1 Appendix: Estimation

It is beyond the scope of this review of identification to also exhaustively cover
estimation, therefore we only outline the broad approaches to inference that
have been proposed in partial identification settings. Readers interested in more
depth may consider beginning with the review by ( ), or the references
cited in this section.

We may consider estimating confidence regions around the identified lower
and upper bounds separately (e.g., as done early on by ( ),
or estimating confidence regions for the contained set jointly (e.g., as done by

( )). The first approach does not take into account the
correlation between the lower and upper bounds, but may be all that is desired
in settings where only one of the boundaries is of interest. However, many of
the bounds described in this review involve minimum and maximum operations.
These functionals are irregular, and therefore common techniques like the non-
parametric bootstrap will generally not be valid ( , ;

). Subsampling or related resampling techniques have been proposed to
overcome this issue ( , ; , ;
, ). In particular, ( ) has
developed methods when a scalar is bounded above (below) by the minimum
(maximum) of several quantities; these methods can be applied to many of the
bounds given in Tables 2 and 3. For more general discussion of estimating the
confidence region for the contained set under an optimization framework, see
( ). For a discussion of these estimation procedures in the context of
testing the model itself (as in Section 3), see ( )-
We may also consider estimating confidence regions for the ATE, i.e., the

partially identified parameter itself, even though we do not identify it.
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and Manski (2004) introduced the concept and construction of confidence in-
tervals for the true value of the parameter itself; see Stoye (2009) for important
extensions and clarifications and Kaido et al. (2016) for recent developments.
The length of the confidence interval for the ATE will be no greater than that
of the confidence region for the identified set.

In general, more work is needed to translate the valid approaches into prac-
tice. To date, there are relatively few applications of these estimation procedures
— even fewer beyond the methodological literature, e.g., Blanco et al. (2013);
Mealli and Pacini (2013); Huber et al. (2015) — and no software packages that

are readily applied to all bounds given in Tables 2 and 3.
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2 Appendix: Lower and upper bounds on E[Y”]

Here we provide expressions for the bounds for the mean counterfactuals under
the assumption sets discussed in Section 2. Note that bounds for the relative
risk, E[Y*=1]/E[Y*=Y], follow from these expressions by variation independence

of the numerator and the denominator ( , ).

Supplemental Table 1: Bounds for identification of E[Y ]

Assumption Set  Bound*

Lower Bound for E[Y?]

Data only Dy |0 Paxo
A1+A2 max { PuileozoPaolzo }
py1|:rg,zlp:1:0|z1
Pyy 20|20 +py1,911|20 ~ Pyo,zolzr T Pyr,zalza
A3+ A4** max Pyr.zolz1
Py; 020

Pyo,z1]20 T Pyi,aolzo — Pyoswolzs ~ Pyo,i|z

Upper Bound for E[Y?]

Data only Pys|woPao T Pay
Al+A2 min Dyi|zo,20Pao|z0 + Pxy|z0 }
Dyy|z0,21Pzo|21 T P21

Pyo,a1|z0 T Pyi,wolzo T Pyr,zolzr T Pyi,ai |z

A3 A4** min L = Pyoz0]21
1- Dyo,z0|20

Py1,m0lz0 T Pyi,ar|z0 T Pyosaalzr T Pyr ol

Lower Bound for E[Y]

Data only Pyr |21 P
Al14+A2 max Pyy,x1,20P21)20 }
Pyy,@1,21: P21 |21
Py1 1020
A3 A4** max Py 1)z

“Pyo,x0lz0 ~ Pyo,z1l20 +py07$0|21 +py17w1\21
“Pyo.x1]20 — Pyi,zolzo erywvolm +pyl,ih\zl

Upper Bound for E[Y'!]

Data only Pyi |1 Py T+ Pao
A1+A2 min Py1,21,20Px1 |20 +pwo\zo }
Py ,21,21 P21 |21 +pxo\zl

1 ~ Pyo,x120

A34+A4** min L = Pyo,z1)2
py07I0‘ZO +py1,ﬂi1|20 +py1,$0‘21 +py1)a;1|z1
Dyy .02 +py1,m1|z0 +pyo~,3€0|2’1 +py1,a:1|z1
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*pykvzﬂzi =PrlYy =k, X = j|Z = i];pyk\mj,Zi =PrlY = kX = 5,72 = i];pyk|zj =
Pr[Y = k|X = jlipy,|o; = PrlY = k|Z = i;py 5, = Pr[X = j|Z = i];pe; = Pr[X =j];pz, =
Pr[Z =]

**See Section 2 for additional assumption sets that likewise lead to the Balke-Pearl

bounds.

3 Appendix: Lower and upper bounds within
compliance types with known proportion of

defiers

We will denote the marginal probability of an always-taker, never-taker, com-
plier, and defier as mao7, *nT, TcO, and Tp g, respectively. We will further make

use of the same compact notation as appears in Tables 2 and 3:
Puesay = = PrY = b, X = |2 = ]

Pyile; e = Pr[Y = k| X =4, Z = 1]
Pyile, = Pr[Y = k|X = j]
Pyilz = Pr[Y = k|Z = i]

Do,z = Pr[X = j|Z = i

Under (A5) and (A12), the proportion of defiers can be bounded as follows:
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0
p$1|20 _pw1|zl
Pzq|zo — 1- Zj pyj,930|zj . Pzy |z
max < 7mpr < min

Pzi|zo — I Ek}pyk;mo‘zl—k Pz

Pxq)|zo — Zj Py;z1)2;

Pzizg — Zk Pyi,z1|z1-k

See ( ) for further details. As discussed in the text,
for any given value of mpg, the proportion of the other three compliance types
is determined by the observed distribution of (X, Z). For the remainder of Ap-
pendix 3, we assume that the distribution of compliance types is known. Under
assumptions (A5), (A12), and (A13), ( ) identified
bounds for counterfactual risks within each compliance type.

For the always-takers, we have:

0<PrY'=1x'=X°=1]<1

0

p ___Tco
vilz1,21 " moo+mar
TAT

Priy! =1|X' = X% = 1] > max
TcotmAT
_ "DE
Pyilz1.20 " mppimar
TAT

TDETTAT

1

. P 5
Prly! =1]X' = X0 =1] <min{ 45~
TcotTAT
Pyylzy.20
TAT
TDETTAT

For the never-takers, we have:
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0
TCO
0 1 0 Pyilwo.20 " 7ooFrnT
Pr[Y" =1|X" = X" = 0] > max N
"CO+”N7"1“D

___™OF
Pyileo,21 " FpptanT
TNT
TDETTNT

1
Priy?=1|X!' = X = 0] <min{ —4lg=

Tcot+tTNT

Pyylzg.21
TNT
TDETTNT

0<PrY'=1X'=X"=0]<1

To simplify notation, let 7%, and u~%;, refer to the lower and upper bounds
on Pr[Y” = 1|X! = X% = 0] for each z € {0,1}, and similarly let [y%, and
uy% s refer to the lower and upper bounds on Pr[Y? = 1|X! = X% = 1] for
each x € {0, 1} derived above. The bounds in the compliers and defiers are then
functions of these.

For the compliers, we have:

TNT TCO

Prly? =1|X' > X9 > —un?
[ | 12 (Purfeo 29 7NTWN‘T+7TCO /WNT-%FCO

TNT TCO

Pr[Y? = 1|1X' > X% < (py, 100,20 — 1T
[ | }_(pyﬂ 0,20 fYNTﬂ-NT—FTrCo TNT + TCO

TAT TCO

Prly' =1/X'> X% > — uy}
[ ‘ ] = (py1|rc1,zl ’YATTFAT T 700 /7TAT T 700

TAT TCO
TAT + Tco  TaT + Tco

Pr[Y! = 11X > X < (pyyjoron — IWhr

For the defiers we have:
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TNT TDE

Pr[Y?=1|X' < X1 > — ur?
[ | ] el (py1|x0,z1 ’YNTﬂ_NT + e’ TNT + TDE

Pr[Y0 = 1|X1 < XO} < (pyﬂwc),zl _ l'YR/T TNT TDE

TNT +7TpE  TNT + TDE

TAT TDE
TAT +TDE TAT + TDE

Pr[Yl = 1‘X1 < XO] > (pyllxl,zo - UV}LXT

TAT TDE
TAT + TDE" TAT + TDE

Pr[Y! = 11X < X°) < (pyyjarm0 — IVhr

Upper and lower bounds on the ATE within compliance types can be derived
directly from the above formulas, as Pr[Y! = 1] and Pr[Y? = 1] are variation
independent given compliance type ( , ). To return

to the ATE, the identities

Pyror)ss = Teo PrY = 1[X' > X+ mar Pr[Y! = 1| X' = X0 =1]

Pyrwolzo = Tco PrY? = 11X > X+ anp Pr[Y? = 1| X' = X© = 0]

then imply Pr[Y? = 1], Pr[Y'! = 1], and ATE are bounded as follows:

PrlY° =1] > py, 20120 + T0ENDE + TaTlVar

Pr[Y? = 1] < py, agjz0 + TOEUYDE + TATUYAT

PI‘[Yl = 1] > Pyy,x1|21 + 7TDEerlDE =+ 7TJVTZF)/}\/T
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PI’[Yl = 1] S pyl,x1|zl + WDEu/leE + 71—]\WTU/}/}\/'T

ATE > py, o1)21 — Pyr.wolzo + TDEIATEpE + nnrlyNy — TaTuyS

ATE < py, o1)er — Pyr.wolzo + TDEIATEpE + nnruyny — Tarlyar

where 174, and 175, are the lower and upper bounds on Pr[Y?* = 1| X! < X?]
for each « € {0,1}, and IATEp is the lower bound on the average treatment
effect within the defiers.

The bounds under the additional assumption (A14) are as above, except
with Ivh 7, Y47, uyahr, and uyp replaced with given values. That is, one can
specify in (A14) that lyhp or (7% are greater than 0, or that uyxk, or uy%p

are less than 1.
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4 Appendix: Comparison of constraints implied
by the IV model for a trichotomous instru-
ment

Consider the setting of a trichotomous instrument Z, binary treatment X, and
binary outcome Y. ( ) showed the IV model defined by the individual-
level exclusion restriction (A5) and the full exchangeability assumption (A12)

implies the following constraints:

m?‘x {py17w1|2i} < mz.in {1 - py07$1|2i}

m?.x {pyl,10|zi} < miin {1 - pyoﬂﬂolzz}

miaX {pylvl’olzi +py1@1|2i} + mzax {py1=10\2i +py071’1|2i} + miax {pyoa%lzi} <2

where p,, ..|., makes use of the same compact notation as appears in Tables 2
and 3. The first two of these three expressions were previously given by
( ). We now provide an empirical example that satisfies the first two con-

straints but not the third.
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Supplemental Table 2: Example with a trichotomous proposed instrument

N Z X Y
10 0 O 0
10 0 O 1
0 0 1 0
10 0 1 1
10 1 0 0
50 1 0 1
10 1 1 0
30 1 1 1
50 2 0 0
10 2 0 1
20 2 1 0
20 2 1 1

Here, the first constraint is satisfied (0.3

<

0.3), the second constraint is

satisfied (0.5 < 0.5), but the third constraint is not satisfied (0.840.84-0.5 = 2.1

is not less than or equal to 2).
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