compare our proposed method to both the matrix linear discriminant
method (MDA) and penalized matrix linear discriminant method (PMDA) proposed by
Zhong and Suslick (2015). For 100 independent replications, we generated a realization
of n = ntrain + nvalidate + ntest independent copies of (X,Y ), where we set ntrain = 120,
nvalidate = 120, and ntest = 500. We use the same data generating model as in Section 5.2 of
Zhong and Suslick (2015): the categorical response Y had support {1, 2} with probabilities
π∗1 = π∗2 = 1/2, the predictor X = (U1, U2, U3)T, where

3



U1 | Y = j ∼ N36 {036×1,Σ∗1} , where Σ∗1,s,t = .5|s−t|;

U2 | Y = j ∼ N36 {036×1,Σ∗2} , where Σ∗2 = I36;

and we used two distinct models for U3:

• Model 5. We set

U3 | Y = j ∼ N36 {|U1| − 0.3(j + 1),Σ∗3} , where Σ∗3 = .5I36,

which is exactly the model from Section 5.2 of Zhong and Suslick (2015).

• Model 6. We set U3 = (U3,1, . . . , U3,36)T

U3,k | Y = j ∼ N1 {|U3,k| − 0.5 · 1 [k ∈ {(j − 1)18 + 1, . . . , j18}] , 0.5} , k = 1, . . . , 36,

where U3,l and U3,m were independent when l 6= m.

Model 6 has a stronger signal than Model 5, meaning that more accurate classification is
theoretically possible.

We compare our method to the same methods considered in Zhong and Suslick (2015).
In addition to MN and PMN defined in Section 4.2; and Clemmensen as defined in Section
8.1, we consider the following methods:

• MDA. The matrix-valued Fisher-linear-discriminant method proposed by Zhong and
Suslick (2015);

• PMDA. The matrix-valued penalized Fisher-linear-discriminant method proposed by
Zhong and Suslick (2015) with tuning parameter chosen to minimize the misclassifi-
cation rate on the validation set;

• RDA. Vector-valued regularized linear discriminant analysis with tuning parameters
chosen to minimize the misclassification rate on the validation set;

• Lasso. Vector-valued L1-penalized logistic regression (Friedman et al., 2010) with
tuning parameter chosen to minimize the misclassification rate on the validation set.

To implement MDA and PMDA, we used the code provided in the Supplementary Mate-
rial of Zhong and Suslick (2015). We tried both discrete and continuous tuning parameters
for PMDA, and used two different initial values for both MDA and PMDA using both
tuning approaches. We used the tuning method and initializer that minimized the misclas-
sification rate on the validation set. We found that for Model 5, PMDA performed slightly
better than PMN and RDA. However, for Model 6, PMN slightly outperformed both RDA
and PMDA.

9 Efficiency of joint estimation

We also investigated the efficiency of our estimator relative to two alternative estimators of
(1) under assumption (2). The first alternative is the matrix-normal maximum likelihood
estimator, i.e., MN defined in Section 4.2. The second alternative is a one-step approxi-
mation to (3): we initialize Algorithm 1 as described in Section 3.4, we perform Step 1 of
Algorithm 1, then we repeat Steps 2–4 of Algorithm 1 until convergence. The algorithm
used for this one-step approximation is given in Algorithm 2.
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Figure 3: Misclassification rates for 100 independent replications under Model 5 (grey
boxplots) and Model 6 (white boxplots).

Algorithm 2. Given ε > 0, set m = 0 :

Step 1: Iterate the “flip-flop” algorithm (Dutilleul, 1999) until convergence and set
Φ(0) = diag(ΦMLE) and ∆(0) = diag(∆MLE) where

(
ΦMLE,∆MLE

)
are the final iter-

ates.

Step 2: Compute µ(1) = arg min
µ∈R(r×c)J

g
(
µ,Φ(0),∆(0)

)
+ λ1

∑
j<m ‖wj,m ◦ (µj − µm) ‖1

using the algorithm from Section 3.3.

Step 3: Compute ∆̃ = GL
{
Sδ
(
µ(1),Φ(m)

)
, λ2

}
.

Step 4: Compute Φ̃ = GL
{
Sφ

(
µ(1), ∆̃

)
, λ2c ‖∆̃‖1

}
.

Step 5: Compute ∆(m+1) = ‖Φ̃‖1
r ∆̃, Φ(m+1) = r

‖Φ̃‖1
Φ̃

Step 6: If f
(
µ(1),Φ(m),∆(m)

)
− f

(
µ(1),Φ(m+1),∆(m+1)

)
< ε|f

(
x̄,Φ(0),∆(0)

)
|, return

(µ(1),Φ(m+1),∆(m+1)). Otherwise, replace m by m+ 1 and go to Step 3.

In comparison to Algorithm 1, the one step-approximation does not jointly estimate
the mean and precision matrix parameters; however, it does jointly estimate Φ∗ and ∆∗.
A similar one-step approximation was proposed by Rothman et al. (2010) for multivariate
response linear regression with precision matrix estimation.
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Figure 4: Loss ratios (relative to maximum likelihood) for 100 replications using the esti-
mator from Algorithm 1 (grey boxplots) and the one-step approximation from Algorithm
2 (white boxplots). (a) displays Kullback-Liebler loss ratios, (b) displays Frobenius-norm
loss ratios for estimating µ∗, (c) displays Frobenius-norm loss ratios for estimating Φ∗, and
(d) displays the misclassification rate ratios.

To compare the performance of the maximum likelihood estimator, the joint estimator
from Algorithm 1, and the one-step approximation from Algorithm 2, we measure mul-
tiple losses for Model 1 using the same settings as in Section 4.1. For each of the three
estimators, we measured the Frobenius norm loss for estimating Φ∗, the Frobeinus norm
loss for estimating µ∗, the Kullback-Liebler divergence, and the classification accuracy. For
the sake of comparison, we keep losses on the same scale for different (r, c) by displaying
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Figure 5: (a) The absolute value of the estimated mean matrix difference between the
positive and negative responders using (3) with a tuning parameter pair with leave-one-out
misclassification accuracy of 47/53. Genes which had all six time points estimated to have
nonzero mean differences are labeled. White entries correspond to zero, whereas darker
entries indicate a larger magnitude. (b) The estimated absolute precision matrix (on the
correlation scale) between genes using (3). White entries correspond to zero, whereas darker
entries indicate a larger magnitude. The diagonal was set to zero for clarity of display.

the ratio the penalized estimators’ losses to the maximum likelihood estimator’s loss. For
example, for estimating µ∗ with estimator µ̂, we display the ratio

‖µ̂− µ∗‖F
‖x̄− µ∗‖F

,

where x̄ = (x̄1, . . . , x̄J) ∈ R(r×c)J are the usual sample estimators of the J response cat-
egory mean matrices. As in Section 4.2, we select tuning parameters by minimizing the
misclassification rate on the validation set for both penalized estimators we consider. Ra-
tios for the four losses are shown in Figure 4. Grey boxplots are the ratios from (3) and
white boxplots are from the one-step approximation to (3). We see that jointly estimating
the mean and precision matrix parameters generally led to better estimates of Φ∗ compared
to the maximum likelihood estimator and the one-step approximation. It is possible that
we could have improved Kullback-Liebler loss and both Frobienus-norm losses if we had
selected tuning parameters by maximizing a validation likelihood. However, even when we
select tuning parameters to maximize validation classification accuracy, (3) is still more
efficient than the the maximum likelihood estimator and one-step approximation.
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10 Figures for longitudinal genomic data example

In Figure 5a, we display the estimated mean matrix absolute difference based on our fitted
model using (3). Based the mean difference estimate displayed in 5a, there does not appear
to be any clear evidence of a change in gene expression over time. Genes which had all
six time point estimated to have nonzero mean matrix differences are labeled along the
vertical axis. Of the labeled genes, Caspase 10 appears to have the largest mean differences
across time. In Figure 5b, we display the absolute correlation matrix corresponding to the
precision matrix estimate for the genes.
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