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A Proofs

Proof of Lemmal |l

Proof. The y;;-score of objective
20w f)+ e = Full + MTAS + 7yl M
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syy — fuo+yyy = 0 and verifies yy = (1 —p,) fy as optimal. Vector y;; can then be profiled
out of (1]) because
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The f;-score is thus \Ayr f; + Ayofy +pfu = 0 and profiling out fu gives
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= MTAf+p.fLfu. 3)

Proof of Proposition [I

Proof. This proof is based on the observation that the sum of the 4 penalty terms
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is a quadratic form with the vector of n — m + p + nq unknown variables and a known, symmetric,
positive semi-definite matrix. When this observation is combined with the use of labeled loss,
optimal y;; and the f 5? must be linear in 3, and the f (LE), so the existence of matrix P follows.

To see this, proceed as in the proof of Lemma|l|t0 get y; = (1 — p,) my analogous to (]2[) and
profile out y,;;. The score for any fg) reduces to AeA& fg) + AZA% f §f> + oy = 0, verifies
(diag (nall) +pd e I) vee (F) = —vee (\Al) 7 + X08).
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and shows that each f(UZ) is linear in 3 and {f(LZ)} . Forany /e {1,---,q},
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with fg)) = X 3. From this, reduction H generalizes to
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which equals the penalty due to the lower-right ¢gm x gm block of P. The lower-left gm x p block
of P is p, X stacked ¢ times, while the upper-right p x gm block is its transpose. The upper-left
p x p block of P will be p, X, Xy + Aol O

Proof of Proposition 2

Proof. The y;; terms in objective
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have score y; — Ty + Yy, = 0 which verifies yy = (1 — p,) Typ. Vector yy; is then profiled

out through the identity v ||y [|5 + | Tv — yu |5 = py | Tued 5. O
Proof of Theorem [1
Proof. Let }U = — (AUU + 28I )71 AUL;‘OL - %. Consider error simplification
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From Assumption 2 of the main paper, let r; = ol 3oy, so
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The derivative of (4) with respect to p., evaluated at p, = 0 is
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and is negative if

Proof of Theorem [2

Proof. If w; = R"*w;, then {7;,w;} is an eigen-decomposition of R’l/QTTgTUR’l/2 =0

such that
wagTij TR_l/2 TITy RV w w; = TJwT,wj TiLijr—j1-
Let ¢ = RY?¢. Project ¢ = Z?Zlajﬂ)j, SO0 € = Zf LG;w; and ¢ = ZJ L 1+p —w;. Let
r; = w?iwj. Thus,
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where h; (py) = (1; — ¢;(1 + p,7;))°. The derivative of (5) with respect to p, is
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whenever o satisfies the given bound. O
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