
Continuous metabolic energy model 
The model by Umberger et al. [1,2] calculates the energy as a function of the heat rate from the 

activation of muscles and its maintenance, ℎ̇𝐴𝑀, the heat rate due to shortening and lengthing of 

muscles, ℎ̇𝑆𝐿, and the mechanical work rate, 𝑤𝐶𝐸: 

 �̇�(𝑡) = ℎ̇𝐴𝑀 + ℎ̇𝑆𝐿 + 𝑤𝐶𝐸 1 

The following equation is used to find the activation/maintenance heat rate ℎ̇𝐴𝑀: 
 ℎ̇𝐴𝑀 = (0.4 + 0.6𝑓𝑙𝐶𝐸)ℎ̇̅𝐴𝑀𝐴𝐴𝑀𝑆 
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Where 𝑆 is a factor equal to 1.5 for aerobic conditions [3], 𝐴𝐴𝑀 = 𝐴0.6 is related to the activation and 

stimulation as described in equation 6 of the paper (see below), and 𝑓𝑙𝐶𝐸 and ℎ̇̅𝐴𝑀 are determined as 

follows: 

 
𝑓𝑙𝐶𝐸 = {

1 𝑙𝐶𝐸 ≤ 𝑙𝐶𝐸(𝑂𝑃𝑇)

𝑓(𝑙𝐶𝐸) 𝑙𝐶𝐸 > 𝑙𝐶𝐸(𝑂𝑃𝑇)
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 ℎ̇̅𝐴𝑀 = {
25 𝑎 ≤ 𝑆𝑇

128𝐹𝑇 + 25 𝑎 > 𝑆𝑇
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Equation 6 in the paper: 
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where 128 W/kg and 25 W/kg are constants found using regression, 𝑓(𝑙𝐶𝐸) is the location on the force-

length relationship of the muscle, and 𝐹𝑇 and 𝑆𝑇 are the ratios of fast-twitch and slow-twitch fibers in 

the muscle, respectively, 𝑙𝐶𝐸(𝑂𝑃𝑇) is the optimal fiber length, and 𝑙𝐶𝐸 is the current fiber length.  

When the fiber length is longer than optimal, ℎ̇𝐴𝑀 is split up into two parts, where 40% represents the 

activation heat rate and 60% the activation heat rate, which is dependent on the location on the force-

length relationship [4]. This does not create a discontinuity in the equation, since the derivative of 

𝑓(𝑙𝐶𝐸) is zero when the fiber length is optimal. Also, equation 4 is continuous since ℎ̇̅𝐴𝑀 is a constant. 

The shortening-lengthening heat rate is calculated as follows: 

 ℎ̇𝑆𝐿 = 𝐴𝑆𝐿 ℎ̇̅𝑆𝐿𝑓𝑙𝐶𝐸𝑆 5 

 

Where 𝐴𝑆𝐿 is equal to 𝐴2, and ℎ̇̅𝑆𝐿 is determined as follows: 

 
ℎ̇̅𝑆𝐿 = 𝛼𝐿�̅�𝐶𝐸(𝑙) − 𝛼𝐹𝑇�̅�𝐶𝐸(𝑆)𝐹𝑇 + {

100 𝛼𝑆𝑇�̅�𝐶𝐸(𝑚𝑎𝑥)𝑆𝑇
< −𝛼𝑆𝑇�̅�𝐶𝐸(𝑆)𝑆𝑇

−𝛼𝑆𝑇�̅�𝐶𝐸(𝑆)𝑆𝑇 𝛼𝑆𝑇�̅�𝐶𝐸(𝑚𝑎𝑥)𝑆𝑇
> −𝛼𝑆𝑇�̅�𝐶𝐸(𝑆)𝑆𝑇
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Where �̅�𝐶𝐸(𝑙) and �̅�𝐶𝐸(𝑠) are the shortening and lengthening velocities normalized to optimal fiber 

length, respectively. �̅�𝐶𝐸(𝑚𝑎𝑥)𝑆𝑇
 is the normalized maximum shortening velocity for slow-twitch fibers, 



4.8 fiber lengths per second. 𝛼𝑆𝑇, 𝛼𝐹𝑇 and 𝛼𝐿are the shortening heat coefficients for slow-twitch and 

fast-twitch fibers in J/kg, and the lengthening heat coefficient, respectively: 

𝛼𝑆𝑇 =
100

�̅�𝐶𝐸(𝑚𝑎𝑥)𝑆𝑇

,   𝛼𝐹𝑇 =
153

�̅�𝐶𝐸(𝑚𝑎𝑥)𝐹𝑇

,   𝛼𝐿 = 0.3𝛼𝑆𝑇 

Where �̅�𝐶𝐸(𝑚𝑎𝑥)𝐹𝑇
 is the maximum shortening velocity for fast-twitch fibers, assumed to be 12 fiber 

lengths per second.  

The shortening and lengthening velocities are determined as described in the paper: 
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�̅�𝐶𝐸(𝑠) =
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Note that the term 𝛼𝑆𝑇�̅�𝐶𝐸(𝑆)𝑆𝑇 for ℎ̇̅𝑆𝐿 cannot exceed 100 W/kg. However, this level is not reached 

during gait. 

The work rate is determined as follows to ensure that it is never negative: 
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where 
�̃�𝐶𝐸 = −

𝐹𝐶𝐸𝑣𝐶𝐸

𝑚𝑚𝑢𝑠
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Where 𝑚𝑚𝑢𝑠 is the muscle mass, 𝐹𝐶𝐸 is the force in the contractile element, and 𝑣𝐶𝐸 is the fiber 

velocity, negative when shortening. 𝜀 is a small number, used to decrease the nonlinearity of the 

problem. For simplicity, the same value for 𝜀 is used for the shortening/lengthening velocity and the 

work rate. 

The muscle mass is determined as follows: 

 
𝑚𝑚𝑢𝑠 =

𝐹𝑚𝑎𝑥𝜌

𝜎
𝑙𝐶𝐸(𝑂𝑃𝑇) 
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Where 𝐹𝑚𝑎𝑥 is the maximum isometric force, 𝜎 is the maximum muscle stress, 250 kPa, 𝜌 is the muscle 
density, 1059.7 kg/m3, and 𝑙𝐶𝐸(𝑂𝑃𝑇) is the optimal fiber length. 

Predictive gait simulation 
The following objective was used with direct collocation using 𝑁 collocation nodes: 
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Where 𝑊𝑅𝑒𝑔 is the weight of the regularization term, 𝑁𝑠𝑡  is the number of states, and 𝑁𝑐𝑜𝑛 is the 

number of controls. Note that an extra node (𝑁 + 1) was added for the periodicity constraint. 

Predictive Gait Simulations 
Figure 1 shows the five results with the highest objective that were found when minimizing metabolic 

rate. Figure 2 shows the five results with the highest objective that were found when minimizing effort. 



 

Figure 1 - Ground reaction force, joint angles, moments, and muscle forces of the five solutions with the lowest metabolic rate. 
The fill shows normal data from Winter [5] 

 



 

 

Figure 2 - Ground reaction force, joint angles, moments, and muscle forces of the five solutions with the lowest effort. The fill 
shows normal data from Winter [5] 
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