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A Proofs
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Proof of Proposition 1

Proof. This proof is based on the observation that the sum of the 4 penalty terms

kyU � ⌘⇤
Uk

2
2 + �0 k�k

2
2 +

qX

`=1

�`f
(`)T�(`)f (`) + � kyUk

2
2

is a quadratic form with the vector of n�m+ p+nq unknown variables and a known, symmetric,

positive semi-definite matrix. When this observation is combined with the use of labeled loss,

optimal yU and the f (`)
U must be linear in �, and the f (`)

L , so the existence of matrix P follows.

To see this, proceed as in the proof of Lemma 1 to get yU = (1� p�)⌘U analogous to (2) and

profile out yU . The score for any f (`)
U reduces to �`�

(`)
ULf

(`)
L + �`�

(`)
UUf

(`)
U + p�⌘⇤

U = ~0, verifies
✓

diag
`q

⇣
�`�

(`)
UU

⌘
+ p�J ⌦ I

◆
vec
`q

⇣
bf
(`)

U

⌘
= �vec

`q

⇣
�`�

(`)
UL
bf
(`)

L +XU�
⌘
,

1



and shows that each f (`)
U is linear in � and

n
f (`)

L

oq

`=1
. For any ` 2 {1, · · · , q},

�`f
(`)�(`)f (`) + p�⌘

⇤
U
T⌘⇤

U = �`f
(`)
L

T
�(`)

LLf
(`)
L � 2�`f

(`)
U

T
�(`)

ULf
(`)
L

+�`f
(`)
U

T
�(`)

UUf
(`)
U + p�

qX

r=0

f (r)T

U f (`)
U

with f (0)
U = XU�. From this, reduction (3) generalizes to

������

✓
diag
`q

⇣
�`�

(`)
LL

⌘◆1
2

vec
`q

⇣
f (`)

L

⌘
������

2

2

�

������

✓
diag
`q

⇣
�`�

(`)
UU

⌘
+ p�J ⌦ I

◆�1
2
vec
`q

⇣
�`�

(`)
ULf

(`)
L

⌘
������

2

2

,

which equals the penalty due to the lower-right qm⇥ qm block of P . The lower-left qm⇥ p block

of P is p�XU stacked q times, while the upper-right p⇥ qm block is its transpose. The upper-left

p⇥ p block of P will be p�X
T
UXU + �0I .

Proof of Proposition 2
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Proof of Theorem 1
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From Assumption 2 of the main paper, let ri = oT
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Proof of Theorem 2
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