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S.1 Derivation of the GCV criterion in Algorithm 1

The Step 2(b) of Algorithm 1 is the key part of this algorithm, which imposes roughness

penalty on the left singular vector u, and uses the criterion (2.3) to select the smoothing

parameter. In this document, we show that (2.3) can be derived from leave-out-one-period

cross-validation.

We observe that, given v, the Step 2(b) in Algorithm 1 is equivalent to a ridge regression

û = arg min
u
‖y − Zu‖2 + αuᵀΩu (S.1)

with y ≡ Vec(Xᵀ) and Z ≡ In ⊗ v, and α is the smoothing parameter. Suppose the data

matrix X has n rows and m columns. If α is fixed, the û defined in (S.1) is

û = (ZᵀZ + Ωα)−1Zᵀy = M(α)Zᵀy,

and

ŷ = ZM(α)Zᵀy = Hy.

Consider the cross-validation that removes one row (one period) of X at a time. It

corresponds to remove a block of size m from y at a time. Note that y and H can be

partitioned into n blocks of equal size m × 1 and m ×m respectively. Let û(−i) minimize

(S.1) with the i-th block of y and the corresponding rows of Z are removed.

Let right singular vector v be fixed, and xi be the i-th column of matrix Xᵀ. Note that

û(−i) also solves the ridge regression when the i-th block of y is replaced by vû
(−i)
i . Therefore,
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we have

vû
(−i)
i =

∑
k 6=i

Hikxk + Hiivû
(−i)
i .

Subtracting xi· from both sides, we have,

ε̂
(−i)
i ≡ vû

(−i)
i − xi =

∑
k

Hikxk − xi + Hii(vû
(−i)
i − xi)

= vûi − xi + Hii(vû
(−i)
i − xi)

≡ ε̂i + Hiiε̂
(−i)
i .

Therefore, we have

ε̂
(−i)
i = (Im −Hii)

−1ε̂i = (Im − γivvᵀ)−1ε̂i =

(
Im +

γi
1− γi

vvᵀ

)
ε̂i

= ε̂i +
γi

1− γi
(vᵀε̂i)v

where γi is the i-th diagonal element of matrix M(α). Note that ε̂i ≡ vûi − xi and

‖ε̂i‖2 = (vûi − xi)
ᵀ(vûi − xi) = xᵀ

ixi − 2xᵀ
ivûi + ‖v‖2û2i

= xᵀ
ixi − (xᵀ

iv)2 + (ûi − xᵀ
iv)2.

Therefore, we have that

‖ε̂(−i)i ‖2 = ‖ε̂i‖2 +
2γi

1− γi
(vᵀε̂i)

2 +

(
γi

1− γi

)2

(vᵀε̂i)
2

= ‖ε̂i‖2 + (vᵀε̂i)
2

[
1

(1− γi)2
− 1

]
= xᵀ

ixi − (xᵀ
iv)2 + (ûi − xᵀ

iv)2 + (ûi − vᵀxi)
2

[
1

(1− γi)2
− 1

]
= xᵀ

ixi − (xᵀ
iv)2 +

(ûi − xᵀ
iv)2

(1− γi)2
.

When v is fixed, the first two terms in the above equation are irrelevant when we obtain

optimal smoothing parameter α by minimizing the cross-validation criteria. Averaging the

last term in the above equation over i, we have cross validation function,

CV(α) =
1

n

n∑
i=1

(ûi − xᵀ
iv)2

(1− γi)2
=

1

n

n∑
i=1

({M(α)Xv}i − {Xv}i)2

(1− {M(α)}ii)2
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=
1

n

n∑
i=1

[{[In −M(α)]Xv}i]2

(1− {M(α)}ii)2
. (S.2)

If the term {M(α)}ii in the cross-validation criterion (S.2) is replaced by the average value

(1/n) tr{M(α)}, we obtain the generalized cross-validation criterion,

GCV(α) =
1

n

‖[In −M(α)]Xv‖2

(1− (1/n) tr{M(α)})2
,

which is the objective function in (2.3).

S.2 Simulation with artificial seasonality without abrupt

breaks

We consider a deterministic monthly seasonal component sot ≡ soi,j = biaj where i = 1, . . . , n

and j = 1, . . . , 12 indicate year and month respectively, and the elements in vector b =

(b1, . . . , bn)> and a ≡ (a1, . . . , a12)
> take following values,

b = (1 + 1/10, · · · , 1 + i/10, · · · , 1 + n/10)>,

a = (−1.25,−2.25,−1.25, 0.75,−1.25,−0.25, 2.75,−0.25, 0.75,−0.25, 0.75, 1.75)>.

The vector a represents the reoccurring variation within each seasonal period. The

magnitude of the seasonal component, captured by the multipliers in b, increases slowly

every year in linear fashion. The seasonality can be also expressed in matrix form as follows,

So = ba> ≡ in · f> + uv> (S.3)

where v = a, f = b · a>, u = b− b, with b = n−1
∑n

i=1 bi. In Figure S1, we plot fixed/time-

varying seasonal patterns f and v in upper-left panel, fixed/time-varying pattern coefficients

in and u in upper-right panel, fixed/time-varying seasonality inf
> and uv> in lower-left panel,

and total seasonality So in lower-right panel.

For non-seasonal component, we consider three different data generating processes for

stochastic non-seasonal component et:
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• DGP1: et ∼ i.i.d.N(0, 1), for all t,

• DGP2: et ∼ ARMA(1, 1), with φ = 0.8 and ψ = 0.1 with N(0, 1) innovations.

• DGP3: et ∼ ARIMA(1, 1, 1), with φ = 0.8 and ψ = 0.1 with N(0, σ2) innovations and

σ2 = 0.04.

In DGP1 and DGP2, the non-seasonal component is stationary with standard normally

distributed innovations. In DGP2, there exists ARMA(1,1) linear time dependence in et,

while there is no time dependence in DGP1. Given the nonstationarity of DGP3, we set the

variance of innovation in DGP3 to be small so that the sample unconditional variance of

simulated series et is not too large (practically infinite) in finite sample.

After the original seasonal component sot and non-seasonal component et are generated, we

scale the original seasonal component sot by w, to obtain the working seasonal component st,

st = wsot ≡ κ
SD(et)

SD(sot )
sot ,

where SD(·) is the unconditional standard deviation function, so as to control the sample

Unconditional Standard Deviation Ratio (USDR), defined by SD(st)/SD(et), of simulated

time series data xt = st + et to be exactly κ in each replication of DGPs. For the three DGPs,

we choose κ = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2 in our simulation setups. For each

combination of DGPs and κ values, we simulate monthly time series data with sample size

T = 600 (i.e., n = 50 and p = 12). We repeat the simulation B = 500 times for each setup.

We use two evaluation criteria to compare our proposed seasonal adjustment methods

with the X-12-ARIMA and SEATS methods on the accuracy of estimation of the seasonal

component. They are the mean square errors (MSE) and mean percentage errors (MPE):

MSE = E[(ŝt − st)2], MPE = E

∣∣∣∣ ŝt − stst

∣∣∣∣× 100%,

where ŝt is the estimated seasonal component, and they capture absolute and relative losses

respectively. From the simulation, the average values of these two criteria are calculated by

AMSE =
1

B

B∑
b=1

(
1

T

T∑
t=1

(ŝ
(b)
t − st)2

)
, AMPE =

1

B

B∑
b=1

(
1

T

T∑
t=1

∣∣∣∣∣ ŝ(b)t − stst

∣∣∣∣∣
)
× 100%,
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where b is the b-th replication and B is the total number of replications.

[Table S1]

Table S1 reports the comparison results among X-12-ARIMA, SEATS and our RSVD

methods. Several findings are in order. First, for all three DGPs, the absolute loss (AMSE)

of the X-12-ARIMA and SEATS methods keep increasing as the ratio κ increases, while that

of our RSVD method keeps decreases to a stable value. Second, for all three DGPs, the

relative loss (AMPE) of all three methods keeps decreasing as κ increases, and AMPE of our

RSVD method decreases faster. Third, for stationary DGP1 and DGP2 cases the SEATS

method has smallest losses of AMSE and AMPE. However, as κ increases, our RSVD method

outperforms SEATS in both AMSE and AMPE criteria; for nonstationary DGP3 cases, our

RSVD method uniformly dominates the X-12-ARIMA and SEATS methods by delivering

smaller losses of AMSE and AMPE regardless of κ values. Moreover, the average selected

number of seasonal patterns r is generally the same and is close to one across different values

of κ capturing the strength of seasonal variation. It signifies that the selected number of

seasonal patterns based on BIC is robust to the irregular component. In general, no additional

numbers of seasonal patterns are added due to the irregular variation.

S.3 Simulation with seasonality from real economic time

series

In addition to the artificial seasonalities used in Section 6.1 and 6.2 of the main paper, we

also use three real seasonal components that prevail in three seasonal economic time series.

They are Industrial Production Index, Total Non-Farm Payrolls, and the Inflation Rate

calculated from Consumer Price Index for All Urban Consumers, which are abbreviated as

IPI, NFP, and INFL respectively and available from Federal Reserve Economic Data (FRED)

website. All of the three monthly series are not seasonally adjusted, and the sample period

is from January 1967 to December 2016, covering last five decades with 600 observations.

In this section, we exclude the RSVDB method from the simulation exercises due to the
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intensive computational burdens involved in the exhaustive search for abrupt seasonality

breaks. However, RSVDB encompasses RSVD as a special case, and hence the RSVDB

method performs at least as good as the RSVD method does.

S.3.1 Data generating processes

We adopt two different schemes of simulation with real seasonal economic time series. In the

first simulation scheme, we first apply one of the TRAMO-SEATS, X-12-ARIMA, and RSVD

seasonal adjustment methods to each of the three seasonal economic time series (IPI, NFP,

and INFL) alternately, obtaining the real seasonal component smethod
t and seasonally adjusted

series emethod
t . These two series exclude the calendar effects and outliers in the original series,

so that only the seasonal decomposition is evaluated in the simulation. Then, we obtain the

simulated seasonal time series xsim,method
t by

xsim,method
t = a · smethod

t + emethod
t + σusimt

where method = {SEATS, X-12-ARIMA, RSVD}, a = {1, 2, 4, 8, 16, 32} is the relative

amplitude of seasonality, usimt is the i.i.d. normally distributed perturbation with var(usimt ) =

var(smethod
t ), and σ = {0.05, 0.10} captures the magnitude of the perturbation. After that,

we apply the three seasonal adjustment methods to the simulated series {xsim,method
t } For

each of the three series, a and σ values, we simulate monthly time series data with sample

size T = 600 (i.e., n = 50 and p = 12). We repeat the simulation B = 500 times for each

setup.

The second simulation scheme follows the suggestion of a reviewer: consider the SEATS-

type seasonality as the true underlying one, and evaluate X-12-ARIMA and RSVD methods

on their ability to recover the SEATS-type seasonality in the simulated series. In this spirit,

we apply the TRAMO-SEATS seasonal adjustment procedure to the seasonal economic time

series, and obtain the SEATS seasonal component {sseatst } and seasonally adjusted series

{eseatst }. These two series exclude the calendar effects and outliers in the original series, so

that only the seasonal decomposition is evaluated in the simulation. Second, we find the
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optimal ARIMA(p, d, q)opt model for the seasonally adjusted series {eseatst } suggested by the

TRAMO-SEATS. Table S5 reports the three selected ARIMA models. For the seasonally

adjusted NFP series, the ARIMA model suggested by TRAMO-SEATS is ARIMA(0, 3,

3), and we find that the associated simulated series simply explodes and has much larger

magnitude than the adjusted NFP series. Therefore, we only use IPI and INFL series for

these simulation exercises. Third, we generate the simulated non-seasonal component esimt

from ARIMA(p, d, q)opt, generate the simulated seasonal component ssimt by

ssimt = κ
SD(esimt )

SD(eseatst )
sseatst (S.4)

where SD(·) is the unconditional standard deviation function, and the scalar κ controls

the relative strength of seasonality such that, in each replication of DGPs, the simulated

sample Unconditional Standard Deviation Ratio (abbreviated to USDR), SD(ssimt )/SD(esimt ),

is exactly κ times the original sample USDR value, SD(sseatst )/SD(eseatst ). The smaller this

ratio is, the weaker the seasonality is relative to the nonseasonal dynamics. This ratio is 0.040

for IPI series, 0.035 for NFP series, and 0.43 INFL series, which implies that the seasonality

in all three series is quite weak, especially for IPI and NFP series. Hence, to examine the

capability of the seasonal decomposition in a wide range of magnitude in seasonality, we

set κ = {4, 8, 16, 32, 64, 128}. As the value κ increases, the seasonality becomes more

prominent, and has stronger variation. Finally, we obtain the simulated seasonal time series

xsimt by

xsimt = ssimt + esimt + σusimt

where usimt is the i.i.d. normally distributed perturbation with var(usimt ) = var(ssimt ) and

σ = {0.05, 0.10} captures the magnitude of the perturbation. After that, we only apply the

X-12-ARIMA and RSVD methods to the simulated series {xsimt }, since the generation of a

simulated seasonal component, generated from the TRAMO-SEATS procedure, is biased

towards the SEATS method. For each of the three series and κ values, we simulate monthly

time series data with sample size T = 600 (i.e., n = 50 and p = 12). We repeat the simulation

B = 500 times for each setup.

7



S.3.2 Simulation results

Through these simulation exercises, we find that the results from the first scheme convey

much richer information than that from the second one. In addition, because the seasonality

of the three series are relatively weak and their seasonally adjusted series are non-stationary,

simulated ARIMA series {esimt } usually overwhelm variations in the seasonal component,

which renders the seasonal behavior in the simulated series very weak. In contrast, the

simulated seasonal time series in the first scheme maintains the stochastic trend and dynamics

of the originally adjusted series and therefore is more relevant compared those in the second

scheme. We report the simulation results for the first scheme in Table S2 – S4 and those for

the second scheme in Table S6.

Several findings in these simulation results are in order.

1. Just as no exact definition of seasonality exists, three different seasonal adjustment

methods recognize seasonality differently in the data. If the simulated seasonality is extracted

from one seasonal adjustment method, then this same seasonal adjustment method tends to

outperform the other two methods in simulation. This is especially the case for the SEATS

and RSVD methods. However, X-12-ARIMA is an exception. When the simulated seasonality

is generated by X-12-ARIMA in the simulation, SEATS outperforms X-12-ARIMA when

the magnitude of seasonality a is large. Moreover, SEATS also outperforms RSVD for all

combinations of σ and a. This could be due to the fact that the filters employed by the

X-12-ARIMA method could be consistent with an airline model, which tends to be in favor

of the SEATS method.

These results imply that both SEATS and our RSVD methods are robust enough to their

own type of seasonality in large magnitude, while the X-12-ARIMA method is not. Moreover,

when the true seasonality in the data generating processes comes from the X-12-ARIMA or

SEATS, the RSVD method increases the number of patterns needed to capture the seasonal

component. The X-12-ARIMA or SEATS type seasonality does not exactly conform to

our RSVD seasonality defined in (4.3), and therefore some small seasonal variations are

ignored by our RSVD method because of the regularization. As the USDR or a increases,
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those ignored small seasonal variations become more salient and are recognized as additional

seasonal patterns by our RSVD method.

2. Among the three seasonal adjustment methods, the RSVD method is the most robust

to irregular variations. In Table S2 – S4, when the simulated seasonality srsvdt is extracted by

the RSVD method and the simulated series includes an irregular component with σ = 10%

standard deviation of srsvdt , i.e. SD(σusimt ) = 0.1SD(srsvdt ), the AMPE losses of the RSVD

method in simulation, decreasing as the magnitude of seasonality a increases, range from

32.96% to 2.13%, 22.17% to 4.55%, and 26.79% to 0.94% for the IPI, NFP, and INFL series

respectively. Moreover, the average selected number of seasonal patterns r is generally the

same when σ increases from 0.05 to 0.1, i.e. the irregular variations becomes stronger. This

signifies that the selected number of seasonal patterns based on BIC is robust to the irregular

component. In general, no additional numbers of seasonal patterns are added due to the

irregular variation.

In comparison, when the SEATS method is used to adjust the simulated series in which

the seasonality is also extracted by SEATS and additional irregular noises with σ = 10%

standard deviation of sseatst are added, the AMPE losses of SEATS also decrease as a increases,

and range from 42.54% to 8.94%, 21.80% to 1.97%, and 96% to 12.03% for the three series

respectively. In the same scenario for X-12-ARIMA, the AMPE losses range from 26.08% to

14.61%, 209.04% to 18.97%, and 95.83% to 45.93% for the three series.

3. In particular, if we consider the model-based SEATS type seasonality as the true one and

compare the performance of the two empirical-based adjustment methods, X-12-ARIMA and

RSVD, we find that RSVD outperforms X-12-ARIMA with smaller AMSE and AMPE losses

for all three series when the magnitude of seasonality a is large enough, while X-12-ARIMA

delivers smaller losses when a is small. In other words, RSVD is better at capturing strong

SEATS-type seasonality, and X-12-ARIMA is better at capturing a weak structure.

This conclusion also holds true under the second simulation scheme, in which SEATS-type

seasonality is also deemed as the true one. However, the difference is that SEATS seasonally

adjusted series are simulated directly by the optimal ARIMA process selected by AIC. Table

S5 shows the optimal ARIMA models for the three series. Table S6 reports the comparison
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results between X-12-ARIMA and RSVD. The last column shows the average value of selected

number of seasonal patterns r. For all three cases, when the simulated sample Unconditional

Standard Deviation Ratio (USDR) is relatively small, the performance of X-12-ARIMA is

marginally better than the RSVD method with slightly smaller AMSE and AMPE losses.

But when the simulated sample USDR keeps increasing, while the RSVD method gains in

superiority and has an overwhelming advantage against X-12-ARIMA with much smaller

AMSE and AMPE losses. In addition, as USDR increases, the seasonality becomes more

salient. As a result, the number of seasonal patterns r also increases on average accordingly.

These simulation results imply that the main advantage of RSVD begins to manifest itself

when the seasonality is strong. Moreover, the RSVD method is also robust to moderate

SEATS type seasonality with almost the same or better finite sample performance than

X-12-ARIMA.

S.3.3 Data revision

When new observations become available as time evolves, a seasonally adjusted series some-

times may need to be changed accordingly after incorporating the new information in the

updated time series. If a seasonal adjustment method requires practically no or only a little

revision, its estimated seasonal component should be quite robust to new observations.

To assess the degree of data revision for a seasonal adjustment method, we devise the

following evaluation criterion. We consider a monthly seasonal time series {xi,j}, where the

(i, j) pair denotes the j-th month in i-th year with i = 1, . . . , n and j = 1, . . . , 12. We first

set the initial subsample, which covers the first L years of observations. Then, we create a

sequence of subsamples from the original seasonal time series. The time span of the first

subsample starts from (1, 1) to (L+ 1, 12), the time span of the next subsample extends to

(L + 2, 12), and so on until the last subsample coincides with the whole sample. In total,

we create n− L subsamples from the original time series. After that, we apply a seasonal

adjustment method to the initial subsample and those n− L subsamples, and obtain their

seasonally adjusted series denoted by {einit } and {est}, where s = 1, 2, . . . , n − L indexes

subsamples. After that, we calculate the the sample standard deviation of the difference
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δst = est − einit across s = {1, 2, . . . , n − L} for each time t ≡ (i − 1) · 12 + j in the initial

subsample,

sdt =

(
1

n− L

n−L∑
s=1

(δst − δt)2
)1/2

(S.5)

where δt = 1
n−L

∑n−L
s=1 δ

s
t . We use the ratio of maxt{sdt/einit } for the initial subsample to

capture the relative size of data revision.

Using X-12-ARIMA, SEATS, and our RSVD methods, we calculate this ratio for the IPI

and NFP series. The INFL series is not evaluated because the adjusted series can be so close

to zero that the ratio explodes. For IPI, the ratios of all three seasonal adjustment methods

are smaller than 0.001. For NFP, the ratios of both X-12-ARIMA and SEATS are smaller

than 0.001, and the ratio of the RSVD method is about 0.002. Therefore, we believe that

our RSVD method is robust enough to new observations and the need for data revision is

comparable to X-12-ARIMA and SEATS methods even for the time series with relative weak

seasonality.

S.4 Further discussions

S.4.1 Some potential data problems

Regarding the issues of missing values, outliers, and calendar effects that emerge in seasonal

adjustment, there exist two popular and sophisticated pre-treatment procedures, TRAMO

and RegARIMA, which are specifically designed to deal with these data problems. One could

use one of these two pre-treatment steps before applying our RSVD method. Alternatively,

our RSVD method can also potentially deal with missing values, outliers, and calendar effects

after suitable modifications and extensions.

Missing values. Suppose the missing entry xij is on the i-th row and j-th column of data

matrix X. We propose two different remedies to overcome the missing value problem. The

first remedy is to impute the missing values based on some appropriate time series model.
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For example, we could fit an ARIMA model for the nonmissing entries in the same i-th row,

and replace the missing entry xij by the fitted value x̂ij. Then, the RSVD method can be

applied to the imputed data matrix X.

An alternative approach is to modify the RSVD algorithms slightly by removing the the

rows or columns of those matrices that contain the missing entries. For example, in Algorithm

1, we obtain the initial u−i from the standard SVD of the modified data matrix X−i, · with the

i-th row of X removed. Then, in Step 2(a), we update the seasonal pattern v with X−i, · and

u−i. Finally, in Step 2(b), we update the pattern coefficient u with the modified data matrix

X·, j and vector v−j which are obtained respectively by removing the j-th column from X and

the j-th entry from v. Similar modifications could also be made for other afore-mentioned

RSVD algorithms.

Outliers. The seasonal adjustment results of our current RSVD method could be sensitive

to outliers, since the quadratic loss function is used to measure the reconstruction errors of

low-rank matrix approximation in the regularized singular value decomposition. In order to

enhance the robustness of the RSVD method, we propose to replace the quadratic loss function

by some robust loss functions, such as the check function and Huber’s function. Zhang, Shen,

and Huang (2013) propose a robust version of RSVD using a typical Huber’s function and

develop an efficient Iterative Reweighted Least Squares (IRLS) algorithm correspondingly.

Calendar effects. Generally speaking, the calendar effect means any repeating market

anomaly or economic fluctuation that is attributable to the calendar features, such as trading

day effects, fixed and moving holiday effects, etc. The calendar effects can be accommodated

by our RSVD method by including regression effects in the RSVD seasonal adjustment

procedure. For example, in the Step 2 of the seasonal adjustment procedure in Section 4.2,

the constrained least squares problem (4.5) can be modified as follows,

(β̂, γ̂) = arg min
β, γ

(XT − Zβ −Cγ)>(XT − Zβ −Cγ) with Rβ = 0r+1,

where the np × L matrix C represents the L calendar regressors and the coefficients in

γ capture the calendar effects. Then, the fixed and time-varying seasonal patterns in

β ≡ (f>, v>1 , · · · , v>r )> and the pattern coefficients in U can be further estimated by
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applying the RSVD method to the matrix X−Cγ̂ after removing the calendar effects from

the original data matrix.

S.4.2 Bootstrapped confidence interval

The statistical inference theory for our RSVD seasonal adjustment method is not easy to

derive. Although we treat the regularized SVD problem in finite dimensions, it is connected

to a smoothing splines estimation whose inference is a long-standing issue in statistics, and

the construction of confidence intervals for smoothing splines estimation is difficult.

Instead, we propose a potentially valid bootstrap procedure. Formal investigation of its

statistical properties is left for future research. First, if the non-seasonal component et is

stationary, we can block bootstrap the estimated non-seasonal component {êt} to maintain

the time dependence structure in the bootstrapped non-seasonal component {ê∗t}. If the non-

seasonal component et has a stochastic trend, the block bootstrap method is invalid for non-

stationary time series and we can use the sieve bootstrap procedure similar to Psaradakis (2001)

to obtain the bootstrapped non-seasonal component {ê∗t}. Next, we obtain the bootstrapped

seasonal time series x∗t = ŝt + ê∗t , and apply the RSVD seasonal adjustment method to

{x∗t} to obtain the bootstrapped seasonal component {ŝ∗t}. Finally, we take the empirical

quantiles from the bootstrap distribution of the seasonal component for each time t, and the

bootstrapped confidence interval for the seasonal component is {[2ŝt− ŝ∗t,(1−α/2), 2ŝt− ŝ∗t,(α/2)]}

where ŝ∗t,(1−α/2) denotes the 1− α/2 percentile of the bootstrapped seasonal component ŝ∗t at

time t. Correspondingly, the bootstrapped confidence interval for the seasonally adjusted

series is {[xt − 2ŝt + ŝ∗t,(α/2), xt − 2ŝt + ŝ∗t,(1−α/2)]}.

S.4.3 Multiple types of seasonality

Although the proposed RSVD seasonal adjustment method in this paper can only deal with

single seasonality, it does shed some light on seasonal adjustment for time series with multiple

types of seasonality. For example, an intraday high frequency time series has different seasonal

cycles and can possibly exhibit multiple types of seasonality, such as daily, weekly, and annual
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seasonality. If the time series is reshaped into a multi-dimensional array, seasonal behaviors

at those different frequencies incur different smoothness structures on different “facets” of

the multi-dimensional array. A straightforward extension of our current RSVD method to

tackle multiple types of seasonality is to consider applying regularized SVD appropriately to

the different “facets” of the multi-dimensional array and separate out those smooth seasonal

variations at different frequencies from the original time series.
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Table S1: Evaluation of estimates of seasonal component with no break

AMSE (×10−2) AMPE (%) Avg. r

X12- X12-

κ ARIMA SEATS RSVD ARIMA SEATS RSVD RSVD

DGP1 ∗

0.2 13.6819 3.5118 6.7704 449.43 161.03 287.39 1.092
0.4 13.8016 3.5307 6.5452 225.45 101.12 140.09 1.094
0.6 13.9597 3.9594 6.4137 151.03 73.62 91.89 1.128
0.8 14.0816 4.6717 6.0776 113.68 60.07 67.38 1.130
1.0 14.2103 5.0835 5.8606 91.30 50.95 53.33 1.134
1.2 14.3884 5.3678 5.7873 76.47 44.32 44.42 1.136
1.4 14.6425 5.7749 5.7494 66.08 39.65 37.88 1.136
1.6 14.8681 6.1388 5.7080 58.26 36.00 33.05 1.134
1.8 15.0391 6.5726 5.7343 52.06 33.21 29.41 1.138
2.0 15.3330 6.9360 5.7271 47.29 30.81 26.46 1.138

DGP2 †

0.2 18.8260 4.2091 7.8188 299.08 133.81 172.05 1.010
0.4 18.9328 5.6554 10.4065 149.75 79.74 91.90 1.006
0.6 19.0276 7.0764 13.7174 99.98 60.03 65.11 1.022
0.8 19.0987 8.3877 11.5922 75.06 49.17 47.52 1.262
1.0 19.1916 9.5771 8.5133 60.17 42.08 35.96 1.296
1.2 19.2761 10.7163 7.3184 50.21 37.14 28.89 1.222
1.4 19.3463 11.8055 7.1906 43.09 33.42 24.33 1.140
1.6 19.4087 12.7889 6.6489 37.75 30.48 20.81 1.082
1.8 19.4716 13.8061 6.4423 33.59 28.16 18.17 1.038
2.0 19.5353 14.8512 5.8001 30.26 26.28 16.00 1.012

DGP3 ‡

0.2 2.1745 4.0332 0.5596 20.61 26.61 10.60 1.000
0.4 2.5360 6.3576 0.5543 10.72 16.79 5.29 1.000
0.6 3.1728 8.2954 0.5538 7.48 12.70 3.53 1.000
0.8 4.1132 9.2859 0.5541 5.91 10.13 2.65 1.000
1.0 5.3071 9.9594 0.5536 4.99 8.47 2.12 1.000
1.2 6.7664 9.6011 0.5533 4.40 7.04 1.76 1.000
1.4 8.4086 9.5583 0.5538 3.99 6.10 1.51 1.000
1.6 10.2984 9.4299 0.5534 3.69 5.31 1.33 1.000
1.8 11.8878 9.1184 0.5500 3.49 4.71 1.19 1.000
2.0 14.4208 9.1037 0.5511 3.30 4.19 1.07 1.000

* The non-seasonal component {et} follows i.i.d. N(0, σ2). †The non-seasonal
component {et} follows Gaussian ARMA(1,1) with AR(1) coefficient 0.8 and MA(1)
coefficient 0.1. ‡The non-seasonal component {et} follows Gaussian ARIMA(1,1,1)
with AR(1) coefficient 0.8 and MA(1) coefficient 0.1.
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Table S2: Simulation results with Industrial Production Index (IPI) series

AMSE (×10−4) AMPE (%) Avg. r

σ a X-12-ARIMA SEATS RSVD X-12-ARIMA SEATS RSVD RSVD

Simulated seasonality is from the X-12-ARIMA method

0.05 1 0.0054 0.0164 0.1072 18.05 30.56 85.54 2.000
0.05 2 0.0131 0.0509 0.1882 15.31 32.10 59.89 3.780
0.05 4 0.0575 0.2821 0.2911 13.29 38.42 30.89 4.000
0.05 8 0.3495 0.4684 0.3805 15.64 23.05 20.26 9.000
0.05 16 1.7365 0.2196 0.5139 17.69 8.31 17.11 9.000
0.05 32 8.5090 0.3322 1.0693 19.99 4.90 11.45 10.000

0.10 1 0.0094 0.0179 0.1091 26.08 33.18 85.47 1.974
0.10 2 0.0170 0.0497 0.1956 18.17 32.01 59.56 3.676
0.10 4 0.0604 0.2479 0.2932 14.61 36.68 31.82 4.004
0.10 8 0.3444 0.5637 0.3847 15.94 25.68 20.96 8.978
0.10 16 1.7346 0.2442 0.5239 18.02 8.80 17.18 9.008
0.10 32 8.4849 0.3354 1.0812 20.14 4.92 11.47 10.000

Simulated seasonality is from the SEATS method

0.05 1 0.0171 0.0054 0.1082 47.59 33.88 130.61 2.000
0.05 2 0.0367 0.0120 0.2193 33.78 28.49 102.26 4.450
0.05 4 0.1405 0.1105 0.3392 36.43 39.82 59.18 4.000
0.05 8 0.6089 0.3558 0.4090 39.05 33.41 34.11 9.244
0.05 16 2.4498 0.0904 0.8419 39.56 8.81 22.14 10.038
0.05 32 10.7650 0.3553 1.7495 42.04 8.72 17.20 11.000

0.10 1 0.0197 0.0074 0.1102 54.69 42.54 130.00 1.954
0.10 2 0.0389 0.0131 0.2332 37.87 30.27 92.92 3.738
0.10 4 0.1419 0.0952 0.3459 37.78 37.50 61.46 4.004
0.10 8 0.6052 0.3686 0.4200 39.58 33.42 34.20 9.188
0.10 16 2.4654 0.1049 0.8564 40.14 9.51 22.55 10.046
0.10 32 10.7903 0.3657 1.7524 42.62 8.94 17.24 10.998

Simulated seasonality is from the RSVD method

0.05 1 0.1078 0.0813 0.0162 123.63 113.93 27.13 1.548
0.05 2 0.1149 0.1390 0.0273 66.95 80.25 19.57 2.000
0.05 4 0.1460 0.2253 0.0334 41.80 54.46 12.95 2.000
0.05 8 0.1910 0.4005 0.0354 25.46 37.13 7.15 2.000
0.05 16 0.7374 0.3956 0.0372 19.25 18.74 3.83 2.000
0.05 32 5.2690 0.4809 0.0422 17.36 10.34 2.17 2.000

0.10 1 0.1104 0.0800 0.0183 124.70 112.45 32.96 1.566
0.10 2 0.1181 0.1357 0.0269 67.79 78.75 19.46 2.000
0.10 4 0.1491 0.2220 0.0307 41.84 53.83 11.62 2.000
0.10 8 0.1942 0.3968 0.0344 25.58 36.90 6.50 2.000
0.10 16 0.6514 0.4176 0.0390 19.37 19.16 3.78 2.000
0.10 32 5.3271 0.4700 0.0441 17.55 10.24 2.13 2.000
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Table S3: Simulation results with total Non-Farm Payroll (NFP) series

AMSE (×10−2) AMPE (%) Avg. r

σ a X-12-ARIMA SEATS RSVD X-12-ARIMA SEATS RSVD RSVD

Simulated seasonality is from the X-12-ARIMA method

0.05 1 0.0539 0.0677 0.6829 122.92 194.48 93.94 2.000
0.05 2 0.0773 0.1609 1.4655 83.25 214.49 149.89 1.000
0.05 4 0.2470 0.6185 2.2247 48.03 204.11 51.73 3.712
0.05 8 1.6058 1.8047 3.0317 39.77 92.81 29.27 6.704
0.05 16 8.1157 0.8444 5.6101 28.01 33.23 47.05 8.026
0.05 32 38.3131 1.3865 10.5476 17.22 10.54 62.10 9.096

0.10 1 0.1578 0.1191 0.7653 209.04 173.48 152.09 2.018
0.10 2 0.2122 0.2040 1.4457 150.26 170.68 182.45 1.000
0.10 4 0.3556 0.5246 2.3775 70.08 163.88 76.20 3.570
0.10 8 1.5940 1.4518 3.3735 40.16 95.77 46.89 6.578
0.10 16 8.3436 1.2132 5.3953 26.22 35.53 54.91 8.466
0.10 32 38.1979 1.6197 10.4992 18.97 12.30 57.48 9.598

Simulated seasonality is from the SEATS method

0.05 1 0.0819 0.0329 0.6547 24.70 12.83 29.38 2.000
0.05 2 0.1374 0.0545 1.5050 16.64 7.82 30.00 1.000
0.05 4 0.4502 0.2953 1.8419 17.49 10.26 17.76 5.174
0.05 8 2.1259 0.9523 3.4790 18.21 8.46 10.35 6.528
0.05 16 9.6780 0.6537 6.3728 18.69 3.10 10.59 9.134
0.05 32 40.7692 0.6382 17.2679 19.77 1.74 9.95 9.496

0.10 1 0.1724 0.0918 0.7377 30.67 21.80 34.67 2.022
0.10 2 0.2525 0.1267 1.4880 18.79 12.70 32.10 1.000
0.10 4 0.5466 0.2831 2.1857 15.06 9.79 19.77 4.730
0.10 8 2.2093 0.8431 4.1221 16.85 8.02 11.93 6.188
0.10 16 9.8038 0.8233 6.6204 18.12 3.81 10.51 8.822
0.10 32 40.4162 0.7678 16.5835 19.44 1.97 9.10 9.814

Simulated seasonality is from the RSVD method

0.05 1 0.6817 0.6141 0.0333 37.38 37.44 9.64 2.000
0.05 2 1.4952 1.4414 1.1970 23.06 22.99 23.49 1.226
0.05 4 4.6168 3.3320 2.6989 15.85 14.63 9.62 2.056
0.05 8 17.7801 7.3443 0.9252 13.36 9.79 4.05 3.000
0.05 16 66.4177 22.3084 3.0364 13.01 10.15 4.27 3.000
0.05 32 258.1326 78.7335 12.3832 14.61 11.02 4.50 3.000

0.10 1 0.7750 0.6341 0.1523 44.47 36.93 19.60 2.036
0.10 2 1.6271 1.5311 1.1246 26.77 23.38 22.17 1.388
0.10 4 4.7254 3.7294 2.4721 18.18 16.31 10.70 2.166
0.10 8 17.7779 8.3874 1.1216 14.21 11.38 5.13 3.008
0.10 16 66.3603 23.7757 3.2494 13.28 10.78 4.55 3.002
0.10 32 260.0433 72.1982 12.5217 14.56 10.51 4.55 3.000
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Table S4: Simulation results with Inflation (INFL) series

AMSE (×10−3) AMPE (%) Avg. r

σ a X-12-ARIMA SEATS RSVD X-12-ARIMA SEATS RSVD RSVD

Simulated seasonality is from the X-12-ARIMA method

0.05 1 1.8280 3.9318 6.4199 92.17 126.49 224.80 1.000
0.05 2 2.3328 5.9490 11.5515 60.90 75.53 110.25 3.000
0.05 4 4.6465 8.0056 15.5058 56.51 49.04 85.75 6.000
0.05 8 15.9655 18.2086 16.7062 58.02 42.60 55.33 9.000
0.05 16 67.0332 32.9560 26.7756 47.91 29.65 22.09 10.000
0.05 32 296.6000 34.9535 71.9444 45.57 15.79 17.83 10.000

0.10 1 1.8765 3.9452 6.4252 95.83 127.24 225.06 1.000
0.10 2 2.3942 5.9798 11.5935 63.00 75.60 111.61 3.000
0.10 4 4.7454 8.0405 15.6287 57.02 49.23 86.94 6.000
0.10 8 15.5110 18.2361 16.9141 57.32 42.57 55.24 9.004
0.10 16 67.2046 33.0768 26.8196 48.15 29.79 22.44 10.000
0.10 32 297.2183 35.0585 71.9575 45.93 15.79 17.84 10.000

Simulated seasonality is from the SEATS method

0.05 1 3.2342 1.0074 2.6165 155.42 96.43 224.07 1.000
0.05 2 4.5699 1.4792 3.6774 99.41 35.35 106.32 2.000
0.05 4 4.4043 2.4491 4.9616 45.95 27.84 54.39 3.000
0.05 8 5.6330 4.4972 10.1684 26.18 21.66 41.16 4.000
0.05 16 7.3661 8.9068 18.3406 17.74 16.35 25.40 5.000
0.05 32 18.4353 22.1587 31.8693 16.99 12.01 15.83 6.000

0.10 1 3.2775 1.0119 2.6209 157.06 96.68 224.10 1.000
0.10 2 4.6070 1.4891 3.7548 100.05 36.18 105.75 2.000
0.10 4 4.4518 2.4609 4.9836 46.32 28.03 54.54 3.000
0.10 8 5.6474 4.5050 10.2205 26.40 21.72 41.15 4.000
0.10 16 7.3963 8.9543 18.3759 17.73 16.39 25.42 5.000
0.10 32 18.3650 22.1508 31.9860 16.95 12.03 16.02 6.044

Simulated seasonality is from the RSVD method

0.05 1 5.4888 1.2688 2.31e-03 449.33 249.20 12.94 1.000
0.05 2 7.3696 2.6139 2.36e-03 146.86 144.41 6.49 1.000
0.05 4 7.5841 4.7368 2.40e-03 70.24 81.53 3.40 1.000
0.05 8 8.4923 7.5907 2.66e-03 38.94 55.25 1.66 1.000
0.05 16 12.2855 12.5930 3.93e-03 35.88 52.58 0.96 1.000
0.05 32 22.5479 23.4975 9.11e-03 24.30 47.02 0.62 1.000

0.10 1 5.5698 1.2740 9.23e-03 453.12 250.52 26.79 1.000
0.10 2 7.4306 2.6314 9.42e-03 151.39 145.31 13.28 1.000
0.10 4 7.6622 4.7497 9.11e-03 72.82 81.58 6.39 1.000
0.10 8 8.6801 7.6115 9.76e-03 42.53 55.52 3.38 1.000
0.10 16 12.3124 12.6254 1.09e-02 35.95 52.56 1.69 1.000
0.10 32 22.4030 23.5389 1.61e-02 24.54 47.00 0.94 1.000
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Table S5: The optimal ARIMA models for the three seasonally adjusted series†

Industrial Production Index Total Non-Farm Payroll Inflation

(Natural Log, 2012 = ln 100) (Millions of Persons) (%)

ARIMA process ARIMA(1, 2, 3) ARIMA(0, 3, 3) ARIMA(1, 1, 3)

ar(1) 0.7713 -0.3082
ma(1) -1.493 -1.5299 -0.2785
ma(2) 0.5128 0.5466 -0.4951
ma(3) -0.0009 0.0008 -0.2029

σ2 4.80e-05 0.0199 0.0369

† The optimal models are selected by the TRAMO-SEAT method.
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Table S6: Simulation evaluation of seasonal decomposition with real
economic seasonality†

AMSE (×10−4) AMPE (%) Avg. r

σ USDR X-12-ARIMA RSVD X-12-ARIMA RSVD RSVD

DGP based on Industrial Production Index (IPI)

0.05 0.16 0.2665 0.6829 65.07 91.83 3.860
0.05 0.32 0.8257 1.0173 53.57 60.20 5.906
0.05 0.64 3.1946 1.2802 49.31 33.66 9.222
0.05 1.28 12.6396 2.0950 46.83 21.12 10.606
0.05 2.56 48.8251 3.9784 45.20 13.96 10.998
0.05 5.12 191.4524 10.1929 44.45 9.64 11.000

0.10 0.16 0.2720 0.6369 65.69 90.23 3.970
0.10 0.32 0.8189 0.9648 53.61 58.91 6.224
0.10 0.64 3.2024 1.3095 49.40 34.03 9.094
0.10 1.28 12.6458 2.0815 47.20 21.07 10.626
0.10 2.56 48.8033 3.9440 45.38 13.89 10.996
0.10 5.12 191.7176 10.1590 44.45 9.70 11.000

AMSE (×10−2) AMPE (%) Avg. r

σ USDR X-12-ARIMA RSVD X-12-ARIMA RSVD RSVD

DGP based on Inflation (INFL)

0.05 1.72 0.6756 0.7087 75.46 74.36 3.038
0.05 3.44 0.8072 0.8363 41.94 41.03 4.400
0.05 6.88 1.1625 1.2472 25.79 24.96 5.720
0.05 13.76 2.3906 2.2049 20.14 16.61 7.408
0.05 27.52 8.1580 3.4680 19.71 9.97 9.562
0.05 55.04 35.7276 5.3203 20.25 6.30 10.910

0.10 1.72 0.6768 0.7152 75.69 75.04 3.050
0.10 3.44 0.8139 0.8448 41.67 40.72 4.376
0.10 6.88 1.1531 1.2377 25.88 25.02 5.640
0.10 13.76 2.3886 2.1952 20.04 16.62 7.358
0.10 27.52 8.1359 3.4183 19.60 9.84 9.584
0.10 55.04 35.9361 5.2596 20.27 6.30 10.930

† For the DGP based on IPI and INFL series, the nonseasonal component
esimt follows the corresponding ARIMA process specified in Table S5, and
the seasonal component ssimt is generated by equation (S.4) accordingly.
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Figure S1: Simulated seasonal component without break

F

F

F

F

F

F

F

F

F

F

F

F

2 4 6 8 10 12

−5
0

5

month

1
1

1

1

1
1

1

1
1

1
1

1

F
1

Fixed seasonal pattern
Time−varying seasonal pattern

(a) Fixed and time−varying seasonal patterns

0 10 20 30 40 50

−2
−1

0
1

2
3

year

Fixed pattern coefficient
Time−varying pattern coefficients

(b) Fixed and time−varying pattern coefficients

0 100 200 300 400 500 600

−1
0

−5
0

5

time

Fixed seasonality
Time−varying seasonality

(c) Fixed and time−varying seasonality

0 100 200 300 400 500 600

−1
0

0
5

10

time

(d) Total seasonality

Figure S2: Simulated seasonal component with one break
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Figure S3: Periodograms of logarithm retail volume series and RSVDB adjusted series
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Figure S4: Periodograms of berries exports series and RSVDB adjusted series
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Figure S5: Periodograms of online submission counts series and RSVDB adjusted series
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