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S.1 Proofs

In this section we prove the theorems in the paper.

S.1.1 Proof of Theorem 1

We begin by establishing a lemma that will be used in the proof of Theorems 1 and 2.

Lemma 1. If Assumptions 1 and 2 hold, then conditionally on Fn in probability,

M̃X −MX = OP |Fn(r−1/2), (S.1)

1

n

∂`∗(β̂MLE)

∂β
= OP |Fn(r−1/2), (S.2)

where

M̃X =
1

n

∂2`∗(β̂MLE)

∂β∂βT
=

1

nr

r∑
i=1

w∗i (β̂MLE)x∗i (x
∗
i )
T

π∗i
.

Proof. Direct calculation yields

E(M̃X |Fn) = MX . (S.3)

For any component M̃j1j2
X of M̃X where 1 ≤ j1, j2 ≤ d,

Var

(
1

n
M̃j1j2

X

∣∣∣Fn) =
1

r

n∑
i=1

πi

{
wi(β̂MLE)xij1xij2

nπi
−Mj1j2

X

}2

1



=
1

rn2

n∑
i=1

wi(β̂MLE)2(xij1x
T
ij2

)2

πi
− 1

r
(Mj1j2

X )2

≤ 1

16rn2

n∑
i=1

‖xi‖4

πi
− 1

r
(Mj1j2

X )2

=OP (r−1),

where the second last inequality holds by the fact that 0 < wi(β̂MLE) ≤ 1/4 and the last

equality is from Assumption 2. Using Markov’s inequality, this result and (S.3), implies

(S.1).

To prove (S.2), direct calculation yields,

E

{
1

n

∂`∗(β̂MLE)

∂β

∣∣∣∣Fn
}

=
1

nr

∂`∗(β̂MLE)

∂β
= 0. (S.4)

From Assumption 2,

Var

{
1

n

∂`∗(β̂MLE)

∂β

∣∣∣∣Fn
}

=
1

n2r

n∑
i=1

{yi − pi(β̂MLE)}2xix
T
i

πi
≤ 1

n2r

n∑
i=1

xix
T
i

πi
= OP (r−1).

(S.5)

From (S.4), (S.5) and Markov’s inequality, (S.2) follows.

Now we prove Theorem 1. Note that ti(β) = yi log pi(β) + (1 − yi) log{1 − pi(β)},

t∗i (β) = y∗i log p∗i (β) + (1− y∗i ) log{1− p∗i (β)},

`∗(β) =
1

r

r∑
i=1

t∗i (β)

π∗i
, and `(β) =

n∑
i=1

ti(β).

By direct calculation under the conditional distribution of subsample given Fn,

E

{
`∗(β)

n
− `(β)

n

∣∣∣∣Fn}2

=
1

r

 1

n2

n∑
i=1

t2i (β)

πi
−

(
1

n

n∑
i=1

ti(β)

)2
 . (S.6)

Note that |ti(β)| ≤ log 4 + 2‖xi‖‖β‖. Therefore, from Assumption 1,

1

n2

n∑
i=1

t2i (β)

πi
−

(
1

n

n∑
i=1

ti(β)

)2

≤ 1

n2

n∑
i=1

t2i (β)

πi
+

(
1

n

n∑
i=1

|ti(β)|

)2

= OP (1). (S.7)

Therefore combing (S.6) and (S.7), n−1`∗(β)−n−1`(β)→ 0 in conditional probability given

Fn. Note that the parameter space is compact and β̂MLE is the unique global maximum of

2



the continuous convex function `(β). Thus, from Theorem 5.9 and its remark of van der

Vaart (1998), conditionally on Fn in probability,

‖β̃ − β̂MLE‖ = oP |Fn(1) (S.8)

The consistency proved above ensures that β̃ is close to β̂MLE as long as r is not small.

Using Taylor’s theorem (c.f. Chapter 4 of Ferguson 1996),

0 =
˙̀∗
j(β̃)

n
=

˙̀∗
j(β̂MLE)

n
+

1

n

∂ ˙̀∗
j(β̂MLE)

∂βT
(β̃ − β̂MLE) +

1

n
Rj (S.9)

where ˙̀∗
j(β) is the partial derivative of `∗(β) with respect to βj, and

Rj = (β̃ − β̂MLE)T
∫ 1

0

∫ 1

0

∂2 ˙̀∗
j{β̂MLE + uv(β̃ − β̂MLE)}

∂β∂βT
vdudv (β̃ − β̂MLE).

Note that∥∥∥∥∥∂2 ˙̀∗
j(β)

∂β∂βT

∥∥∥∥∥ =
1

r

∥∥∥∥∥
r∑
i=1

p∗i (β){1− p∗i (β)}{1− 2p∗i (β)}
π∗i

x∗ijx
∗
ix
∗
i
T

∥∥∥∥∥ ≤ 1

r

r∑
i=1

‖x∗i ‖3

π∗i

for all β. Thus∥∥∥∥∥
∫ 1

0

∫ 1

0

∂2 ˙̀∗
j{β̂MLE + uv(β̃ − β̂MLE)}

∂β∂βT
vdudv

∥∥∥∥∥ ≤ 1

2r

r∑
i=1

‖x∗i ‖3

π∗i
= OP |Fn(n), (S.10)

where the last equality is from the fact that

P

(
1

nr

r∑
i=1

‖x∗i ‖3

π∗i
≥ τ

∣∣∣∣∣Fn
)
≤ 1

nrτ

r∑
i=1

E

(
‖x∗i ‖3

π∗i

∣∣∣∣∣Fn
)

=
1

nτ

n∑
i=1

‖xi‖3 → 0, (S.11)

in probability as τ →∞ by Assumption 2. From (S.9) and (S.10),

β̃ − β̂MLE = −M̃−1
X

{
˙̀∗(β̂MLE)

n
+OP |Fn(‖β̃ − β̂MLE‖2)

}
. (S.12)

From (S.1) of Lemma 1, M̃−1
X = OP |Fn(1). Combining this with (S.2), (S.8) and (S.12)

β̃ − β̂MLE = OP |Fn(r−1/2) + oP |Fn(‖β̃ − β̂MLE‖),

which implies that

β̃ − β̂MLE = OP |Fn(r−1/2). (S.13)
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S.1.2 Proof of Theorem 2

Note that
˙̀∗(β̂MLE)

n
=

1

r

r∑
i=1

{y∗i − p∗i (β̂MLE)}x∗i
nπ∗i

≡ 1

r

r∑
i=1

ηi (S.14)

Given Fn, η1, ...,ηr are i.i.d, with mean 0 and variance,

Var(ηi|Fn) = rVc =
1

n2

n∑
i=1

{yi − pi(β̂MLE)}2xix
T
i

πi
= OP (1). (S.15)

Meanwhile, for every ε > 0 and some δ > 0,

r∑
i=1

E{‖r−1/2ηi‖2I(‖ηi‖ > r1/2ε)|Fn}

≤ 1

r1+δ/2εδ

r∑
i=1

E{‖ηi‖2+δI(‖ηi‖ > r1/2ε)|Fn}

≤ 1

r1+δ/2εδ

r∑
i=1

E(‖ηi‖2+δ|Fn)

=
1

rδ/2
1

n2+δ

1

εδ

n∑
i=1

{yi − pi(β̂MLE)}2+δ‖xi‖2+δ

π1+δ
i

≤ 1

rδ/2
1

n2+δ

1

εδ

n∑
i=1

‖xi‖2+δ

π1+δ
i

= oP (1)

where the last equality is from Assumption 3. This and (S.15) show that the Lindeberg-

Feller conditions are satisfied in probability. From (S.14) and (S.15), by the Lindeberg-Feller

central limit theorem (Proposition 2.27 of van der Vaart 1998), conditionally on Fn,

1

n
V−1/2
c

˙̀∗(β̂MLE) =
1

r1/2
{Var(ηi|Fn)}−1/2

r∑
i=1

ηi → N(0, I),

in distribution. From Lemma 1, (S.12) and (S.13),

β̃ − β̂MLE = − 1

n
M̃−1

X
˙̀∗(β̂MLE) +OP |Fn(r−1) (S.16)

From (S.1) of Lemma 1,

M̃−1
X −M−1

X = −M−1
X (M̃X −MX)M̃−1

X = OP |Fn(r−1/2). (S.17)

Based on Assumption 1 and (S.15), it is verified that,

V = M−1
X VcM

−1
X =

1

r
M−1

X (rVc)M
−1
X = OP (r−1). (S.18)
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Thus, (S.16), (S.17) and (S.18) yield,

V−1/2(β̃ − β̂MLE) = −V−1/2n−1M̃−1
X

˙̀∗(β̂MLE) +OP |Fn(r−1/2)

= −V−1/2M−1
X n−1 ˙̀∗(β̂MLE)−V−1/2(M̃−1

X −M−1
X )n−1 ˙̀∗(β̂MLE) +OP |Fn(r−1/2)

= −V−1/2M−1
X V1/2

c V−1/2
c n−1 ˙̀∗(β̂MLE) +OP |Fn(r−1/2).

The result in (5) of Theorem 1 follows from Slutsky’s Theorem(Theorem 6 of Ferguson

1996) and the fact that

V−1/2M−1
X V1/2

c (V−1/2M−1
X V1/2

c )T = V−1/2M−1
X V1/2

c V1/2
c M−1

X V−1/2 = I.

S.1.3 Proof of Theorems 3 and 4

For Theorem 3,

tr(V) = tr(M−1
X VcM

−1
X ) =

1

r

n∑
i=1

tr

[
1

πi
{yi − pi(β̂MLE)}2M−1

X xix
T
i M

−1
X

]
=

1

r

n∑
i=1

[
1

πi
{yi − pi(β̂MLE)}2‖M−1

X xi‖2

]
=

1

r

n∑
i=1

πi

n∑
i=1

[
π−1
i {yi − pi(β̂MLE)}2‖M−1

X xi‖2
]

≥ 1

r

[
n∑
i=1

|yi − pi(β̂MLE)|‖M−1
X xi‖

]2

,

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if

and only if when πi ∝ |yi − pi(β̂MLE)|‖M−1
X xi‖.

The proof of Theorem 4 is similar to the proof of Theorem 3 and thus is omit it to save

space.

S.1.4 Proof of Theorems 5

Since r0r
−1/2 → 0, the contribution of the first step subsample to the likelihood function

is a small term with an order oP |Fn(r−1/2) relative the likelihood function. Thus, we can

focus on the second step subsample only. Denote

`∗
β̃0

(β) =
1

r

r∑
i=1

t∗i (β)

π∗i (β̃0)
,
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where π∗i (β̃0) has the same expression as πmVc
i except that β̂MLE is replaced by β̃0. We first

establish two lemmas that will be used in the proof of Theorems 5 and 6.

Lemma 2. Let the compact parameter space be Θ and λ = supβ∈Θ ‖β‖. Under Assump-

tion 4, for k1 ≥ k2 ≥ 0,

1

n2

n∑
i=1

‖xi‖k1

πk2i (β̃0)
≤3k2

n

n∑
i=1

‖xi‖k1−k2eλk2‖xi‖ 1

n

n∑
i=1

‖xi‖k2 = OP (1). (S.19)

Proof. From the expression of πi(β̃0),

1

n2

n∑
i=1

‖xi‖k1

πk2i (β̃0)
=

1

n

n∑
i=1

‖xi‖k1−k2

|yi − pi(β̃0)|k2
1

n

n∑
j=1

|yj − pj(β̃0)|k2‖xj‖k2 . (S.20)

For the first term on the right hand side of (S.20),

1

n

n∑
i=1

‖xi‖k1−k2

|yi − pi(β̃0)|k2
≤ 1

n

n∑
i=1

‖xi‖k1−k2(1 + ex
T
i β̃0 + e−x

T
i β̃0)k2

≤ 1

n

n∑
i=1

‖xi‖k1−k2(1 + 2e‖xi‖‖β̃0‖)k2

≤ 3k2

n

n∑
i=1

‖xi‖k1−k2eλk2‖xi‖. (S.21)

Note that

E{‖xi‖k1−k2eλk2‖xi‖} ≤ {E(‖xi‖2(k1−k2))E(e2λk2‖xi‖)}1/2 ≤ ∞. (S.22)

Combining (S.20), (S.21) and (S.22), and using the Law of Large Numbers, (S.19) follows.

The following lemma is similar to Lemma 1.

Lemma 3. If Assumption 4 holds, then conditionally on Fn in probability,

M̃
β̃0
X −MX = OP |Fn(r−1/2), (S.23)

1

n

∂`∗
β̃0

(β̂MLE)

∂β
= OP |Fn(r−1/2), (S.24)

where

M̃
β̃0
X =

1

n

∂2`∗
β̃0

(β̂MLE)

∂β∂βT
=

1

nr

r∑
i=1

w∗i (β̂MLE)x∗i (x
∗
i )
T

π∗i (β̃0)
.
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Proof. Direct calculation yields,

E(M̃X |Fn) = Eβ̃0
{E(M̃X |Fn, β̃0)} = Eβ̃0

(MX |Fn) = MX , (S.25)

where Eβ̃0
means the expectation is taken with respect to the distribution of β̃0 given Fn.

For any component M̃j1j2
X (β̃0) of M̃

β̃0
X where 1 ≤ j1, j2 ≤ d,

Var

(
1

n
M̃j1j2

X

∣∣∣Fn, β̃0

)
=

1

rn2

n∑
i=1

wi(β̂MLE)2(xij1x
T
ij2

)2

πi(β̃0)
− 1

r
(Mj1j2

X )2

≤ 1

16rn2

n∑
i=1

‖xi‖4

πi(β̃0)
− 1

r
(Mj1j2

X )2 (S.26)

From Lemma 2, and (S.26),

Var

(
1

n
M̃j1j2

X

∣∣∣Fn) = Eβ̃0

{
Var

(
1

n
M̃j1j2

X

∣∣∣Fn, β̃0

)}
≤ 3

16r

1

n

n∑
j=1

‖xj‖
1

n

n∑
i=1

‖xi‖3eλ‖xi‖ = OP (r−1), (S.27)

Using Markov’s inequality, (S.23) follows from (S.25) and (S.27).

Analogously, we obtain that

E

 1

n

∂`∗
β̃0

(β̂MLE)

∂β

∣∣∣∣Fn
 = 0, (S.28)

and

Var

{
1

n

∂`∗(β̂MLE)

∂β

∣∣∣∣Fn
}

= OP (r−1). (S.29)

From (S.28), (S.29) and Markov’s inequality, (S.24) follows.

Now we prove Theorem 5. By direct calculation,

E

{
`∗
β̃0

(β)

n
− `(β)

n

∣∣∣∣Fn, β̃0

}2

=
1

r

 1

n2

n∑
i=1

t2i (β)

πi(β̃0)
−

(
1

n

n∑
i=1

ti(β)

)2
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≤ 1

r

 1

n2

n∑
i=1

(log 4 + 2‖xi‖‖β‖)2

πi(β̃0)
−

(
1

n

n∑
i=1

ti(β)

)2
 . (S.30)

Therefore, from Lemma 2 and (S.30),

E

{
`∗
β̃0

(β)

n
− `(β)

n

∣∣∣∣Fn
}2

= OP (r−1). (S.31)

Therefore combing (S.31) and the fact that E{`∗
β̃0

(β)|Fn} = `(β), we have n−1`∗
β̃0

(β) −

n−1`(β)→ 0 in conditional probability given Fn. Thus, conditionally on Fn,

‖β̆ − β̂MLE‖ = oP |Fn(1) (S.32)

The consistency proved above ensures that β̆ is close to β̂MLE as long as r is large enough.

Using Taylor’s theorem (c.f. Chapter 4 of Ferguson 1996),

0 =
˙̀∗
β̃0,j

(β̆)

n
=

˙̀∗
β̃0,j

(β̂MLE)

n
+

1

n

∂ ˙̀∗
β̃0,j

(β̂MLE)

∂βT
(β̆ − β̂MLE) +

1

n
Rβ̃0,j

(S.33)

where

Rβ̃0,j
= (β̆ − β̂MLE)T

∫ 1

0

∫ 1

0

∂2 ˙̀∗
β̃0,j
{β̂MLE + uv(β̆ − β̂MLE)}

∂β∂βT
vdudv (β̆ − β̂MLE).

Note that ∥∥∥∥∥∂
2 ˙̀∗

β̃0,j
(β)

∂β∂βT

∥∥∥∥∥ ≤ 1

r

r∑
i=1

‖x∗i ‖3

π∗i (β̃0)

for all β. Thus∥∥∥∥∥∥
∫ 1

0

∫ 1

0

∂2 ˙̀∗
β̃0,j
{β̂MLE + uv(β̆ − β̂MLE)}

∂β∂βT
vdudv

∥∥∥∥∥∥ ≤ 1

2r

r∑
i=1

‖x∗i ‖3

π∗i (β̃0)
= OP |Fn(n), (S.34)

where the last equality is from the fact that

P

(
1

nr

r∑
i=1

‖x∗i ‖3

π∗i (β̃0)
≥ τ

∣∣∣∣∣Fn
)
≤ 1

nrτ

r∑
i=1

E

(
‖x∗i ‖3

π∗i (β̃0)

∣∣∣∣∣Fn
)

=
1

nτ

n∑
i=1

‖xi‖3 → 0, (S.35)

in probability as τ →∞. From (S.33) and (S.34),

β̆ − β̂MLE = −
(
M̃

β̃0
X )−1

)
˙̀∗
β̃0

(β̂MLE)

n
+OP |Fn(‖β̆ − β̂MLE‖2)

 . (S.36)
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From (S.23) of Lemma 2, (M̃
β̃0
X )−1 = OP |Fn(1). Combining this with (S.25), (S.32) and

(S.36)

β̆ − β̂MLE = OP |Fn(r−1/2) + oP |Fn(‖β̆ − β̂MLE‖),

which implies that

β̆ − β̂MLE = OP |Fn(r−1/2). (S.37)

S.1.5 Proof of Theorem 6

Denote
˙̀∗
β̃0

(β̂MLE)

n
=

1

r

r∑
i=1

{y∗i − p∗i (β̂MLE)}x∗i
nπ∗i (β̃0)

≡ 1

r

r∑
i=1

η
β̃0
i (S.38)

Given Fn and β̃0, η
β̃0
1 , ...,η

β̃0
r are i.i.d, with mean 0 and variance

Var(ηi|Fn, β̃0) = rVβ̃0
c =

1

n2

n∑
i=1

{yi − pi(β̂MLE)}2xix
T
i

πi(β̃0)
. (S.39)

Meanwhile, for every ε > 0,

r∑
i=1

E{‖r−1/2η
β̃0
i ‖2I(‖ηβ̃0

i ‖ > r1/2ε)|Fn, β̃0}

≤ 1

r3/2ε

r∑
i=1

E{‖ηβ̃0
i ‖3I(‖ηβ̃0

i ‖ > r1/2ε)|Fn, β̃0} ≤
1

r3/2ε

r∑
i=1

E(‖ηβ̃0
i ‖3|Fn, β̃0)

=
1

r1/2

1

n3

n∑
i=1

{yi − pi(β̂MLE)}3‖xi‖3

π2
i (β̃0)

≤ 1

r1/2

1

n3

n∑
i=1

‖xi‖3

π2
i (β̃0)

= oP (1)

where the last equality is from Lemma 2. This and (S.39) show that the Lindeberg-Feller

conditions are satisfied in probability. From (S.38) and (S.39), by the Lindeberg-Feller

central limit theorem (Proposition 2.27 of van der Vaart 1998), conditionally on Fn and

β̃0,

1

n
(Vβ̃0

c )−1/2 ˙̀∗(β̂MLE) =
1

r1/2
{Var(ηi|Fn)}−1/2

r∑
i=1

ηi → N(0, I),

in distribution.

Now we exam the distance between V
β̃0
c and Vc. First,

‖Vc −Vβ̃0
c ‖ ≤

1

rn2

n∑
i=1

‖xi‖2

∣∣∣∣ 1

πi
− 1

πi(β̃0)

∣∣∣∣ (S.40)
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For the last term in the above equation,∣∣∣∣ 1

πi
− 1

πi(β̃0)

∣∣∣∣
≤

∣∣∣∣∣
∑n

j=1 |yj − pj(β̂MLE)|‖xj‖
|yi − pi(β̂MLE)|‖xi‖

−
∑n

j=1 |yj − pj(β̃0)|‖xj‖
|yi − pi(β̂MLE)|‖xi‖

∣∣∣∣∣
+

∣∣∣∣∣
∑n

j=1 |yj − pj(β̃0)|‖xj‖
|yi − pi(β̂MLE)|‖xi‖

−
∑n

j=1 |yj − pj(β̃0)|‖xj‖
|yi − pi(β̃0)|‖xi‖

∣∣∣∣∣
≤
∑n

j=1 |pj(β̃0)− pj(β̂MLE)|‖xj‖
|yi − pi(β̂MLE)|‖xi‖

+

∣∣∣∣∣ 1

|yi − pi(β̂MLE)|
− 1

|yi − pi(β̃0)|

∣∣∣∣∣
∑n

j=1 ‖xj‖
‖xi‖

(S.41)

Note that

|pj(β̃0)− pi(β̂MLE)| ≤ ‖xi‖‖β̃0 − β̂MLE‖, (S.42)

and ∣∣∣∣∣ 1

|yi − pi(β̂MLE)|
− 1

|yi − pi(β̃0)|

∣∣∣∣∣ =
∣∣∣e(2yi−1)xT

i β̂MLE − e(2yi−1)xT
i β̃0

∣∣∣
≤ eλ‖xi‖‖xi‖‖β̃0 − β̂MLE‖. (S.43)

From (S.40), (S.41), (S.42) and (S.43),

‖Vc −Vβ̃0
c ‖ ≤

‖β̃0 − β̂MLE‖
r

C1 = OP |Fn(r−1r
−1/2
0 ), (S.44)

where

C1 =
1

n

n∑
i=1

‖xi‖
|yi − pi(β̂MLE)|

1

n

n∑
i=1

‖xi‖2 +
1

n

n∑
i=1

‖xi‖eλ‖xi‖ 1

n

n∑
i=1

‖xi‖ = OP (1).

From Lemma 3, (S.36) and (S.37),

β̆ − β̂MLE = − 1

n
(M̃

β̃0
X )−1 ˙̀∗

β̃0
(β̂MLE) +OP |Fn(r−1) (S.45)

From (S.23) of Lemma 3,

(M̃
β̃0
X )−1 −M−1

X = −M−1
X (M̃

β̃0
X −MX)(M̃

β̃0
X )−1 = OP |Fn(r−1/2). (S.46)

From (S.18), (S.45), (S.44) and (S.46),

V−1/2(β̆ − β̂MLE)
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= −V−1/2n−1(M̃
β̃0
X )−1 ˙̀∗(β̂MLE) +OP |Fn(r−1/2)

= −V−1/2M−1
X n−1 ˙̀∗(β̂MLE)−V−1/2{(M̃β̃0

X )−1 −M−1
X }n

−1 ˙̀∗(β̂MLE) +OP |Fn(r−1/2)

= −V−1/2M−1
X (Vβ̃0

c )1/2(Vβ̃0
c )−1/2n−1 ˙̀∗(β̂MLE) +OP |Fn(r−1/2).

The result in Theorem 1 follows from Slutsky’s Theorem(Theorem 6 of Ferguson 1996) and

the fact that

V−1/2M−1
X (Vβ̃0

c )1/2(V−1/2M−1
X (Vβ̃0

c )1/2)T =V−1/2M−1
X Vβ̃0

c M−1
X V−1/2

=V−1/2M−1
X VcM

−1
X V−1/2 +OP |Fn(r

−1/2
0 r−1/2)

=I +OP |Fn(r
−1/2
0 r−1/2),

which is obtained using (S.44).

S.1.6 Proofs for nonrandom covariates

To prove the theorems for the case of nonrandom covariates, we need to use the following

two assumptions to replace Assumptions 1 and 4, respectively.

Assumption S.1. As n → ∞, MX = n−1
∑n

i=1 wi(β̂MLE)xix
T
i goes to a positive-definite

matrix in probability and lim supn n
−1
∑n

i=1 ‖xi‖3 <∞.

Assumption S.2. The covariate distribution satisfies that n−1
∑n

i=1 xix
T
i converges to a

positive definite matrix, and lim supn n
−1
∑n

i=1 e
a‖xi‖ <∞ for any a ∈ R.

Note that β̂MLE is random, so the condition on MX holds in probability in Assump-

tion S.1. πi’s could be functions of the responses, and the optimal πi’s are indeed functions

of the responses. Thus Assumptions 2 and 3 involve random terms and remain unchanged.

The proof of Lemma 1 does not require the condition that n−1
∑n

i=1 ‖xi‖3 = OP (1),

so it is automatically valid for nonrandom covariates. The proof of Theorem 1 requires

n−1
∑n

i=1 ‖xi‖3 = OP (1) in (S.11). If it is replaced with lim supn n
−1
∑n

i=1 ‖xi‖3 < ∞,

(S.11) still holds. Thus Theorem 1 is valid if Assumptions 2 and S.1 are true.

Theorem 2 is built upon Theorem 1 and does not require additional conditions besides

Assumption 3. Thus it is valid under Assumptions 2, 3 and S.1.
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Theorems 3 and 4 are proved by the application of Cauchy-Schwarz inequality, and they

are valid regardless whether the covariates are random or nonrandom.

To prove Theorems 5 and 6 for nonrandom covariates, we first prove Lemma 2. From

Cauchy-Schwarz inequality,

1

n

n∑
i=1

‖xi‖k1−k2eλk2‖xi‖ ≤
{(

1

n

n∑
i=1

‖xi‖2(k1−k2)

)(
1

n

n∑
i=1

e2λk2‖xi‖
)}1/2

≤
{
{2(k1 − k2)}!

n

n∑
i=1

e‖xi‖
}1/2{

1

n

n∑
i=1

e2λk2‖xi‖
}1/2

Thus, under Assumption S.2,

lim sup
n

1

n

n∑
i=1

‖xi‖k1−k2eλk2‖xi‖ ≤ ∞. (S.47)

Combining (S.20), (S.21) and (S.47), Lemma 2 follows. With the results in Lemma 2, the

proofs of Lemma 3 and Theorem 5, and Theorem 6 are the same as those in Section S.1.4,

and Section S.1.5, respectively, except that (nτ)−1
∑n

i=1 ‖xi‖3 → 0 deterministically instead

of in probability in (S.35).

S.2 Additional numerical results

In this section, we provide additional numerical results for rare events data and uncondi-

tional MSEs.

S.2.1 Further numerical evaluations for rare events data

To further investigate the performance of the proposed method for more extreme rare events

data, we adopt the model setup with a univariate covariate in King & Zeng (2001), namely,

P (y = 1|x) =
1

1 + exp(−β0 − β1x)
.

Following King & Zeng (2001), we assume that the covariate x follows a standard normal

distribution and consider different values of β0 and a fixed value of β1 = 1. The full data

sample size is set to n = 106 and β0 is set to −7,−9.5,−12.5, and −13.5, generating

responses with the percentages of 1’s equaling 0.1493%, 0.0111%, 0.0008%, and 0.0002%
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respectively. For the last case there are only two 1’s (0.0002%) in the full data of n = 106,

and this is a very extreme case of rare events data. For comparison, we also calculate

the MSE of the full data approach using 1000 Bootstrap sample (the gray dashed line).

Results are reported in Figure S.1. It is seen that as the rare event rate gets closer to 0,

the performance of the OSMAC methods relative to the full data Bootstrap gets better.

When the rare event rate is 0.0002%, for the full data Bootstrap approach, there are 110

cases out of 1000 Bootstrap samples that the MLE are not found, while this occurs for 18,

2, 4, and 1 cases when r0 = 200, and r = 200, 500, 700, and 1000, respectively.
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(b) 0.0111% of yi’s are 1
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(c) 0.0008% of yi’s are 1
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(d) 0.00002% of yi’s are 1

Figure S.1: MSEs for rare event data with different second step subsample size r and a

fixed first step subsample size r0 = 200, where the covariate follows the standard normal

distribution.
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S.2.2 Numerical results on unconditional MSEs

To calculate unconditional MSEs, we generate the full data in each repetition and then

apply the subsampling methods. This way, the resultant MSEs are the unconditional

MSEs. The exactly same configurations in Section 5 are used. Results are presented in

Figure S.2. It is seen that the unconditional results are very similar to the conditional

results, even for the imbalanced case of nzNormal data sets. For extreme imbalanced data

or rare events data, the conditional MSE and the unconditional MSE can be different, as

seen in the results in Section S.2.1.
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(c) ueNormal
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(d) mixNormal
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(e) T3
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Figure S.2: Unconditional MSEs for different second step subsample size r with the first

step subsample size being fixed at r0 = 200.
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