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A Extensions to Other Outcomes, Estimated Variances, and Two-sided Tests

We first generalize to outcomes other than normally distributed outcomes. Similar to Sec-

tion 3.1, we assume that for each subject i, conditioned on his/her subpopulation k ∈ {1, 2}

and study arm assignment a ∈ {0, 1}, his/her data Yka,i is a random draw from an unknown

distribution Qka, and that this draw is independent of the data of all the other subjects.

Instead of restricting each Qka to be a normal distribution as in Section 3.1, we allow Qka to

be any distribution on R. This allows, for example, the outcome to be binary valued, count

valued, or continuous valued. Define µka and σ2
ka to be the mean and variance, respectively,

of Qka, which we assume to be finite. Let ∆k = µk1 − µk0 for each k ∈ {1, 2}. The null

hypotheses are as in Section 3.1 except using the above definition of ∆k. The z-statistics

are as in Section 3.1, except using the outcomes Yka,i which are distributed as Qka. The

setup in Section 3.1 is then a special case of the above setup, if we let each Qka be a normal

distribution with mean µka and variance σ2
ka.

We assume each σ2
ka > 0. Then by the multivariate central limit theorem, the joint

distribution of (Z1 − EZ1, Z2 − EZ2, ZC − EZC) converges to a zero mean, multivariate

normal distribution with covariance matrix

Σ =


1 0 ρ1

0 1 ρ2

ρ1 ρ2 1

 ,

as sample size n goes to infinity (holding p1, p2 and each Qka fixed). The covariance matrix Σ

is the same as that for the case of normally distributed outcomes in Section 3.1. Therefore,

the optimal multiple testing procedures constructed above for normally distributed outcomes

can be expected to perform similarly for the more general case above, at large enough sample

sizes. By a similar argument, when replacing variances by sample variances in the definition
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of the z-statistics, one expects the same to hold at large sample sizes. The sample size at

which the normal approximation is a good one depends on features of the data generating

distributions Qka. It is an area of future work to explore the impact of, e.g., skewed and

heavy-tailed distributions Qka on the performance of our multiple testing procedures.

A more formal argument would require consideration of local alternatives, that is, se-

quences of data generating distributions Q
(n)
ka with ∆k of order 1/

√
n; this is because at

fixed alternatives Qka with ∆k 6= 0, the absolute value of the non-centrality parameter δk

converges to infinity and so all reasonable procedures have power converging to 1. Extending

our results under local alternatives is an area of future work.

We now consider null hypotheses related to two-sided tests. For each k ∈ {1, 2}, define

H ′0k to be the null hypothesis ∆k = 0, i.e., that treatment is equally as effective as control,

on average, for subpopulation k; define H ′0C to be the null hypothesis p1∆1 + p2∆2 = 0, i.e.,

that treatment is equally as effective as control, on average, for the combined population.

Our general method can be applied to these hypotheses. The main changes would be that

one may decide to specify a power constraint as in (4) not only at (δmin
1 , δmin

2 ), but also

at (−δmin
1 ,−δmin

2 ); one may also decide to assign weight in the prior to alternatives (δ1, δ2)

with δ1 and/or δ2 negative. We note that the boundaries of the null hypotheses H and

the boundaries of the null hypotheses {H ′01, H ′02, H ′0C} are identical; therefore, it may be

appropriate to set discretized constraints G′ ⊆ G.

B Extending the Rejection Regions of a Solution to the Discretized Problem

We restricted to the class of multiple testing proceduresMB ⊂M that reject no hypotheses

outside the region B = [−b, b] × [−b, b] for a fixed integer b > 0. The reason was to make

our solution computationally feasible. We now show how to iteratively augment the optimal

solution to the discretized problem within the class MR, which we denote by M∗
B, to allow
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rejection of null hypotheses outside B = [−b, b] × [−b, b]. Let B′ = [−b′, b′] × [−b′, b′] for

an integer b′ > b. Define R′ = {Rk,k′ : k, k′ ∈ Z, Rk,k′ ⊂ B′ \ B}. Let M′ denote the

class of multiple testing procedures M ∈ MB′ such that for any u ∈ [0, 1], we have (i)

M(z1, z2, u) = M∗
B(z1, z2, u) for any (z1, z2) ∈ B, and (ii) for any rectangle r ∈ R′ we

have M(z1, z2, u) = M(z′1, z
′
2, u) whenever (z1, z2) and (z′1, z

′
2) are both in r. This can be

expressed as a sparse linear program and can be solved using the algorithm in Section 9.

This can be iterated for a sequence of increasing values b′. However, in the examples from

Section 5.1 there is little room for improving the Bayes risk by such an extension, since as

shown in Section 6, the Bayes risk of the optimal solution in MR ⊆ MB is within 0.005 of

the optimal Bayes risk over the class of procedures M for the original problem.

C Discretization of Familywise Type I Error and Power Constraints

We show that when restricting to the discretized procedures MR and familywise Type I

error constraints in G′, the constraints (3) and (4) in the constrained Bayes optimization

problem are the linear functions of m given in (11) and (12), respectively. Each familywise

Type I error constraint (3) can be expressed as

Pδ1,δ2 [M rejects any null hypothesis in HTRUE(δ1, δ2)]

=
∑
r∈R

Pδ1,δ2 [(Z1, Z2) ∈ r]P [M rejects any null hypothesis in HTRUE(δ1, δ2)|(Z1, Z2) ∈ r]

=
∑
r∈R

Pδ1,δ2 [(Z1, Z2) ∈ r]
∑

s∈S:s∩HTRUE(δ1,δ2)6=∅

mrs ≤ α,

where the last line equals (11). A similar argument shows the power constraint (4) can be

expressed as the linear function of m given in (12).
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D Additional Examples of Priors and Loss Functions

We present several examples using the setup from Section 5, but with different priors and loss

functions. Define prior Λ′ =
∑4

j=1w
′
jλ
′
j, where w′ = (w′1, w

′
2, w

′
3, w

′
4) is a weight vector and

λ′1, λ
′
2, λ
′
3, λ
′
4 are bivariate normal distributions with mean vectors (0, 0), (δmin

1 , 0), (0, δmin
2 ),

and (δmin
1 , δmin

2 ), respectively, and each with covariance matrix having diagonal entries

((δmin
1 /2)2, (δmin

2 /2)2) and zero off-diagonal entries. Define the modified symmetric case to

be as in Section 5, except with prior Λ′ under weight vector w′ = w(1) = (1/4, 1/4, 1/4, 1/4);

similarly, define the modified asymmetric case as in Section 5 except with prior Λ′ under

weight vector w′ = w(2) = (0.2, 0.35, 0.1, 0.35).

The solutions in each case at 1− β = 0.88 are given in Figures 5a and 5b. We used the

lower level of discretization τ = (0.1, 0.1) to highlight an interesting phenomenon. The yellow

dots, which occur sporadically on the boundaries between rejection regions, are where the

optimal procedure is a randomized procedure that rejects either the set of null hypotheses

on one or the other side of the corresponding boundary, with probabilities that sum to 1;

this is an artifact of the discretization and diminishes when a finer discretization is used on

these boundaries.

Define the following loss function where the penalty for failing to reject each subpopula-

tion null hypothesis H0k when ∆k ≥ ∆min is proportional to ∆k:

L̃′(s; δ1, δ2) =
2∑

k=1

min{δk, b̄}1[δk ≥ δmin
k , H0k /∈ s],

for b̄ = 10; here b̄ denotes the maximum penalty allowed, which we incorporate so that

the loss function is bounded. The optimal rejection regions in the modified symmetric and

asymmetric cases, except using L̃′ in place of L̃, are given in Figures 5c and 5d. There is

little difference between the optimal rejection regions under L̃′ versus under L̃.
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Figure 5: Optimal multiple testing procedures under prior Λ′, for (a) the
modified symmetric case and (b) the modified asymmetric case, at coarse
discretization τ = (0.1, 0.1). Plots (c) and (d) are analogs of (a) and (b),
respectively, except that the loss function L̃′ is used in place of L̃. In each
plot, the black line is the boundary of RUMP. Yellow dots are where the
optimal procedure is a randomized procedure that rejects either the set of null
hypotheses on one or the other side of the boundary, with probabilities that
sum to 1.

6



E Definitions of Multiple Testing Procedures from Prior Work in Section 5.3

E.1 Procedure of Bergmann and Hommel (1988)

As described by Hommel and Bernhard (1999), the procedure of Bergmann and Hommel

(1988) involves first specifying which subsets of elementary null hypotheses are “exhaustive.”

For any index set J ⊆ {1, 2, C}, the subset {H0j, j ∈ J} is defined to be exhaustive if

there exists a data generating distribution under which all and only the null hypotheses in

this subset are true. In our problem, all subsets are exhaustive except {H01, H02} and the

singleton {H0C}, since whenever H01, H02 are both true also H0C is true, and whenever H0C is

true at least one of H01, H02 is true. The procedure of Bergmann and Hommel (1988), when

applied to our set of null hypotheses H, rejects the null hypotheses with indices {1, 2, C}\A,

where A is defined as the union of all subsets J ⊆ {1, 2, C} that satisfy:

{H0j, j ∈ J} is exhaustive and max{Zj : j ∈ J} < Φ−1(1− 0.05/|J |).

E.2 Procedure based on Song and Chi (2007) and Alosh and Huque (2009)

Song and Chi (2007) and Alosh and Huque (2009) designed multiple testing procedures

involving the overall population and a single, prespecified subpopulation, which we refer to

as subpopulation 1. Here, in contrast, we are interested in the larger family of hypotheses

including that for subpopulation 2. To tailor the procedure of Song and Chi (2007) to our

context, we augment it to additionally allow rejection of H02, without any loss in power

for the overall population or for subpopulation 1, and while maintaining strong control of

the familywise Type I error rate. We denote the augmented procedure by MSC, which, for

prespecified thresholds α0, α1, α2 satisfying 0 ≤ α0 < 0.05 < α1 ≤ 1, and 0 ≤ α2 ≤ 1, is

defined as follows:
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If ZC > Φ−1(1 − α0), reject H0C as well as each subpopulation null hypothesis

H0k, k ∈ {1, 2}, for which Zk > Φ−1(1−0.05). If Φ−1(1−α0) ≥ ZC > Φ−1(1−α1)

and Z1 > Φ−1(1 − α2), then reject H01, and if in addition ZC > Φ−1(1 − 0.05)

then reject H0C .

The original procedure of Song and Chi (2007) is the same as above except it does not allow

rejection of H02, since it was designed in the context of testing only H0C and H01. Their

procedure has similar performance to a procedure of Alosh and Huque (2009), so we only

include the former in our comparison in Section 5.3. We chose α0 = 0.045 and α1 = 0.1,

which is used in an example of Song and Chi (2007). We then used the method of Song and

Chi (2007) to compute, for the symmetric case, the largest α2 (which depends on p1) such

that the above procedure strongly controls the familywise Type I error rate at level 0.05.

We next prove MSC strongly controls the familywise Type I error rate at level 0.05,

using the closed testing principle of Marcus et al. (1976). We first define local tests of each

intersection null hypothesis in H. The local test of H01 ∩H0C is as in Song and Chi (2007),

that is, the test that rejects if ZC > Φ−1(1−α0), or if both Φ−1(1−α0) ≥ ZC > Φ−1(1−α1)

and Z1 > Φ−1(1 − α2). This is shown to have Type I error at most 0.05 by Song and Chi

(2007). We use the same local test for H01 ∩H02 as just given for H01 ∩H0C . It follows that

this test has Type I error at most 0.05, since H01∩H02 ⊆ H01∩H0C . We set the local test for

H02 ∩H0C to reject if ZC > Φ−1(1− 0.05); it follows immediately that this has Type I error

at most 0.05. We set the local test of H0C to reject if ZC > Φ−1(1−0.05). For subpopulation

k ∈ {1, 2}, we set the local test of each H0k to reject if Zk > Φ−1(1 − 0.05). Applying the

closed testing principle, with the above local tests, results in the procedure MSC. By the

closed testing principle, this procedure strongly controls the familywise Type I error rate at

level 0.05.
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F Optimal Solutions for Discretized Problem for Sample Size Greater than nmin

We present the rejection regions for the optimal solution m∗SS(n) to the constrained Bayes

optimization problem from Section 5.3, for n = 1.03nmin and n = 1.06nmin, in Figure 6.

Recall that at n = nmin, we have m∗SS(n) = m∗sym(0.9), given in Figure 1a.

−4 −2 0 2 4

−
4

−
2

0
2

4

a. Rejection Regions for n=1.03nmin

Z−statistic for Population 1

Z
−

s
ta

ti
s
ti
c
 f
o

r 
P

o
p

u
la

ti
o

n
 2

Reject

 H02

Reject

 H02,H0C
Reject

 H01,H02,

 H0C

Reject

 H01,H0C

Reject

 H01

Reject

 H0C

Reject

 Nothing

−4 −2 0 2 4

−
4

−
2

0
2

4

b. Rejection Regions for n=1.06nmin

Z−statistic for Population 1

Z
−

s
ta

ti
s
ti
c
 f
o

r 
P

o
p

u
la

ti
o

n
 2

Reject

 H02

Reject

 H02,H0C
Reject

 H01,H02,

 H0C

Reject

 H01,H0C

Reject

 H01

Reject

 H0C

Reject

 Nothing

Figure 6: Rejection regions for m∗SS(n), for symmetric case, i.e., p1 = p2 = 1/2
and prior Λ1, (a) for n = 1.03nmin and (b) for n = 1.06nmin.

We next consider the minimum sample size required to achieve a desired power x to

detect treatment effects in each subpopulation, while maintaining 90% power for H0C and

strongly controlling the familywise Type I error rate. Consider the case where p1 = p2 = 1/2,

with nmin as defined in Section 5.1 at 1−β = 0.9. For each value of x on the horizontal axis,

Figure 7 plots the minimum value of n/nmin such that at sample size n there exists a multiple

testing procedure with power at least x for H01 at (δmin
1 , 0), power at least x for H02 at

(0, δmin
2 ), power at least 0.9 for H0C at (δmin

1 , δmin
2 ), and that strongly controls the familywise

Type I error rate at level 0.05. These were computed by solving the constrained Bayes

optimization problem at a sequence of values n/nmin using the prior Λ defined in Section 5.1
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with weight vector w = (0, 1/2, 1/2, 0); this prior puts weight only on the alternatives

(δmin
1 , 0) and (0, δmin

2 ). The solution to the optimization problem in each case was observed

to have power forH01 at (δmin
1 , 0) equal to the power forH02 at (0, δmin

2 ). It follows that at each

value of n/nmin we considered, no multiple testing procedure can have greater power than

our optimal solution to reject H01 at (δmin
1 , 0) and to reject H02 at (δmin

1 , 0), while satisfying

the power constraint (4) at 1− β = 0.9 and the familywise Type I error constraints (3).
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Figure 7: Minimum value of n/nmin to achieve a desired power for both H01

and H02, under power constraint (4) at 1− β = 0.9 and the familywise Type
I error constraints (3).
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G Using Only the Familywise Type I Error Constraint at the Global Null

Consider what would happen if we only impose the familywise Type I error constraint at

the global null hypothesis. We also impose the power constraint (4). The optimal solutions

to the corresponding discretized problem at 1 − β = 0.88 are shown in Figure 8, for the

symmetric and asymmetric cases from Section 5. All the null hypotheses H are true at
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Figure 8: Optimal rejection regions for the discretized problem omitting all
familywise Type I error constraints except at the global null hypothesis in (a)
symmetric case and (b) the asymmetric case. In each plot, the black line is
the boundary of RUMP, which depends on p1 so differs in the two plots.

the global null hypothesis; therefore a familywise Type I error occurs under the global null

hypothesis if any nonempty subset of H is rejected. Since the loss function L̃ penalizes for

failure to reject null hypotheses, it is optimal, at any realization of (Z1, Z2), to either reject

no null hypothesis or reject all the null hypotheses, as is the case in Figure 8. The familywise

Type I error rate at (δmin
1 , 0) and at (0, δmin

2 ) both equal 0.54 in the symmetric case, and equal

0.69 and 0.32, respectively, in the asymmetric case. This shows the importance of including

in G′ a close approximation to each active familywise Type I error constraint.
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H Verifying the Optimal Solution to the Discretized Problem Satisfies All Con-

straints of the Original Problem

Consider the set of multiple testing procedures M∗ defined in Section 5.2, which are the

solutions to the discretized problems in Section 5.1. By definition, each M∗ ∈ M∗ satisfies

the familywise Type I error constraints (11) of the corresponding discretized problem. We

now verify each M∗ ∈M∗ satisfies all constraints (3) of the original problem.

In Section H.1, we prove Theorem 1. This will be used to reduce the problem of verifying

the constraints (3) for each (δ1, δ2) ∈ R2, to the more manageable problem of verifying these

constraints for each (δ1, δ2) ∈ G (the boundaries of the null spaces). To solve the latter

problem, we use a combination of a grid search and an analytic bound on its approximation

error, as shown in Sections H.2 and H.3.

To upper bound (15) by 0.05 using the above approach, it was necessary to solve the

discretized linear programs defined in Section 5.1 at α = 0.05− 10−4. The solution to each

discretized problem that we reported in the paper (e.g., those given in Section 5.1) was

computed at α = 0.05 − 10−4. To show this reduction from 0.05 had a negligible effect

on the Bayes risk of the resulting procedures, for each of the four discretized problems in

Section 5.1, we computed the Bayes risk of the optimal solution at α = 0.05 − 10−4 and at

α = 0.05. For each problem, the difference in the Bayes risk between these two solutions

was never more than 0.001.

H.1 Proof of Theorem 1

For any M ∈ Mdet, denote the familywise Type I error rate of M at a given (δ1, δ2) by

FM(δ1, δ2) = Pδ1,δ2 [M(Z1, Z2) ∩ HTRUE(δ1, δ2) 6= ∅]. We first prove part (a) of Theorem 1,

where we set R = B. Consider any M ∈ Mdet ∩MB that satisfies monotonicity conditions

(a)-(d) with respect to R = B. We will prove sup(δ1,δ2)∈R2 FM(δ1, δ2) = sup(δ1,δ2)∈G FM(δ1, δ2).
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To show this, for any given (δ1, δ2) ∈ R2, we will exhibit a point (δ′1, δ
′
2) ∈ G for which

FM(δ1, δ2) ≤ FM(δ′1, δ
′
2). We consider 5 cases, each corresponding to (δ1, δ2) being in a

different region of R2. Define η(x1, x2) = exp {−x21/2− x22/2} /(2π). We use the notation

1[·] for indicator variables, as defined in Section 5.1.

Case 1: δ1 > 0 and δ2 > 0. Then we have HTRUE(δ1, δ2) = ∅, and so FM(δ1, δ2) = 0.

For this case, define (δ′1, δ
′
2) = (0, 0) ∈ G. Then FM(δ1, δ2) = 0 ≤ FM(δ′1, δ

′
2). This completes

Case 1.

In each of Cases 2-5, for a given (δ1, δ2), we will define a point (δ′1, δ
′
2) ∈ G such that

HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2). We then define subsets A and A′ of R (each of which depends

on δ1, δ2, but we suppress this for notational clarity), and prove the following:

∫
(z1,z2)∈(A∪A′)

1[M(z1, z2) ∩HTRUE(δ1, δ2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

=

∫
(z1,z2)∈(A∪A′)

1[M(z1, z2) ∩HTRUE(δ′1, δ
′
2) 6= ∅]η(z1 − δ′1, z2 − δ′2)dz1 dz2, (19)

and

∫
(z1,z2)∈R2\(A∪A′)

1[M(z1, z2) ∩HTRUE(δ1, δ2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

≤
∫
(z1,z2)∈R2\(A∪A′)

1[M(z1, z2) ∩HTRUE(δ′1, δ
′
2) 6= ∅]η(z1 − δ′1, z2 − δ′2)dz1 dz2. (20)
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Once (19) and (20) are shown, it follows that

FM(δ1, δ2) =

∫
(z1,z2)∈(A∪A′)

1[M(z1, z2) ∩HTRUE(δ1, δ2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2 (21)

+

∫
(z1,z2)∈R2\(A∪A′)

1[M(z1, z2) ∩HTRUE(δ1, δ2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

≤
∫
(z1,z2)∈(A∪A′)

1[M(z1, z2) ∩HTRUE(δ′1, δ
′
2) 6= ∅]η(z1 − δ′1, z2 − δ′2)dz1 dz2

+

∫
(z1,z2)∈R2\(A∪A′)

1[M(z1, z2) ∩HTRUE(δ′1, δ
′
2) 6= ∅]η(z1 − δ′1, z2 − δ′2)dz1 dz2

= FM(δ′1, δ
′
2). (22)

Case 2: δ1 ≤ 0, δ2 > 0, and ρ1δ1 + ρ2δ2 > 0. For this case, define (δ′1, δ
′
2) = (0, δ2) ∈

G. Then we have HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2) = {H01}. Define the vertical line D =

{(z1, z2) ∈ R2 : z1 = δ1/2}, which is the perpendicular bisector of the line segment between

(δ1, δ2) and (δ′1, δ
′
2). Define the function h(z1, z2) = (h1(z1, z2), h2(z1, z2)) = (−z1 + δ1, z2),

which maps any point (z1, z2) ∈ R2 to its reflection across the line D.

Define A = {(z1, z2) ∈ R2 : z1 < δ1/2 and H01 ∈ M(z1, z2)}, and let A′ = h(A) =

{h(z1, z2) : (z1, z2) ∈ A}, i.e., the reflection of the set A across the line D. It follows that A

and A′ are disjoint sets, and h is a bijection from A onto A′.

Since we assumed M ∈ MB, we have A ⊆ B. By this and the definition of A, we have

A ⊆ [((−∞, δ1/2)× R) ∩ B]. We next show A′ ⊆ B, by considering two subcases. The first

subcase is where δ1 ≤ −2b. Then [((−∞, δ1/2) × R) ∩ B] = ∅, which implies A = ∅. This

implies A′ = ∅ and so A′ ⊆ B. Consider the remaining subcase where δ1 > −2b. For any

(z1, z2) ∈ A, we have −b ≤ z1 < δ1/2, which implies −z1+δ1 > −δ1/2+δ1 = δ1/2. Therefore

−b < δ1/2 < −z1 + δ1 ≤ b + δ1 ≤ b (where the last inequality follows from the assumption

above that δ1 ≤ 0). Therefore, h(z1, z2) = (−z1 + δ1, z2) ∈ B. This shows A′ ⊆ B in this

subcase.
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We next show that monotonicity property (a) implies for any (z′1, z
′
2) ∈ A′, we have

H01 ∈ M(z′1, z
′
2). Consider any (z′1, z

′
2) ∈ A′. Since we showed above that A′ ⊆ B, we

have (z′1, z
′
2) ∈ A′ ⊆ B. By the definition of A′, there exists a point (z1, z2) ∈ A for which

h(z1, z2) = (z′1, z
′
2). By the definition of the set A, z1 < δ1/2 and H01 ∈ M(z1, z2). This

implies δ1 − 2z1 ≥ 0. Since (z′1, z
′
2) = h(z1, z2) = (z1 + (δ1 − 2z1), z2), monotonicity property

(a) implies H01 ∈M(z1 + (δ1 − 2z1), z2) = M(z′1, z
′
2), as desired.

We next show the equality (19). Since HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2) = {H01} (for this

case), we have 1[M(z1, z2) ∩ HTRUE(δ1, δ2) 6= ∅] = 1[H01 ∈ M(z1, z2)]. This implies the

integral on the left side of the equality in (19) equals

∫
(z1,z2)∈A∪A′

1[H01 ∈M(z1, z2)]η(z1 − δ1, z2 − δ2)dz1 dz2

=

∫
(z1,z2)∈A∪A′

η(z1 − δ1, z2 − δ2)dz1 dz2 (23)

=

∫
(z′1,z

′
2)∈h−1(A∪A′)

η(h1(z
′
1, z
′
2)− δ1, h2(z′1, z′2)− δ2)dz′1 dz′2 (24)

=

∫
(z′1,z

′
2)∈A∪A′

η(−z′1, z′2 − δ2)dz′1 dz′2 (25)

=

∫
(z′1,z

′
2)∈A∪A′

η(−(z′1 − δ′1), z′2 − δ′2)dz′1 dz′2 (26)

=

∫
(z′1,z

′
2)∈A∪A′

η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (27)

=

∫
(z′1,z

′
2)∈A∪A′

1[H01 ∈M(z′1, z
′
2)]η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (28)

where (23) follows from H01 ∈M(z1, z2) for any (z1, z2) ∈ A∪A′; (24) follows by the change

of variables (z′1, z
′
2) = h−1(z1, z2), for which the absolute value of the Jacobian determinant

equals 1; (25) follows from h−1(A ∪ A′) = A ∪ A′ and the definition of h; (26) follows from

the definition of (δ′1, δ
′
2); (27) follows from η(−x, y) = η(x, y) for any (x, y) ∈ R2; and, (28)

follows from H01 ∈M(z′1, z
′
2) for any (z′1, z

′
2) ∈ A ∪ A′. This proves (19) for this case.
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To show (20), consider any (z1, z2) ∈ R2 \ A such that H01 ∈ M(z1, z2). Then we have

z1− δ1/2 ≥ 0, and after multiplying both sides by −2δ1 (which is nonnegative since δ1 ≤ 0),

we have −2z1δ1 + δ21 ≥ 0. Therefore, (z1 − δ′1)2 = z21 ≤ z21 − 2z1δ1 + δ21 = (z1 − δ1)2, which

implies η(z1 − δ1, z2 − δ2) ≤ η(z1 − δ′1, z2 − δ′2). We have shown for any (z1, z2) ∈ R2 \ A,

1[H01 ∈M(z1, z2)]η(z1 − δ1, z2 − δ2) ≤ 1[H01 ∈M(z1, z2)]η(z1 − δ′1, z2 − δ′2). (29)

This implies (20). Having shown (19) and (20), the above argument (21)-(22) implies

FM(δ1, δ2) ≤ FM(δ′1, δ
′
2), which completes Case 2.

Case 3: δ1 ≤ 0, δ2 > 0 and ρ1δ1 + ρ2δ2 ≤ 0. This implies δ1 < 0. For this case,

define (δ′1, δ
′
2) = (−ρ2δ2/ρ1, δ2). Then we have HTRUE(δ1, δ2) = HTRUE(δ′1, δ

′
2) = {H01, H0C}.

Define the vertical line D = {(z1, z2) ∈ R2 : z1 = (δ1−ρ2δ2/ρ1)/2}, which is the perpendicular

bisector of the line segment between (δ1, δ2) and (δ′1, δ
′
2).

Define the function h(z1, z2) = (h1(z1, z2), h2(z1, z2)) = (−z1 + δ1 − ρ2δ2/ρ1, z2), which

maps any point (z1, z2) ∈ R2 to its reflection across the line D. Define

A = {(z1, z2) ∈ R2 : z1 < (δ1 − ρ2δ2/ρ1)/2 and {H01, H0C} ∩M(z1, z2) 6= ∅}. Define A′ =

h(A) = {h(z1, z2) : (z1, z2) ∈ A}, i.e., the reflection of the set A across the line D. It follows

that A and A′ are disjoint sets, h is a bijection from A onto A′, and since we assumed

M ∈MB we have A ⊆ B. By a similar argument as in Case 2, we have A′ ⊆ B.

We next show that monotonicity properties (a) and (c) imply {H01, H0C}∩M(z′1, z
′
2) 6= ∅

for any (z′1, z
′
2) ∈ A′. Consider any (z′1, z

′
2) ∈ A′. Then (z′1, z

′
2) ∈ B, since as argued above

A′ ⊆ B. By definition, there exists a point (z1, z2) ∈ A for which h(z1, z2) = (z′1, z
′
2). By

the definition of the set A, z1 < (δ1− ρ2δ2/ρ1)/2 and {H01, H0C} ∩M(z1, z2) 6= ∅. Therefore

(δ1 − ρ2δ2/ρ1)− 2z1 > 0. By monotonicity properties (a) and (c),
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{H01, H0C} ∩M(z1 + (δ1 − ρ2δ2/ρ1 − 2z1), z2) 6= ∅. Combining this with

z′1 = h(z1, z2) = −z1 + δ1 − ρ2δ2/ρ1 = z1 + (δ1 − ρ2δ2/ρ1 − 2z1),

we have {H01, H0C} ∩M(z′1, z
′
2) 6= ∅.

We next show (19). Since HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2) = {H01, H0C} (for this case),

the integral on the left side of the equality in (19) equals

∫
(z1,z2)∈A∪A′

1[{H01, H0C} ∩M(z1, z2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

=

∫
(z1,z2)∈A∪A′

η(z1 − δ1, z2 − δ2)dz1 dz2 (30)

=

∫
(z′1,z

′
2)∈h−1(A∪A′)

η(h1(z
′
1, z
′
2)− δ1, h2(z′1, z′2)− δ2)dz′1 dz′2 (31)

=

∫
(z′1,z

′
2)∈A∪A′

η(−z′1 − ρ2δ2/ρ1, z′2 − δ2)dz′1 dz′2 (32)

=

∫
(z′1,z

′
2)∈A∪A′

η(−(z′1 + ρ2δ2/ρ1), z
′
2 − δ′2)dz′1 dz′2 (33)

=

∫
(z′1,z

′
2)∈A∪A′

η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (34)

=

∫
(z′1,z

′
2)∈A∪A′

1[{H01, H0C} ∩M(z′1, z
′
2) 6= ∅]η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (35)

where (30) follows from {H01, H0C}∩M(z1, z2) 6= ∅ for any (z1, z2) ∈ A∪A′; (31) follows by

the change of variables (z′1, z
′
2) = h−1(z1, z2), for which the absolute value of the Jacobian

determinant equals 1; (38) follows from h−1(A ∪ A′) = A ∪ A′ and the definition of h; (33)

follows from the definition of (δ′1, δ
′
2); (34) follows from η(−x, y) = η(x, y) for any (x, y) ∈ R2;

and, (35) follows from {H01, H0C}∩M(z′1, z
′
2) 6= ∅ for any (z′1, z

′
2) ∈ A∪A′. This shows (19).

To show (20), consider any (z1, z2) ∈ R2 \A such that {H01, H0C} ∩M(z1, z2) 6= ∅. Then

we have z1 ≥ (δ1 − ρ2δ2/ρ1)/2, which implies 2(z1 − δ1) ≥ −δ1 − ρ2δ2/ρ1. Multiplying both

sides of the previous inequality by δ1 + ρ2δ2/ρ1 (which is nonpositive by the assumption
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above that ρ1δ1 + ρ2δ2 ≤ 0) and moving all terms to the left side, we have

2(z1 − δ1)(δ1 + ρ2δ2/ρ1) + (δ1 + ρ2δ2/ρ1)
2 ≤ 0. Therefore,

(z1 − δ′1)2 = (z1 − δ1 + (δ1 + ρ2δ2/ρ1))
2

= (z1 − δ1)2 + 2(z1 − δ1)(δ1 + ρ2δ2/ρ1) + (δ1 + ρ2δ2/ρ1)
2

≤ (z1 − δ1)2.

The result in the above display implies η(z1−δ1, z2−δ2) ≤ η(z1−δ′1, z2−δ′2). We have shown

for any (z1, z2) ∈ R2 \ A,

1[{H01, H0C}∩M(z1, z2) 6= ∅]η(z1−δ1, z2−δ2) ≤ 1[{H01, H0C}∩M(z1, z2) 6= ∅]η(z1−δ′1, z2−δ′2).

This implies (20). Having shown (19) and (20), the above argument (21)-(22) implies

FM(δ1, δ2) ≤ FM(δ′1, δ
′
2), which completes Case 3.

Case 4: δ1 > 0 and δ2 ≤ 0. Analogous arguments as in cases 2 and 3 (which together

handle δ1 ≤ 0, δ2 > 0) apply for this case, by exchanging the subscripts 1 and 2 and making

corresponding modifications throughout the arguments.

Case 5: δ1 ≤ 0 and δ2 ≤ 0. Let x = min{−δ1,−δ2}, which is nonnegative. For this case,

define (δ′1, δ
′
2) = (δ1 + x, δ2 + x), which is in G since at least one of δ′1, δ

′
2 equals 0. We have

that both δ′1 and δ′2 are nonpositive, since for each s ∈ {1, 2}, δ′s = δs + x ≤ δs + (−δs) = 0.

Therefore, HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2) = {H01, H02, H0C}. Also, it follows from each

δs ≤ 0 and the definition of x that δ1 + δ2 + x ≤ 0.

Define the line D = {(z1, z2) : z2 + z1 = δ1 + δ2 + x}, which is the perpendicular

bisector of the line segment between (δ1, δ2) and (δ′1, δ
′
2). Define the function h(z1, z2) =

(h1(z1, z2), h2(z1, z2)) = (−z2+δ1+δ2+x,−z1+δ1+δ2+x), which maps any point (z1, z2) ∈ R2

to its reflection across the line D.
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DefineA = {(z1, z2) ∈ R2 : z1 + z2 < δ1 + δ2 + x and M(z1, z2) 6= ∅}. DefineA′ = h(A) =

{h(z1, z2) : (z1, z2) ∈ A}, i.e., the reflection of the set A across the line D. It follows that A

and A′ are disjoint sets, and h is a bijection from A onto A′.

Since we assumed M ∈MB, we have A ⊆ B. We next show A′ ⊆ B. For any (z1, z2) ∈ A,

we have z1 + z2 < δ1 + δ2 + x. Since A ⊆ B, we have z1 ≥ −b, z2 ≥ −b. These inequalities

imply h1(z1, z2) = −z2 + δ1 + δ2 +x > z1 ≥ −b and h2(z1, z2) = −z1 + δ1 + δ2 +x > z2 ≥ −b.

For each s ∈ {1, 2}, since zs ≥ −b we have h3−s(z1, z2) = −zs+δ1+δ2+x ≤ b+δ1+δ2+x ≤ b

(where we used δ1 + δ2 + x ≤ 0). Therefore, h(z1, z2) ∈ B. This shows A′ ⊆ B.

We next show that monotonicity property (d) implies M(z′1, z
′
2) 6= ∅ for any (z′1, z

′
2) ∈ A′.

Consider any (z′1, z
′
2) ∈ A′. Then (z′1, z

′
2) ∈ B, since we showed that A′ ⊆ B. By definition,

for some (z1, z2) ∈ A, h(z1, z2) = (z′1, z
′
2). By the definition of the set A, we have

z1 + z2 < δ1 + δ2 + x ≤ 0 and M(z1, z2) 6= ∅. Let d = −z1 − z2 + δ1 + δ2 + x. It follows that

d > 0 and z′1 = z1 + d, z′2 = z2 + d. By monotonicity property (d), M(z1 + d, z2 + d) 6= ∅,

and therefore M(z′1, z
′
2) 6= ∅.

We next show (19). Since HTRUE(δ1, δ2) = HTRUE(δ′1, δ
′
2) = {H01, H02, H0C} (for this

case), we have 1[M(z1, z2)∩HTRUE(δ1, δ2) 6= ∅] = 1[M(z1, z2) 6= ∅]. This implies the integral

on the left side of the equality in (19) equals

∫
(z1,z2)∈A∪A′

1[M(z1, z2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

=

∫
(z1,z2)∈A∪A′

η(z1 − δ1, z2 − δ2)dz1 dz2 (36)

=

∫
(z′1,z

′
2)∈h−1(A∪A′)

η(h1(z
′
1, z
′
2)− δ1, h2(z′1, z′2)− δ2)dz′1 dz′2 (37)

=

∫
(z′1,z

′
2)∈A∪A′

η(−z′2 + δ2 + x,−z′1 + δ1 + x)dz′1 dz
′
2 (38)

=

∫
(z′1,z

′
2)∈A∪A′

η(−(z′2 − δ′2),−(z′1 − δ′1))dz′1 dz′2 (39)

19



=

∫
(z′1,z

′
2)∈A∪A′

η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (40)

=

∫
(z′1,z

′
2)∈A∪A′

1[M(z1, z2) 6= ∅]η(z′1 − δ′1, z′2 − δ′2)dz′1 dz′2, (41)

where (36) follows from M(z1, z2) 6= ∅ for any (z1, z2) ∈ A ∪ A′; (37) follows by the change

of variables (z′1, z
′
2) = h−1(z1, z2), for which the absolute value of the Jacobian determinant

equals 1; (38) follows from h−1(A ∪ A′) = A ∪ A′ and the definition of h; (39) follows from

the definition of (δ′1, δ
′
2); (40) follows from η(x, y) = η(−y,−x) for any (x, y) ∈ R2; and, (41)

follows from M(z′1, z
′
2) 6= ∅ for any (z′1, z

′
2) ∈ A ∪ A′. This shows (19).

To show (20), consider any (z1, z2) ∈ R2 \A such that M(z1, z2) 6= ∅. We must then have

z1 + z2 − δ1 − δ2 ≥ x, and after multiplying both sides by (−2x) (which is nonpositive since

x ≥ 0), we have −2x(z1 + z2 − δ1 − δ2) ≤ −2x2. Therefore, for such (z1, z2),

(z1 − δ′1)2 + (z2 − δ′2)2 = (z1 − δ1 − x)2 + (z2 − δ2 − x)2

= (z1 − δ1)2 + (z2 − δ2)2 − 2x(z1 − δ1 + z2 − δ2) + 2x2

≤ (z1 − δ1)2 + (z2 − δ2)2 − 2x2 + 2x2

= (z1 − δ1)2 + (z2 − δ2)2,

which implies η(z1−δ1, z2−δ2) ≤ η(z1−δ′1, z2−δ′2). We have shown for any (z1, z2) ∈ R2 \A,

1[M(z1, z2) 6= ∅]η(z1 − δ1, z2 − δ2) ≤ 1[M(z1, z2) 6= ∅]η(z1 − δ′1, z2 − δ′2). (42)

This implies (20), which completes the proof that in Case 5, FM(δ1, δ2) ≤ FM(δ′1, δ
′
2).

Since Cases 1-5 cover all (δ1, δ2) ∈ R2, we showed for any (δ1, δ2) ∈ R2 that there exists

(δ′1, δ
′
2) ∈ G for which FM(δ1, δ2) ≤ FM(δ′1, δ

′
2). This completes the proof of part (a) of The-

orem 1. Part (b) follows by an analogous argument, since the condition M ∈ MB was only
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used above to show that A ∪ A′ ⊆ B; when R = R2, this is not needed.

We next show monotonicity properties (a)-(c) are not sufficient to imply the conclusion

of part (a) of Theorem 1, i.e., that (15) holds for R = B. We give a (pathological) counterex-

ample below to demonstrate this. This shows some additional property is required, such as

monotonicity property (d), in order for this conclusion to follow. It is an area of future work

to devise weaker sets of conditions under which the conclusion of the theorem holds.

Define A1 = {(z1, z2) ∈ R2 : −5 ≤ z1 ≤ 5,−5 ≤ z2 ≤ −4, z1 > z2} and A2 = {(z1, z2) ∈

R2 : −5 ≤ z2 ≤ 5,−5 ≤ z1 ≤ −4, z2 > z1}. Consider the multiple testing procedure

that rejects H01 whenever (Z1, Z2) ∈ A1, and rejects H02 whenever (Z1, Z2) ∈ A2. Though

this is a very unrealistic procedure, it does provide a counterexample, as we show next.

It is straightforward to verify the procedure satisfies monotonicity properties (a)-(c) with

respect to R = B = [−b, b] × [−b, b] for b = 5. Also, the procedure is in Mdet. We

verified that the worst-case familywise Type I error rate over G is 0.38, which is achieved

at (δ1, δ2) = (−4.50, 0); this was done using the method in Section H.3 below. However, at

(δ1, δ2) = (−3.99,−3.99) /∈ G, the familywise Type I error rate is 0.46, which exceeds the

maximum familywise Type I error rate over G. The above example shows that monotonicity

properties (a)-(c) do not suffice to show (15). (The above results were rounded to two decimal

places.)

H.2 Method for Bounding (3) based on the Mean Value Theorem

For any (δ1, δ2) ∈ R2, (δ′1, δ
′
2) ∈ R2, λ ∈ [0, 1], and s ∈ {1, 2}, define the function δ̃s(λ) =

λδs + (1− λ)δ′s. The set of values {(δ̃1(λ), δ̃2(λ)) : λ ∈ [0, 1]} is the line segment connecting

(δ′1, δ
′
2) to (δ1, δ2). The following lemma bounds the difference between the familywise Type

I error at (δ1, δ2) and at (δ′1, δ
′
2), as a function of |δ1 − δ′1| and |δ2 − δ′2|.
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Lemma 1: Assume there exists a set H ⊆ H such that for all λ ∈ [0, 1], HTRUE(δ̃1(λ), δ̃2(λ)) =

H. Then for any M ∈Mdet, we have |FM(δ1, δ2)− FM(δ′1, δ
′
2)| ≤

√
2/π

∑2
s=1 |δs − δ′s|.

Proof: Consider any (δ1, δ2) ∈ R2, (δ′1, δ
′
2) ∈ R2, and H ⊆ H such that the condition of the

lemma holds. Consider any M ∈Mdet. We then have

∣∣∣∣ ddλFM(δ̃1(λ), δ̃2(λ))

∣∣∣∣
=

∣∣∣∣ ddλ
∫
(z1,z2)∈R2

1[M(z1, z2) ∩H 6= ∅]η(z1 − δ̃1(λ), z2 − δ̃2(λ))dz1 dz2

∣∣∣∣
≤

∫
(z1,z2)∈R2

∣∣∣∣1[M(z1, z2) ∩H 6= ∅]
d

dλ
η(z1 − δ̃1(λ), z2 − δ̃2(λ))

∣∣∣∣ dz1dz2 (43)

≤
∫
(z1,z2)∈R2

∣∣∣∣ ddλη(z1 − δ̃1(λ), z2 − δ̃2(λ))

∣∣∣∣ dz1dz2
=

∫
(z1,z2)∈R2

∣∣∣∣∣
2∑
s=1

{zs − δ̃s(λ)} d
dλ
δ̃s(λ)

∣∣∣∣∣ η(z1 − δ̃1(λ), z2 − δ̃2(λ))dz1dz2

≤
2∑
s=1

1√
2π

∫
zs∈R
|{zs − δ̃s(λ)}(δs − δ′s)| exp

{
−(zs − δ̃s(λ))2/2

}
dzs (44)

=
√

2/π
2∑
s=1

|δs − δ′s|,

where the exchange of order of differentiation and integration in (43) is justified by Fubini’s

theorem (which uses that M ∈ Mdet ⊂ M, and by definition all procedures in M are

measurable functions), and where (44) follows from d
dλ
{δ̃s(λ)} = δs − δ′s. We then have

|FM(δ1, δ2)− FM(δ′1, δ
′
2)| =

∣∣∣FM(δ̃1(1), δ̃2(1))− FM(δ̃1(0), δ̃2(0))
∣∣∣

≤ |1− 0| sup
λ∈[0,1]

∣∣∣∣ ddλFM(δ̃1(λ), δ̃2(λ))

∣∣∣∣ (45)

≤
√

2/π
2∑
s=1

|δs − δ′s|,

where (45) follows by the mean value theorem. This completes the proof of Lemma 1.
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We next define and prove correctness of a search algorithm used in Section H.3 below.

The inputs to the algorithm include a procedure M ∈ Mdet, and the two distinct points

(δ1,start, δ2,start) ∈ R2 and (δ1,end, δ2,end) ∈ R2. Let γ =
(∑2

s=1 |δs,start − δs,end|
)−1

, and for

each s ∈ {1, 2}, define δs(x) = xδs,start + (1− x)δs,end.

Search algorithm:

1. Initialize k = 1, and x1 = 1.

2. Let fk = FM(δ1(xk), δ2(xk)).

If fk ≥ 0.05, stop; else, set xk+1 = max{0, xk − γ(0.05− fk)}.

3. If xk+1 = 0, increment k by 1 and stop; else, increment k by 1 and go to step 2.

Let k∗ denote the value of k when the algorithm terminates (and let k∗ =∞ if the algorithm

never terminates). We prove the following lemma below:

Lemma 2: Assume there exists an H ⊆ H such that for any x ∈ (0, 1], HTRUE(δ1(x), δ2(x)) =

H. Then we have (k∗ <∞ and xk∗ = 0) if and only if supx∈(0,1] FM(δ1(x), δ2(x)) < 0.05.

The lemma implies that when the above algorithm terminates with xk∗ = 0, we can conclude

the constraints (3) hold for each (δ1, δ2) in the set {(δ1(x), δ2(x)) : x ∈ (0, 1]}. Furthermore,

if supx∈(0,1] FM(δ1(x), δ2(x)) < 0.05, the algorithm is guaranteed to eventually terminate

with xk∗ = 0. The advantage of the above algorithm, compared to a simpler search where

FM(δ1(x), δ2(x)) is computed over a grid of equally spaced points x ∈ (0, 1], is that the

above algorithm can be much faster. This is because, roughly speaking, for regions where

FM(δ1(x), δ2(x)) is not close to 0.05, the above algorithm evaluates this quantity at less

densely spaced points than in regions where FM(δ1(x), δ2(x)) is close to 0.05.
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Proof of Lemma 2: We show by induction on k that the following claim holds: for

any integer k : 1 ≤ k ≤ k∗, sup{x:xk<x≤1} FM(δ1(x), δ2(x)) < 0.05 (where if the set in the

subscript of the supremum is empty, we let the value on the left side of the inequality be

−∞ by convention). The base case, k = 1, holds since the set in the subscript of the

supremum is empty. For the inductive step, consider any integer k : 1 ≤ k < k∗. Assume the

inductive hypothesis, i.e., sup{x:xk<x≤1} FM(δ1(x), δ2(x)) < 0.05. It cannot be that fk ≥ 0.05,

since if so, the algorithm would have stopped at step 2 in iteration k, leading to k = k∗, and

contradicting k < k∗. Also, it cannot be that xk = 0, since if so, the algorithm would have

stopped at step 3 in the previous iteration, so that k = k∗, contradicting k < k∗. Therefore,

fk < 0.05 and xk > 0, which implies xk+1 = max{0, xk − γ(0.05 − fk)} < xk. For any

x ∈ (xk+1, xk], by Lemma 1 applied at (δ1, δ2) = (δ1(x), δ2(x)), (δ′1, δ
′
2) = (δ1(xk), δ2(xk)),

|FM(δ1(x), δ2(x))− FM(δ1(xk), δ2(xk))| ≤
√

2/π
2∑
s=1

|(δs,start − δs,end)(x− xk)|

≤
√

2/π
2∑
s=1

|(δs,start − δs,end)(xk+1 − xk)|

≤
√

2/π{γ(0.05− fk)}
2∑
s=1

|(δs,start − δs,end)|

< 0.05− fk

= 0.05− FM(δ1(xk), δ2(xk)),

which implies FM(δ1(x), δ2(x)) < 0.05. Combining this with the inductive hypothesis, we

have shown sup{x:xk+1<x≤1} FM(δ1(x), δ2(x)) < 0.05. This completes the proof by induction

that for any integer k : 1 ≤ k ≤ k∗, sup{x:xk<x≤1} FM(δ1(x), δ2(x)) < 0.05. If k∗ < ∞ and

xk∗ = 0, then by the previous inequality at k = k∗, we have supx∈(0,1] FM(δ1(x), δ2(x)) < 0.05.

To show the converse, assume supx∈(0,1] FM(δ1(x), δ2(x)) < 0.05. Let ψ = 0.05 −

supx∈(0,1] FM(δ1(x), δ2(x)) > 0. The algorithm can never terminate in step 2, since at step 2
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the value of xk is always in (0, 1], and by assumption supx∈(0,1] FM(δ1(x), δ2(x)) < 0.05. At

each iteration k of step 2, we have 0 ≤ xk+1 ≤ max{0, xk − γψ}. Therefore, after at most

d1/(γψ)e iterations, we must have xk+1 = 0. This implies the algorithm terminates in step

3 with xk∗ = 0 after at most d1/(γψ)e iterations. This completes the proof of Lemma 2.

H.3 Verifying Familywise Type I error constraints (3) for each M∗ ∈M∗

For each M∗ ∈M∗, we verified the conditions of part (a) of Theorem 1. Therefore, to verify

M∗ satisfies all constraints (3), it suffices to verify the constraints corresponding to each

(δ1, δ2) ∈ G.

Consider any M∗ ∈M∗. Define B′ = [−7, 7]× [−7, 7]. We partition G into the following

sets: V1 = {(0, 0)}; V2 = G \B′; V3 = {(δ1, δ2) ∈ (B′ \ V1) : δ1 = 0};

V4 = {(δ1, δ2) ∈ (B′ \ V1) : δ2 = 0}; V5 = {(δ1, δ2) ∈ (B′ \ V1) : ρ1δ1 + ρ2δ2 = 0}. For

each i ∈ I = {1, 2, 3, 4, 5}, define vi = sup(δ1,δ2)∈Vi FM∗(δ1, δ2). For each i ∈ {1, 2, 3, 4, 5}, we

consider the case of (δ1, δ2) ∈ Vi and show vi ≤ 0.05.

Case i = 1: To show (3) is satisfied for (δ1, δ2) = (0, 0), we computed FM∗(0, 0), which

was less than or equal to 0.04991 (rounded to five decimal places) for each M∗ ∈ M∗.

Therefore, v1 < 0.05.

Case i = 2: For any (δ1, δ2) ∈ G \ B′, we have either |δ1| > 7 or |δ2| > 7. Consider the

subcase where |δ1| > 7. Then {(z1, z2) ∈ R2 : |z1 − δ1| ≤ 2} ∩B = ∅. Since each M∗ ∈MB,

FM∗(δ1, δ2) =

∫
(z1,z2)∈B

1[M∗(z1, z2) ∩HTRUE(δ1, δ2) 6= ∅]η(z1 − δ1, z2 − δ2)dz1 dz2

≤
∫
(z1,z2)∈B

η(z1 − δ1, z2 − δ2)dz1 dz2

=

∫
(z1,z2)∈B:|z1−δ1|>2

η(z1 − δ1, z2 − δ2)dz1 dz2

≤
∫
(z1,z2)∈R2:|z1−δ1|>2

η(z1 − δ1, z2 − δ2)dz1 dz2 = 2Φ(−2) < 0.05.
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This shows FM∗(δ1, δ2) < 0.05 for the subcase |δ1| > 7. A similar argument shows this for

the subcase |δ2| > 7. Therefore, v2 < 0.05.

Case i = 3: Consider any (δ1, δ2) ∈ V3. We consider two subcases. The first is that δ2 <

0. Then HTRUE(δ1, δ2) = {H01, H02, H0C}. We ran the search algorithm from Section H.2

(implemented in R) for each M∗ ∈ M∗ using inputs M = M∗; (δ1,start, δ2,start) = (0,−7);

(δ1,end, δ2,end) = (0, 0). For each M∗ ∈ M∗, the search algorithm stopped with xk∗ = 0.

The condition of Lemma 2 holds for H = {H01, H02, H0C}. Therefore, Lemma 2 implies

sup(δ1,δ2)∈[V3∩{(δ1,δ2):δ2<0}] FM∗(δ1, δ2) < 0.05.

The second subcase is that δ2 > 0. Then HTRUE(δ1, δ2) = {H01}. We ran the search al-

gorithm from Section H.2 for each M∗ ∈ M∗ using inputs M = M∗; (δ1,start, δ2,start) =

(0, 7); (δ1,end, δ2,end) = (0, 0). For each M∗ ∈ M∗, the search algorithm stopped with

xk∗ = 0. The condition of Lemma 2 holds for H = {H01}. Therefore, Lemma 2 implies

sup(δ1,δ2)∈[V3∩{(δ1,δ2):δ2>0}] FM∗(δ1, δ2) < 0.05. Since by definition, for any (δ1, δ2) ∈ V3 we have

δ2 6= 0, the condition in one of the subcases holds. The results of the two subcases imply

v3 < 0.05.

Case i = 4: The argument is similar to that in Case i = 3, but we give it here for

completeness. Consider any (δ1, δ2) ∈ V4. We consider two subcases. The first is that δ1 < 0.

Then HTRUE(δ1, δ2) = {H01, H02, H0C}. We ran the search algorithm from Section H.2 for

each M∗ ∈M∗ using inputs M = M∗; (δ1,start, δ2,start) = (−7, 0); (δ1,end, δ2,end) = (0, 0). For

each M∗ ∈M∗, the search algorithm stopped with xk∗ = 0. The condition of Lemma 2 holds

for H = {H01, H02, H0C}. Therefore, Lemma 2 implies sup(δ1,δ2)∈[V4∩{(δ1,δ2):δ1<0}] FM∗(δ1, δ2) <

0.05.

The second subcase is that δ1 > 0. Then HTRUE(δ1, δ2) = {H02}. We ran the search al-

gorithm from Section H.2 for each M∗ ∈ M∗ using inputs M = M∗; (δ1,start, δ2,start) =

(7, 0); (δ1,end, δ2,end) = (0, 0). For each M∗ ∈ M∗, the search algorithm stopped with
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xk∗ = 0. The condition of Lemma 2 holds for H = {H02}. Therefore, Lemma 2 implies

sup(δ1,δ2)∈[V4∩{(δ1,δ2):δ1>0}] FM∗(δ1, δ2) < 0.05. Since by definition, for any (δ1, δ2) ∈ V4 we have

δ1 6= 0, the condition in one of the subcases holds. The results of the two subcases imply

v4 < 0.05.

Case i = 5: We consider two subcases. The first is that δ1 < 0. We ran the search

algorithm from Section H.2 for each M∗ ∈ M∗ using inputs M = M∗; (δ1,start, δ2,start) =

(−7, 7ρ1/ρ2); (δ1,end, δ2,end) = (0, 0). For each M∗ ∈ M∗, the search algorithm stopped with

xk∗ = 0. The condition of Lemma 2 holds for H = {H01, H0C}. Therefore, Lemma 2 implies

sup(δ1,δ2)∈[V5∩{(δ1,δ2):δ1<0}] FM∗(δ1, δ2) < 0.05.

The second subcase is that δ1 > 0. We ran the search algorithm from Section H.2 for each

M∗ ∈M∗ using inputs M = M∗; (δ1,start, δ2,start) = (7,−7ρ1/ρ2); (δ1,end, δ2,end) = (0, 0). For

each M∗ ∈M∗, the search algorithm stopped with xk∗ = 0. The condition of Lemma 2 holds

for H = {H02, H0C}. Therefore, Lemma 2 implies sup(δ1,δ2)∈[V5∩{(δ1,δ2):δ1>0}] FM∗(δ1, δ2) <

0.05. Since by definition, for any (δ1, δ2) ∈ V5 we have δ1 6= 0, the condition in one of the

subcases holds. The results of the two subcases imply v5 < 0.05.

This completes the verification that for any M∗ ∈ M∗, and any (δ1, δ2) ∈ G, we have

FM∗(δ1, δ2) ≤ 0.05. By the arguments above, this implies each M∗ ∈ M∗ obeys the family-

wise Type I error constraints (3) of the original problem, at α = 0.05.
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I Using the Dual to Lower Bound the Bayes Risk of the Original Problem

The following multiple testing procedure is a minimizer of the unbounded problem (17):

M∗
u(z1, z2) = arg min

s∈S

[∫
L(s; δ1, δ2)φ(z1 − δ1)φ(z2 − δ2)dΛ(δ1, δ2)

−1[H0C ∈ s]ν∗pφ(z1 − δmin
1 )φ(z2 − δmin

2 )

+
∑

j∈CFWER

1[s ∩HTRUE(δ1,j, δ2,j) 6= ∅]ν∗jφ(z1 − δ1,j)φ(z2 − δ2,j)

 ,
where φ is the density of the standard normal distribution.

For any pair (z1, z2), one can compute M∗
u(z1, z2) by separately evaluating the term in

brackets above at each value of s ∈ S, using numerical integration with respect to Λ, and

selecting s corresponding to the minimum value obtained (with ties broken arbitrarily).

Using this as a subroutine, one can compute the minimum value of (17) by evaluating the

expression in brackets in (17) at M = M∗
u , using numerical integration. These numerical

integrations are implemented in R using code given in the Supplementary Materials.

J Minimax Optimization Problems; Handling Multiple Optimization Criteria

In Section J.1, we consider the minimax objective function (5), and solve minimax versions

of the problems from Section 5.1. In Section J.2, we briefly discuss the problem mentioned in

Section 10 of finding a multiple testing procedure that simultaneously has good performance

under multiple (Bayes) optimization criteria.

J.1 Solutions to Minimax Versions of Problems from Section 5.1

We can replace the Bayes objective function (2) by the minimax objective function (5), in

which the maximum is taken over a finite set of alternatives P . The resulting optimization
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problem can be solved by binary search over candidate values v for (5), where at each step we

compute whether there exists a solution to the set of constraints (3)-(4) plus the additional

constraints Eδ1,δ2L(M(Z1, Z2, U); δ1, δ2) ≤ v for each (δ1, δ2) ∈ P . For values v where a

solution exists, (5) must be less than or equal to v; conversely, if no solution exists, (5) must

be greater than v. Each step of the binary search is done using the discretized constraints

(11)-(14) from Section 4 plus the additional constraint

∑
r∈R,s∈S

L(s; δ1, δ2)Pδ1,δ2 [(Z1, Z2) ∈ r]mrs ≤ v, (46)

for each (δ1, δ2) ∈ P . Determining whether a solution exists to a set of sparse linear con-

straints can be solved using a similar algorithm as in Section 9. We applied this to minimax

versions of the problems from Section 5.1, as described next.

For the remainder of this subsection, we replace (2) by the minimax objective function

(5), in which the maximum is taken over P = {(δmin
1 , 0), (0, δmin

2 ), (δmin
1 , δmin

2 )}. We apply the

binary search described above to the discretized version of this problem at 1− β = 0.88.

For the symmetric case, the optimal value of the minimax objective function (5) is 0.49,

which is the risk of the minimax optimal procedure at (δmin
1 , 0) and at (0, δmin

2 ). Recall that

at these alternatives, respectively, the risk equals one minus the probability the minimax

optimal procedure rejects H0k for k = 1, 2. One minus 0.49 equals, up do two decimal

places, the values in column 2, rows 2-3 of Table 1, which are the corresponding rejection

probabilities for the constrained Bayes optimal solution m∗sym(0.88). Thus, the minimum

risk over P of the constrained Bayes optimal solution is close to the minimax risk over P .

For the asymmetric case, the optimal value of the minimax objective function (5) is

0.58, which is the risk of the minimax optimal procedure at (0, δmin
2 ). Unlike the symmetric

case, here the minimum risk over P of the corresponding constrained Bayes optimal solution
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m∗asym(0.88) is 12% above (i.e., worse than) the minimax risk over P . This is because

m∗asym(0.88) has 67% power for H01 at (δmin
1 , 0) but only 30% power for H02 at (0, δmin

2 ). By

trading off power for the former to gain power for the latter, the minimax optimal procedure

improves the minimum risk over P .

J.2 Finding a Procedure that Simultaneously has Good Performance under

Multiple Optimization Criteria

We briefly discuss the problem mentioned in Section 10 of finding a multiple testing procedure

that simultaneously has good performance under multiple optimization criteria. Consider

the problem where one is given a finite set of optimization criteria {(L(i),Λ(i))}ki=1, where

the ith optimization criterion consists of a loss function L(i) and a prior Λ(i), and the goal is

to find M ∈M that minimizes the following extension of the Bayes objective function (2):

max
i≤k

∫
Eδ1,δ2

{
L(i)(M(Z1, Z2, U); δ1, δ2)

}
dΛ(i)(δ1, δ2), (47)

under the constraints (3) and (4).

The above optimization problem can be solved by binary search over candidate values

v for (47), using a similar approach as described in the previous subsection. The only

difference is that at each step in the binary search, instead of the additional constraints (46),

one includes the following additional constraint for each i ∈ {1, . . . , k}:

∑
r∈R,s∈S

{∫
L(i)(s; δ1, δ2)Pδ1,δ2 [(Z1, Z2) ∈ r]dΛ(i)(δ1, δ2)

}
mrs ≤ v.
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K Definition of G′new for Each Example in Section 5.1

As described in Section 6.2, we first solved the discretized problems in Section 5.1 at relatively

coarse discretizations, to identify the general vicinities of the active constraints. We then

defined modified sets of active constraints G′new ⊂ G, with points concentrated in these

vicinities, defined below.

For any two distinct points q ∈ R2, q′ ∈ R2, and any real number d > 0, let Seq[q, q′, d]

denote the set of equally spaced points on the line segment connecting q to q′ with adjacent

points distance d apart, and including the endpoints q, q′. E.g., Seq[(0, 0), (0, 0.9), 0.3] =

{(0, 0), (0, 0.3), (0, 0.6), (0, 0.9)}. For each active constraint in the solution to the discretized

problem at the relatively coarse discretization, we included a corresponding set Seq[q, q′, d]

in G′new roughly centered at this active constraint, and spanning several points in the coarse

discretization. The one exception is that we did not include a set of points around (0, 0)

(which was an active constraint in all the discretized problems), and just included that point

itself; it turned out that in each example, the resulting solution at the finer discretization

(defined in Section 6.2) was very close to optimal (as described in Section 6.3) and satisfied

all constraints of the original problem as verified in Section H.

For the symmetric case with 1− β = 0.9, we set d = 0.005 and

G′new = Seq[(1.9, 0), (2.1, 0), d] ∪ Seq[(0, 1.9), (0, 2.1), d] ∪ {(0, 0)}.

For this case, there are 83 constraints in G′new, which combined with the power constraint

gives a total of 84 constraints for the corresponding discretized problem.

For the asymmetric case with 1− β = 0.9, we set d = 0.005 and

G′new = Seq[(2.2, 0), (2.5, 0), d] ∪ Seq[(0, 1.6), (0, 1.9), d] ∪ {(0, 0)}.
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For this case, there are 123 constraints in G′new, which combined with the power constraint

gives a total of 124 constraints for the corresponding discretized problem.

For the symmetric case with 1− β = 0.88, we set d = 0.01 and

G′new = Seq[(1.9, 0), (2.2, 0), d] ∪ Seq[(0, 1.9), (0, 2.2), d]

∪Seq
[
(−1.2, 1.2), (−1, 1), d

√
2
]
∪ Seq

[
(1,−1), (1.2,−1.2), d

√
2
]
∪ {(0, 0)}.

For this case, there are 105 constraints in G′new, which combined with the power constraint

gives a total of 106 constraints for the corresponding discretized problem.

For the asymmetric case with 1 − β = 0.88, where ρ1 =
√

0.63, ρ2 =
√

0.37, we set

d = 0.01 and

G′new = Seq[(2.3, 0), (2.6, 0), d] ∪ Seq[(0, 1.7), (0, 2.0), d]

∪Seq
[
(−1.3, 1.3ρ1/ρ2, d), (−1, ρ1/ρ2), d

√
1 + (ρ1/ρ2)2

]
∪Seq

[
(0.6,−0.6ρ1/ρ2), (1,−ρ1/ρ2), d

√
1 + (ρ1/ρ2)2

]
∪ {(0, 0)}.

For this case, there are 135 constraints in G′new, which combined with the power constraint

gives a total of 136 constraints for the corresponding discretized problem.

L Solving Constrained Bayes Optimization Problem when Active Constraints

are Known

Even if the set of active constraints for our problems from Section 5.1 were somehow known or

correctly guessed, the problems could still be challenging to solve using standard optimization

methods such as Lagrange multipliers. For the sake of illustration, assume the set of active

familywise Type I error constraints for the (non-discretized) constrained Bayes optimization
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problem from Section 3.2 were known, and denote it by C∗. Let k denote the number

of elements in C∗, and let R+ denote the nonnegative reals. We consider an example of a

standard approach using Lagrange multipliers to solve the constrained optimization problem

from Section 3.2, which is equivalently expressed as the minimization problem (16). A first

step is to construct the following unconstrained problem, for any given ν̄∗ ∈ Rk+1
+ :

inf
M∈M

[∫
Eδ1,δ2L(M(Z1, Z2, U); δ1, δ2)dΛ(δ1, δ2) + ν̄∗p

{
1− β − Pδmin

1 ,δmin
2

(M rejects H0C)
}

+
∑
j∈C∗

ν̄∗j
{
Pδ1,j ,δ2,j (M rejects any null hypothesis in HTRUE(δ1,j, δ2,j))− α

}]
. (48)

This is similar to (17) except the vector ν∗ is replaced by ν̄∗ which represents a vector of

Lagrange multipliers with unknown values, and we replace CFWER by the (assumed to be

known) active constraints C∗. For any ν̄∗ ∈ Rk+1
+ , denote the minimizer over M ∈M of (48)

by M∗(ν̄∗). For any given ν̄∗ ∈ Rk+1
+ , M∗(ν̄∗) can be computed using numerical integration

as described in Section I. If one could find a vector ν̄∗ ∈ Rk+1
+ such that at M = M∗(ν̄∗)

the value of each expression in curly braces in (48) equals zero, and if M∗(ν̄∗) satisfies all

of the familywise Type I error constraints (3) (which, intuitively, one may expect to occur

since C∗ is assumed to be the set of active familywise Type I error constraints of the original
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problem), then

∫
Eδ1,δ2L(M∗(ν̄∗)(Z1, Z2, U); δ1, δ2)dΛ(δ1, δ2) (49)

≥ inf
M∈Mc

∫
Eδ1,δ2L(M(Z1, Z2, U); δ1, δ2)dΛ(δ1, δ2) (50)

≥ inf
M∈M

[∫
Eδ1,δ2L(M(Z1, Z2, U); δ1, δ2)dΛ(δ1, δ2) + ν̄∗p

{
1− β − Pδmin

1 ,δmin
2

(M rejects H0C)
}

+
∑
j∈C∗

ν̄∗j
{
Pδ1,j ,δ2,j (M rejects any null hypothesis in HTRUE(δ1,j, δ2,j))− α

}]
, (51)

=

∫
Eδ1,δ2L(M∗(ν̄∗)(Z1, Z2, U); δ1, δ2)dΛ(δ1, δ2), (52)

where (50) follows from M∗(ν̄∗) ∈Mc; (51) follows from the argument in Section 6; and, the

last line follows from M∗(ν̄∗) being a minimizer over M ∈M of (48) and the assumption that

at M = M∗(ν̄∗) the value of each expression in curly braces in (48) equals zero. Because (49)

and (52) are equal, we have that all the inequalities in the above display are equalities. This

implies M∗(ν̄∗) is an optimal solution to the constrained optimization problem (50), which is

identical to (16). However, finding a vector ν̄∗ with the above properties (if one exists) could

be computationally challenging for the problems from Section 5.1, each of which has 5 or 6

active constraints. This would require searching over ν̄∗ ∈ Rk+1
+ for k + 1 equal to 5 or 6, to

find a vector ν̄∗ such that at M = M∗(ν̄∗) the value of each expression in curly braces in (48)

equals zero, and such that M∗(ν̄∗) satisfies all of the familywise Type I error constraints (3).

We emphasize that in general the set of active familywise Type I error constraints will be

unknown, so the above approach (given for the sake of illustration, to compare to standard

methods) would not be directly applicable in our problems.
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M Generalization and Encoding of Monotonicity Properties

We generalize the monotonicity properties (a)-(d) from Section 5.2 to the randomized mul-

tiple testing procedures M. We then show how these properties can be encoded as sparse

constraints in the discretized problem. Since none of these ideas were used in the results in

the main paper (and we only mentioned these ideas in Section 10 as a potential direction for

future research), we only give a rough sketch of these ideas below.

We next generalize the monotonicity properties (a)-(d) from Section 5.2 to the randomized

multiple testing procedures M. For any M ∈ M, H ⊆ H, and (z1, z2) ∈ R2, define

p(M,H, z1, z2) =
∫ 1

0
1[H ∩ M(z1, z2, u) 6= ∅]du. Intuitively, p(M,H, z1, z2) represents the

probability that M(Z1, Z2, U) rejects at least one null hypothesis in H, conditioned on Z1 =

z1, Z2 = z2. For any M ∈ M and any R ⊆ R2, define the following monotonicity properties

with respect to R: for any (z1, z2) ∈ R,

a’. p(M, {H01}, z1, z2) ≤ p(M, {H01}, z′1, z2) for any (z′1, z2) ∈ R for which z′1 ≥ z1;

b’. p(M, {H02}, z1, z2) ≤ p(M, {H02}, z1, z′2) for any (z1, z
′
2) ∈ R for which z′2 ≥ z2;

c’. p(M, {H0C}, z1, z2) ≤ p(M, {H0C}, z′1, z′2) for any (z′1, z
′
2) ∈ R for which z′1 ≥ z1, z

′
2 ≥ z2;

d’. p(M, {H01, H02, H0C}, z1, z2) ≤ p(M, {H01, H02, H0C}, z1 +x, z2 +x) for any x > 0 such

that (z1 + x, z2 + x) ∈ R.

In the special case that M is a deterministic procedure, i.e., M ∈Mdet, the above properties

are equivalent to monotonicity properties (a)-(d) in Section 5.2. This follows since for any

M ∈ Mdet, H ⊆ H, (z1, z2) ∈ R2, we have p(M,H, z1, z2) = 1[H ∩M(z1, z2) 6= ∅] ∈ {0, 1};

this implies each of the above properties reduces to the corresponding monotonicity property

in Section 5.2.
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We next sketch the argument that in the discretized problem, the above monotonicity

properties can be encoded as sparse constraints. Set the region R in the definition of the

monotonicity properties above to be B. We assume τ1 = τ2 and b/τ1 is an integer. (To handle

that the upper boundary and right boundary of B are not covered byR, due to the rectangles

being defined using half-open intervals, i.e., Rk,k′ = [kτ1, (k + 1)τ1) × [k′τ2, (k
′ + 1)τ2), we

redefine the rectangles on these borders to be closed, i.e., [kτ1, (k + 1)τ1]× [k′τ2, (k
′ + 1)τ2];

this ensures that the rectangles in R completely cover B. This change has no impact on the

solutions to the optimization problems due to these boundaries having measure zero with

respect to Lebesgue measure in R2; we set this so that our encoded constraints below imply

the monotonicity properties hold for the entire region B.)

First consider monotonicity property (a’). For any rectangle Rk,k′ ∈ R, we have that

Rk+1,k′ is the rectangle immediately to the right of Rk,k′ . Define the following constraints:

For any r = Rk,k′ ∈ R such that r′ = Rk+1,k′ ∈ R,
∑

s∈S:H01∈smrs ≤
∑

s∈S:H01∈smr′s. These

constraints encode that for each rectangle r ∈ R for which the rectangle r′ immediately to

the right is in R (i.e., r is not on the right side boundary of the region B), the probability

of rejecting H01 conditional on (Z1, Z2) ∈ r′ is at least the probability of rejecting H01

conditional on (Z1, Z2) ∈ r. Any multiple testing procedure M = {mrs}r∈R,s∈S in MR

that satisfies these constraints must also satisfy monotonicity property (a’) with respect

to R = B. To show this, consider any (z1, z2) ∈ B. Let r be the rectangle in R that

contains (z1, z2). Consider any (z′1, z2) ∈ B for which z′1 ≥ z1. Then either (z′1, z2) is in r

or is in a rectangle r̃ ∈ R that can be reached from r by a sequence of moves from each

rectangle to the adjacent rectangle immediately to the right. By the above constraints, each

rectangle r̃′ ∈ R that can be reached by such a sequence of moves to the right satisfies
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∑
s∈S:H01∈smrs ≤

∑
s∈S:H01∈smr̃′s. Then we have

p(M, {H01}, z1, z2) =
∑

s∈S:H01∈s

mrs ≤
∑

s∈S:H01∈s

mr̃s = p(M, {H01}, z′1, z2),

which shows monotonicity property (a’) holds with respect to R = B.

Each of the above constraints is linear in {mrs}r∈R,s∈S . Also, each of the above constraints

is sparse, since for any r ∈ R, the corresponding constraint involves at most 2|S| variables

among {mrs}r∈R,s∈S . Analogous constraints can be constructed to encode monotonicity

property (b’). Monotonicity property (c’) can be encoded by considering, for each rectangle

r ∈ R, the rectangle immediately to its right and the rectangle immediately above it. Define

the following constraints: For any r = Rk,k′ ∈ R: if r′ = Rk+1,k′ ∈ R then
∑

s∈S:H0C∈smrs ≤∑
s∈S:H0C∈smr′s, and if r′′ = Rk,k′+1 ∈ R then

∑
s∈S:H0C∈smrs ≤

∑
s∈S:H0C∈smr′′s. A similar

argument as above can be used to show any multiple testing procedure M = {mrs}r∈R,s∈S in

MR that satisfies these constraints must also satisfy monotonicity property (c’) with respect

to R = B.

Monotonicity property (d’) is slightly more challenging to encode. Recall we had set

τ1 = τ2, so that all the rectangles in R are squares. We partition each square Rk,k′ ∈ R into a

lower right triangle T
(l)
k,k′ = {[kτ1, (k + 1)τ1)× [k′τ1, (k

′ + 1)τ1)}∩{(x, x′) : x′−x < (k′−k)τ1}

and an upper left triangle T
(u)
k,k′ = {[kτ1, (k + 1)τ1)× [k′τ1, (k

′ + 1)τ1)} ∩ {(x, x′) : x′ − x ≥

(k′ − k)τ1}. Let T denote the set of lower right and upper left triangles resulting from

partitioning each Rk,k′ ∈ R. We can define variables m̄ts analogous to mrs for each s ∈ S,

except now for each triangle t ∈ T instead of for each rectangle r ∈ R. It is straightforward

to reformulate the discretized optimization problem from Section 4 using these variables.

Monotonicity property (d’) can be encoded by setting two types of constraints. The first

is that for each lower right triangle t = T
(l)
k,k′ ∈ T , the sum of variables for each s ∈ S \ {∅}
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is at most the corresponding sum for T
(u)
k+1,k′ , which is the upper (left) triangle immediately

to the right of t (which shares a boundary with t). The second type of constraint is that for

each upper left triangle t = T
(u)
k,k′ ∈ T , the sum of variables for each s ∈ S \{∅} is at most the

corresponding sum for T
(l)
k,k′+1, which is the lower right triangle immediately above t (which

shares a boundary with t). By similar arguments as above, any multiple testing procedure

M = {m̄ts}t∈T ,s∈S in MB that satisfies these constraints must also satisfy monotonicity

property (d’) with respect to R = B.

It is straightforward to adapt the encodings of properties (a’)-(c’) given above to the finer

discretization using variables m̄ts that correspond to the triangles T . This can be done by

converting each constraint for a pair of adjacent rectangles into corresponding constraints for

the triangles that make up these rectangles. E.g., each constraint given above for monotonic-

ity property (a’) could be converted to the following constraints: For each t(u) = T
(u)
k,k′ ∈ T ,

let t(l) = T
(l)
k,k′ , and set the constraint

∑
s∈S:H01∈s

m̄t(u)s ≤
∑

s∈S:H01∈s

m̄t(l)s;

For each t(l) = T
(l)
k,k′ ∈ T , let t(u)

′
= T

(u)
k+1,k′ , and if t(u)

′ ∈ T set the constraint

∑
s∈S:H01∈s

m̄t(l)s ≤
∑

s∈S:H01∈s

m̄t(u)
′
s.

We conjecture that the proof in Section H.1 can be extended to show the following

generalization of Theorem 1:
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(a.) For any M ∈M∩MB that satisfies (a’)-(d’) with respect to R = B, we have

sup
(δ1,δ2)∈R2

Pδ1,δ2 [M(Z1, Z2, U) ∩HTRUE(δ1, δ2) 6= ∅]

= sup
(δ1,δ2)∈G

Pδ1,δ2 [M(Z1, Z2, U) ∩HTRUE(δ1, δ2) 6= ∅]. (53)

(b.) For any M ∈M that satisfies (a’)-(d’) with respect to R = R2, (53) holds.

Proving the above result is an open problem.

(Only references for the Supplementary Materials that are not given in the main paper are

included below.)
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