
1 Appendix: Estimation

It is beyond the scope of this review of identification to also exhaustively cover

estimation, therefore we only outline the broad approaches to inference that

have been proposed in partial identification settings. Readers interested in more

depth may consider beginning with the review by Tamer (2010), or the references

cited in this section.

We may consider estimating confidence regions around the identified lower

and upper bounds separately (e.g., as done early on by Manski et al. (1992)),

or estimating confidence regions for the contained set jointly (e.g., as done by

Horowitz and Manski (2000)). The first approach does not take into account the

correlation between the lower and upper bounds, but may be all that is desired

in settings where only one of the boundaries is of interest. However, many of

the bounds described in this review involve minimum and maximum operations.

These functionals are irregular, and therefore common techniques like the non-

parametric bootstrap will generally not be valid (Andrews, 2000; Andrews and

Guggenberger, 2009; Romano and Shaikh, 2008; Chernozhukov et al., 2007,

2013). Subsampling or related resampling techniques have been proposed to

overcome this issue (Romano and Shaikh, 2008; Chernozhukov et al., 2007;

Ramsahai and Lauritzen, 2011). In particular, Chernozhukov et al. (2013) has

developed methods when a scalar is bounded above (below) by the minimum

(maximum) of several quantities; these methods can be applied to many of the

bounds given in Tables 2 and 3. For more general discussion of estimating the

confidence region for the contained set under an optimization framework, see

Kaido (2016). For a discussion of these estimation procedures in the context of

testing the model itself (as in Section 3), see Bugni et al. (2015).

We may also consider estimating confidence regions for the ATE, i.e., the

partially identified parameter itself, even though we do not identify it. Imbens
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and Manski (2004) introduced the concept and construction of confidence in-

tervals for the true value of the parameter itself; see Stoye (2009) for important

extensions and clarifications and Kaido et al. (2016) for recent developments.

The length of the confidence interval for the ATE will be no greater than that

of the confidence region for the identified set.

In general, more work is needed to translate the valid approaches into prac-

tice. To date, there are relatively few applications of these estimation procedures

– even fewer beyond the methodological literature, e.g., Blanco et al. (2013);

Mealli and Pacini (2013); Huber et al. (2015) – and no software packages that

are readily applied to all bounds given in Tables 2 and 3.
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2 Appendix: Lower and upper bounds on E[Y x]

Here we provide expressions for the bounds for the mean counterfactuals under

the assumption sets discussed in Section 2. Note that bounds for the relative

risk, E[Y x=1]/E[Y x=0], follow from these expressions by variation independence

of the numerator and the denominator (Dawid, 2000).

Supplemental Table 1: Bounds for identification of E[Y x]

Assumption Set Bound*
Lower Bound for E[Y 0]
Data only py1|x0

px0

A1+A2 max

{
py1|x0,z0px0|z0
py1|x0,z1px0|z1

}

A3+A4** max


py1,x0|z0 + py1,x1|z0 − py0,x0|z1 − py1,x1|z1

py1,x0|z1
py1,x0|z0

py0,x1|z0 + py1,x0|z0 − py0,x0|z1 − py0,x1|z1


Upper Bound for E[Y 0]
Data only py1|x0

px0
+ px1

A1+A2 min

{
py1|x0,z0px0|z0 + px1|z0
py1|x0,z1px0|z1 + px1|z1

}

A3+A4** min


py0,x1|z0 + py1,x0|z0 + py1,x0|z1 + py1,x1|z1

1− py0,x0|z1
1− py0,x0|z0

py1,x0|z0 + py1,x1|z0 + py0,x1|z1 + py1,x0|z1


Lower Bound for E[Y 1]
Data only py1|x1

px1

A1+A2 max

{
py1,x1,z0px1|z0
py1,x1,z1px1|z1

}

A3+A4** max


py1,x1|z0
py1,x1|z1

−py0,x0|z0 − py0,x1|z0 + py0,x0|z1 + py1,x1|z1
−py0,x1|z0 − py1,x0|z0 + py1,x0|z1 + py1,x1|z1


Upper Bound for E[Y 1]
Data only py1|x1

px1
+ px0

A1+A2 min

{
py1,x1,z0px1|z0 + px0|z0
py1,x1,z1px1|z1 + px0|z1

}

A3+A4** min


1− py0,x1|z0
1− py0,x1|z1

py0,x0|z0 + py1,x1|z0 + py1,x0|z1 + py1,x1|z1
py1,x0|z0 + py1,x1|z0 + py0,x0|z1 + py1,x1|z1


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*pyk,xj |zi ≡ Pr[Y = k,X = j|Z = i]; pyk|xj ,zi ≡ Pr[Y = k|X = j, Z = i]; pyk|xj ≡

Pr[Y = k|X = j]; pyk|zi ≡ Pr[Y = k|Z = i]; pxj |zi ≡ Pr[X = j|Z = i]; pxj ≡ Pr[X = j]; pzi ≡

Pr[Z = i]

**See Section 2 for additional assumption sets that likewise lead to the Balke-Pearl

bounds.

3 Appendix: Lower and upper bounds within

compliance types with known proportion of

defiers

We will denote the marginal probability of an always-taker, never-taker, com-

plier, and defier as πAT , πNT , πCO, and πDE , respectively. We will further make

use of the same compact notation as appears in Tables 2 and 3:

pyk,xj |zi ≡ Pr[Y = k,X = j|Z = i]

pyk|xj ,zi ≡ Pr[Y = k|X = j, Z = i]

pyk|xj ≡ Pr[Y = k|X = j]

pyk|zi ≡ Pr[Y = k|Z = i]

pxj |zi ≡ Pr[X = j|Z = i]

pxj ≡ Pr[X = j]

pzi ≡ Pr[Z = i]

Under (A5) and (A12), the proportion of defiers can be bounded as follows:
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max



0

px1|z0 − px1|z1

px1|z0 − 1−
∑

j pyj ,x0|zj

px1|z0 − 1−
∑

k pyk,x0|z1−k

px1|z0 −
∑

j pyj ,x1|zj

px1|z0 −
∑

k pyk,x1|z1−k



≤ πDE ≤ min

 px1|z0

px0|z1



See Richardson and Robins (2010) for further details. As discussed in the text,

for any given value of πDE , the proportion of the other three compliance types

is determined by the observed distribution of (X,Z). For the remainder of Ap-

pendix 3, we assume that the distribution of compliance types is known. Under

assumptions (A5), (A12), and (A13), Richardson and Robins (2010) identified

bounds for counterfactual risks within each compliance type.

For the always-takers, we have:

0 ≤ Pr[Y 0 = 1|X1 = X0 = 1] ≤ 1

Pr[Y 1 = 1|X1 = X0 = 1] ≥ max


0

py1|x1,z1−
πCO

πCO+πAT
πAT

πCO+πAT

py1|x1,z0−
πDE

πDE+πAT
πAT

πDE+πAT



Pr[Y 1 = 1|X1 = X0 = 1] ≤ min


1

py1|x1,z1
πAT

πCO+πAT

py1|x1,z0
πAT

πDE+πAT


For the never-takers, we have:
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Pr[Y 0 = 1|X1 = X0 = 0] ≥ max


0

py1|x0,z0−
πCO

πCO+πNT
πNT

πCO+πNT

py1|x0,z1−
πDE

πDE+πNT
πNT

πDE+πNT



Pr[Y 0 = 1|X1 = X0 = 0] ≤ min


1

py1|x0,z0
πNT

πCO+πNT

py1|x0,z1
πNT

πDE+πNT


0 ≤ Pr[Y 1 = 1|X1 = X0 = 0] ≤ 1

To simplify notation, let lγxNT and uγxNT refer to the lower and upper bounds

on Pr[Y x = 1|X1 = X0 = 0] for each x ∈ {0, 1}, and similarly let lγxAT , and

uγxAT refer to the lower and upper bounds on Pr[Y x = 1|X1 = X0 = 1] for

each x ∈ {0, 1} derived above. The bounds in the compliers and defiers are then

functions of these.

For the compliers, we have:

Pr[Y 0 = 1|X1 > X0] ≥ (py1|x0,z0 − uγ
0
NT

πNT

πNT + πCO
)/

πCO

πNT + πCO

Pr[Y 0 = 1|X1 > X0] ≤ (py1|x0,z0 − lγ
0
NT

πNT

πNT + πCO
)/

πCO

πNT + πCO

Pr[Y 1 = 1|X1 > X0] ≥ (py1|x1,z1 − uγ
1
AT

πAT

πAT + πCO
)/

πCO

πAT + πCO

Pr[Y 1 = 1|X1 > X0] ≤ (py1|x1,z1 − lγ
1
AT

πAT

πAT + πCO
)/

πCO

πAT + πCO

For the defiers we have:
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Pr[Y 0 = 1|X1 < X0] ≥ (py1|x0,z1 − uγ
0
NT

πNT

πNT + πDE
)/

πDE

πNT + πDE

Pr[Y 0 = 1|X1 < X0] ≤ (py1|x0,z1 − lγ
0
NT

πNT

πNT + πDE
)/

πDE

πNT + πDE

Pr[Y 1 = 1|X1 < X0] ≥ (py1|x1,z0 − uγ
1
AT

πAT

πAT + πDE
)/

πDE

πAT + πDE

Pr[Y 1 = 1|X1 < X0] ≤ (py1|x1,z0 − lγ
1
AT

πAT

πAT + πDE
)/

πDE

πAT + πDE

Upper and lower bounds on the ATE within compliance types can be derived

directly from the above formulas, as Pr[Y 1 = 1] and Pr[Y 0 = 1] are variation

independent given compliance type (Richardson and Robins, 2010). To return

to the ATE, the identities

py1,x1|z1 = πCO Pr[Y 1 = 1|X1 > X0] + πAT Pr[Y 1 = 1|X1 = X0 = 1]

py1,x0|z0 = πCO Pr[Y 0 = 1|X1 > X0] + πNT Pr[Y 0 = 1|X1 = X0 = 0]

then imply Pr[Y 0 = 1], Pr[Y 1 = 1], and ATE are bounded as follows:

Pr[Y 0 = 1] ≥ py1,x0|z0 + πDElγ
0
DE + πAT lγ

0
AT

Pr[Y 0 = 1] ≤ py1,x0|z0 + πDEuγ
0
DE + πATuγ

0
AT

Pr[Y 1 = 1] ≥ py1,x1|z1 + πDElγ
1
DE + πNT lγ

1
NT
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Pr[Y 1 = 1] ≤ py1,x1|z1 + πDEuγ
1
DE + πNTuγ

1
NT

ATE ≥ py1,x1|z1 − py1,x0|z0 + πDElATEDE + πNT lγ
1
NT − πATuγ

0
AT

ATE ≤ py1,x1|z1 − py1,x0|z0 + πDElATEDE + πNTuγ
1
NT − πAT lγ

0
AT

where lγxDE and lγxDE are the lower and upper bounds on Pr[Y x = 1|X1 < X0]

for each x ∈ {0, 1}, and lATEDE is the lower bound on the average treatment

effect within the defiers.

The bounds under the additional assumption (A14) are as above, except

with lγ1NT , lγ0AT , uγ1NT , and uγ0AT replaced with given values. That is, one can

specify in (A14) that lγ1NT or lγ0AT are greater than 0, or that uγ1NT or uγ0AT

are less than 1.
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4 Appendix: Comparison of constraints implied

by the IV model for a trichotomous instru-

ment

Consider the setting of a trichotomous instrument Z, binary treatment X, and

binary outcome Y . Bonet (2001) showed the IV model defined by the individual-

level exclusion restriction (A5) and the full exchangeability assumption (A12)

implies the following constraints:

max
i

{
py1,x1|zi

}
≤ min

i

{
1− py0,x1|zi

}

max
i

{
py1,x0|zi

}
≤ min

i

{
1− py0,x0|zi

}

max
i

{
py1,x0|zi + py1,x1|zi

}
+ max

i

{
py1,x0|zi + py0,x1|zi

}
+ max

i

{
py0,x0|zi

}
≤ 2

where pyk,xj |zi makes use of the same compact notation as appears in Tables 2

and 3. The first two of these three expressions were previously given by Pearl

(1995). We now provide an empirical example that satisfies the first two con-

straints but not the third.
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Supplemental Table 2: Example with a trichotomous proposed instrument

N Z X Y
10 0 0 0
10 0 0 1
70 0 1 0
10 0 1 1
10 1 0 0
50 1 0 1
10 1 1 0
30 1 1 1
50 2 0 0
10 2 0 1
20 2 1 0
20 2 1 1

Here, the first constraint is satisfied (0.3 ≤ 0.3), the second constraint is

satisfied (0.5 ≤ 0.5), but the third constraint is not satisfied (0.8+0.8+0.5 = 2.1

is not less than or equal to 2).
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