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Supplementary Material for Hui et al., Semiparametric Re-
gression using Variational Approximations

A Proofs and Derivations

A.1 Derivation of /g (P, &)

First note that [ 23 h(B|a,A)dB = z a, which deals with the third term in In{f(y;|¥,3)}.
Using the fact that 3 is multivariate normal with respect to the variational distribution, we obtain
[B'ziz! Bh(Bla,A)dB=azz a+tr (ziziTA) =a'zz a+ 2z Az;. Combining the above
results, we thus obtain [In{f(yi|¥,8)} h(Bla,A)dB = —(2¢) ' {#+a'ziz/a+2z Az} +

(p’lfiziTa —2-1 In(2m¢). The form for lyym (W, &) follows by recognizing i’l-z + aTzizl-Ta —

2%z a=(F—z a)’.

A.2 Score equations for Updating Coefficients in the Variational Approxi-

mations Approach

For the Poisson response case in Section 3.1 of the main text, we update («,a) by fitting a log-link
Poisson GLM with linear predictor :I: K+ z a, an offset equal to 2~ zTAz,, and a quadratic

penalty of 27! Z Aia j s ja ;. The relevant score equations are then

j=1
Z —exp | x; n—i—z a+2zl Az ) »x;
; 1 q
Z { —exp (w?n%—z?a—{— Ez,-TAz,) } zZi— Z AiS;a;.

J=1

aEPom v 5

angs \Il E

For the normal response case in Section 3.2 of the main text, we update (x,a) by fitting a linear

q
model with linear predictor :BiTFL + ziT a, and a quadratic penalty of 2! .Zl A ja]T Sja ;. The relevant
J:
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score equations are then

aK, al:l i— L k—Z2; Q
agNorm(‘I’vg) _ 1o T T z
a —algi(yl—a:ik;—zi a)zl—j;?tjsjaj.

-1
n n
Conditional on the other parameters, this leads to closed-form updates kK = ( Yy mla:lT) Y (vi—
i=1 i=1
—1 n

n
ziTa)a:,- and a = (Z ziziT + (PSA) Y (vi— CB,-TK)Zi-
i=1 i=1

Finally, for the Bernoulli response case in Section 3.3, we update (k,a) by fitting a logistic

regression model with linear predictor m?n + ziT a, an offset equal to Z*IziT Az;, and a quadratic

q
penalty of 271 ¥ 2 jajT S;a;. The relevant score equations are then
j=1

oKk :izl a
n q
aEBers(\Ilag) _ Z (yl _‘ul) Zi— Z AJS]CLJ;
a i=1 j=1

where j1; = {1+exp (z/ K+ 2 a+ 32 Az)) }71 exp (z] K+ 2 a+ 3z Az;). In both the Pois-
son and Bernoulli response case, the estimates can be obtained by using a penalized iterative

reweighted least-squares approach, as detailed in Sections 4.2 and 4.3 of Wood (2006).

A.3 Derivation of I,(¥,\) for Common Responses

For Poisson distributed responses, let n; = a:lTn + ziT B. Then ignoring constants, we have
n q

leom (¥, B) = -21 {yini —exp(n:) } + 21 (Tldj In(2;) — Tlfljﬁfsjﬁj) . Letting r; = y; —exp(m),
= j=

we obtain

9loom (¥, 8) (Z d B[SIB/ d By Sqﬂq>

AN \ETg T2 v, 2



n
Y exp(n)ziz, O ... 0

i=1

d
_ Pleom(P,8) 0 2—1112 ... 0
==
(¥, ) (¥, N) 0 0
d
0 0 O ﬁ
31 For normally distributed responses, let r; = y; — :ciTr-c — zl-T 3. Then ignoring constants, we have

2 leom(¥,8) = —2 'nIn(¢) — (20)"' L 2+ ¥ (2—1dj1n(zj)—2—1Ajﬁjsj5j), from which we
i=1 =1

33 can obtain

leom(¥, 3) _ i rik; N i r; d1 ﬁlTS],B1 dg B, S.B4
(T, \) =9 2¢ 22 2 2, 2
n T n
I I 0
i=1 i=1
n T n 2
Y- —apt XL 0 0
82€C0m(\I’”6) B i=1 i=1 ;
(T N)(T AT 0 0 ﬁ .. 0
o . 0
d
0 0 0O O ﬁ
34 Finally, for Bernoulli responses, we can write the complete log-likelihood as fcom (¥, 3) =

n q
s Y [ymi—In{l+exp(n)}+ ¥ (2’1djln(7tj) —2*17LjﬁjTSj,8j>, where 1; = z kK + 2, 3 and
i=1 j=1
3 quantities constant as a function of ¥ and 3 are omitted. From straightforward differentiation, we

37 obtain

(T, ) 22,

a com(‘I’ 5 i dl /BP—SIIBI dq _B;Sqﬁq
~ 2 22, 2
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Y wxixz!l 0 ... 0

i
i=1

 Pleomi(¥.8) 0 2‘171]2 .0
(¥, X)9(T,A)T : o - ol
0 0 0 %2

where r; = y; —exp(n;){1 + exp(n,-)}*l and w; = exp(n;){1 + exp(ni)}*z.

A.4 Proof of Lemma 1

For all of the developments below, it is important to point out that notation-wise, 3 and a will be
used interchangeably to denote the smoothing coefficients. Specifically, while the true parameters
are denoted by 3° and the variational estimates are denoted by @, general reference to the smoothing
coefficients will be made as @ = (¥'', 3" )T or @ = (¥",a")".

We will prove the results separately for each of the three response types.

n -1 n -1
Normal response: We have A = (SA+¢1 Y ziz?) =n! (nlsA +nlo7l Y ziziT>
i=1 i=1

Since A; = o(n'/?), then n~! S = o(1) element-wise and we need only focus on the second term in

the denominator. Next, let B; = (x,', 2, )" be the full (p +d)-vector of covariates for observation
i. Applying Condition (C4) to the normal response case, we have that .# (6°) = (¢°)"! BB/ isa
finite and positive definite and hence the principled submatrix .#,(8%) = (¢°)~'2;2/ is also finite
and positive definite. Since ¢ is chosen to satisfy ¢ — ¢°, then by independence of the observations

n
it follows that n =191 ¥ 2;2," converges to .7, (8°). It follows that A = O,(n~!) element-wise.
i=1

n -1 n -1
Poisson response: We write Al = (SA + Y wiziziT) =n"! (nISA +n 'Y wizizT)
i=1

. i
= i=1

where w; = exp (az?m +2zla+ 2*1zl~TA(O) zi>. Since n~!Sy = o(1) element-wise, then we can

solely focus on the second term in the denominator. Applying Condition (C4), we obtain . (90)

wIB B/ is finite and positive definite where w = exp (x| k°+ 2/ 8°), and hence .7, (6°)
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w(l)zlle is also finite and positive definite. Suppose we take AO) = pr1, for r > 27" as an

starting value, where I; denotes an identity matrix of dimension d. Since 0 is chosen to satisfy
n
10 — 8°|| = O(d"/*>n='/?), then by independence of the observations it follows that n=' ¥ w;z;z,

i=1
converges to ., (0). It follows that A = O,(n~!) element-wise.

Bernoulli response: Write Al = (S’A + f W,-z,-z?) B =n! (n_IS)\ +n! ‘)n:l Wiz,-zl-T) B

= i=
where W; = {l—f—exp( x/k—2za-2712 A0z )}7 . Since A; = o(n'/?), then n~'Sy =
o(1) element-wise and we need only focus on the second term in the denominator. Suppose
we take A = "I, forr>2'asa starting value, where I; denotes an identity matrix of
dimension d. Since 6 is chosen to satisfy ||@ — 0°|| = O(d'/?n~1/?), then by independence

of the observations it follows that n~ Z W;ziz T converges to . (00) = w(lez1 where w(f

i=1
{1 +exp (—a:lTFLO — le,BO) }71. It remains then to prove that this matrix is finite and positive
definite. To show this, note that 1 4exp (azl-TK;O + zl-T BO) > 1 and hence it is straightforward to show
WY > w) where w) =exp (z; K0+ 2, 8°) {1 +exp (2] K* + 2 B7) }_2. Next, applying Condition
(C4) we have that .# (6°) = w{ B, B/ is finite and positive definite, and hence .7, (0°) =wz 2| is
also finite and positive definite. Since W? > w(l), and noting that vT/(l) is bounded by some sufficiently

large constant under Condition (C3), then .# (6°) must also be finite and positive finite. It follows

that A = 0, (n"!) element-wise.

A.5 Proof of Theorem 1

We first prove the following result relating the variational and true model log-likelihood functions.

q
Proposition 1. Assume A = O(n~!) element-wise, and let R = 27! Y d;In(A;) — tr(SxA) +
j=1
27 'Indet(A). Then for normal responses we have

Lnorm (P, &) = £(0) — %aTSAa - — Z 2 Az +R,
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where £(0) = ¥ Inf(y;|0) and f(yi|0) is the normal distribution with mean = k + z,' 3 and
=1

1=

variance @.

For Poisson responses, we have

“ d? 1
gPois(\Ilvﬁ) = 6(0) - Zexp(w;r’i—’_zi—ra) 0 <7> ‘ - ECLTS)‘CL—I—R.
i=1

where £(0) = Y. In f(yi|@) and f(yi|0) is the Poisson distribution with mean exp(z] k+ 2z B).

=1

For Bernoulli responses, we have

Lo (W.€) = £(8) — Y. exp(a] k4 2] )

d? 1
0] (—) ‘ ——-a'S\a+R,
= n 2

where £(0) = i In f(yi|0) and f(y:|0) is the Bernoulli distribution with mean {1+ exp(—x; k —
i=1
% B}

Proof. The normal response case is trivial by realizing that

(0)= -2 'nin(0) - (20) ' X (v~ 2/ x— = B)"

For both the Poisson and B;noulli response case we will use the fact that under Conditions (C2)
and (C6) and given A = O(n~!) element-wise, we obtain z,' Az; < ||2;'||?||A|| = O(d*n~ ') = 0(1)
foralli=1,...,n.

Turning specifically to the Poisson response case, by using the Taylor expansion exp(2~! ziT Az)=

1+ O(ziT Az;) for ziT Az; — 0, we can write the variational log-likelihood as

£Pois(\IJ7£)

I
(ngE

1 1
{yi <:r;l-Tl~c+zl~Ta) —exp <m?&+z?a> exp <§z,~TAzl~) } — 5(,,T,S.’>‘a,+R
d? 1
[yi <:12in<a+ziTa> —exp (w?m—i—z?a) {1 +0 (—) H — EaTSAcH—R
n

n 2 1
=/(0)— Zexp(w?n%—z?a) ) (%) ’ - EaTS’)\cH—R,

i=1

I
—_

I
M=

~
ey
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where the constant — f In(y;!) is added in the last step.

For the Bernoulli rle:slponse case, we will use the fact that In(c+¢€) =In(c) +O(¢g) if e —» 0 and ¢
is positive and bounded away from zero. Choosing € = exp (z, K+ 2, a) (exp (2712 Az) — 1),
and recognizing that this satisfies € — 0 given Conditions (C2) and (C6) and A = O(n_l) element-

wise, then we can write the variational log-likelihood as follows

n

Lgern (W, &) = Z{ (m K+ 2z a>—ln{1+exp(m n—i—z a+ - z Azl>H +R

[ (m K+ z; a)
—ln{l—f—exp <wiTn+ziTa> +exp (a:iTn—i—ziTa) (exp (2 z; Az,) )H +R

=/(0)— Z 0 {exp(w?n%—z?a) (exp (%ziTAz,) — 1) H — %aTSAa +R

i=1
2
1
0 (d—> ’ —~a'S\a+R,
n 2

=/(0)— Z exp(z; k+2a)

where to go from the third to the fourth expressions on the right hand side, we again use the result

exp(2712 Az) =1+ 0(z Az;) for 2, Az; — 0. O

Proposition 1 is critical, as it allows us to then relate the first and second derivatives of the
variational log-likelihood to the corresponding derivatives of true model log-likelihood as follows.
To see this, write the variational log-likelihood as ¢(¥, &) = ¢{0,vech(A)}, and let Vg and Vg
with the first and second derivative operators with respect to 6. Also, define B; = (] ,2,)". Then

we have

1 &
VOENom{OaveCh(A>} = V9€(0> - <O7 _quz Z ziTAzi» S)\a>
i=1

V9£P0is{07VCCh(A)} = Veg(e) - Zexp(w?& + ZiTa’)
i=1

dZ
0 (7) ’B,-— (0,8xa) (1)

Volgermi0,vech(A)} = Vgl(6) — Zexp(mjmzj a)
i=1

d2
0 (7) ’ Bi - (07 S)\Cl) )
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Also,

— V2 norm {0, vech(A)} = —V20(0) + Mnom {6, vech(A)}
—Vilois {0, vech(A) } = —V5£(6) + Mpois{6, vech(A)} ©)

—Vlpen{0,vech(A)} = —V20(0) + Mpem{0,vech(A)},
where MNom{6,vech(A)}isa (p+d+1) x (p+d—+ 1) matrix with structure

0 0 0
Myom{0,vech(A)} = [0 (497" £ 2T Az 0 |,
i=1

0 0 S
and both Mpy;s{60,vech(A)} and Mpem{6,vech(A)} are (p+d) x (p+ d) matrices with the
following structure

n n
¥ expla] r+z @)lo(dn o] ¥ exple] k+z @)|0(dn iz
= 1=

n n
.Zl exp(z; k+2a)|0(d*n )|z, .Zl exp(z; k+ 2 a)|0(d*nY)|ziz, + Sy
=

i=
We now move on to the main proof for consistency. To show this, if we can prove that for any
given € > 0, there exists a sufficiently large constant K| > 0 such that
P < sup £{0,vech(A)} < E{OO,Vech(A)}> >1-—¢, 3)
0:]|0—6°||=d'/2n—1/2K,
there it implies that with probability tending to 1 there exists a local maximizer of £(W¥, &) satisfying
16— 6°l| = 0y (d'*n~112).
To prove (3), first note that any point inside the ball {8 : |0 — 8°|| = d'/2n~'/2K,} satisfies the

conditions of Lemma 1 and hence A = O(n~!) element-wise. Next applying a Taylor expansion
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we have

A(0) = £{0,vech(A)} — £{6°, vech(A)}
=(0—6°) "Vt {6° vech(A)} — %(0 —0% " [-Vge{6° vech(A)}] (0 —6°)

1 9m(8) 9371, vech(A)}
6 Z 06,006,060,

r,s,t 1

(0—6°),(6—06%,(60—0%),

éTl‘f‘TZ‘i‘T?ﬁ;

where 8 lies on the line segment joining @ and 6° and dim(@) = p +d + 1 for normal responses
and p + d for Poisson and Bernoulli responses.

For term 7y, by the Cauchy-Schwarz inequality we obtain 7; < |6 —6°|| [Vg£{6°,vech(A)} || =
d'2K, |n" 12V gt {6° vech(A)} ||. Next, we establish the following three results. First by Con-

ditions (C2)-(C3) and (C6), Lemma 1, and applying the Cauchy-Schwarz inequality, it holds that

n~1/2 ): 2 Az <n1/? Z ||| Al = O(d*n~"/?) = 0(1) and hence 2~ 1n~1/2(90) 2 Z 2 Azi| =

o(1). Second n I/ZHS)\,BOH < 0(d'/?) by Conditions (C3), (C6) and A; = o(n'/?) for all j=
1,...,q. Third, n='/2 H.Zlexp(a:i n0+ziTﬂ0)|O(d2n_l)\B,~H = O0(d**n='/2) = 0(d"/?) by Con-
ditions (C2)-(C3) and (ZC_6).

Applying the above set of three results, we obtain
In=1/2Vg£ {69, vech(A)} || < Hn—lﬂvge(eO)H +0(d"/2). Finally, since Vo£(6°) = ¥ 9 In{ £(16°)}/96
where f(y;|@) belongs to the exponential family for all three responses considereiz,l then under
Conditions (C1)-(C4) we can utilize standard asymptotic developments regarding generalized
linear models to show that V£(8°) = 0,(n'/?) element-wise (e.g., Zou, 2006). We thus obtain
=K0,(d).
For term T3, using (2) we can write 7o = —271(6 — 0°) T {-V5/(6°)}(0 — 6°) —271(0 —
0°) " Miesp(0°)(6 — 6°) where Miesp{0°, vech(A)} refers to one of Mom{6°,vech(A)},

Mpyi{0°,vech(A)}, or Mper{0°,vech(A)} depending on the response type. By the Cauchy-
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Schwarz inequality,

(0 —0°) " Miesp{6°, vech(A)} (0 —6°) < |6 — 6°|” | Mresp{6°, vech(A)}|

= dK?||n~ " Miesp{6°,vech(A)}| .

Now, for the case of normal responses, we have n! ZT Azi| = o(1) by Condition (C2) and
=1

Lemma 1. Also, ||n='Sy|| = O(Adn~!) = o(1) by Condition (C6), and hence we conclude
|n~! MNorm{6°, vech(A)}|| = o(1). Turning to Poisson and Bernoulli responses, given ||n~! Sy || =

n
o(1) then we need only focus on the the matrix 7! '21 exp(z; k" + 2z 3°)|0(¢*>n~1)|B;B,". By
=

Conditions (C3), it holds that exp(z; K° + 2, 8°) < K, < = forall i = 1,...,n and some constant

o9
-0 (é) —o(1)

It follows that ||n~! Mpois{6°,vech(A)}|| = o(1) and ||n~! Mpem{6°,vech(A)}|| = o(1), and
hence T = —271(0 — 6°) T {-V2¢(6°)}(0 — 0°) + Kio(d).

K>. Thus by Conditions (C2) and (C6), we have

1Zexp x! k4 2 8%)0(d*n )| B;B;

Write the first term of 75 and —27'n(6 — 6°) " {—n"'V2£(6°)}(0 — 6°). Then we make use of
the following result.
Proposition 2. ||—n~'V30(6°) — .7 (6°)|| =0, (d7")
Proof. By Markov’s inequality and independence of the observations,
(8 5
L8 ZE S [P0} (3In{(6))
n28 06,00, 00,90,

r,s=1
d2

== nO(d*) by Condition (C5)
2

P (H—%V%K(OO) —7(0%] >

n

4
=0 (d—) =o0(1) by Condition (C6).

10



and the required result follows. 0

Applying the above proposition, we obtain

—%n(@ — T {—n'V30(6°)} (6 — 6°) = —%n(@ _ T {f(eo) +0, G) } -6

_ —%n(@ —6°)7.7(6°)(6—6°) +0,(1)

Therefore, 7o = —2"'n(0 — 0°) " .7(6°)(0 — 8°) + K?o(d). Finally, by Condition (C4) we have
the minimum eigenvalue of . (00), denoted here as Ty,;,, is bounded away from zero. Thus
n(@—6%7.7(0°(0—86% >n||0 — 6°|*tyin = K? Tmind and hence T» < —K? Tiyind < 0.

For term 73, by the Cauchy-Schwarz and Minowski inequalities, we can write

| 1/2
am(©) [ 337 (G, vech(A)}
<103 il Sl
6/T5] < [0 —6° ;.( 06,06,06,
| ] s ‘ _ 1/2
<[|0—-6° dmi(‘,e) @) \’ /+||0 0|3 dmi(',e) 3[Miep {8, vech(A)}]s} ) ? /
B rst=1 89;«8 Qsa 6; rsit=l1 J o

éUl—i—Uz

where [M {0, vech(A)}],s refers to element (r,s) for M {0, vech(A)}. Dealing with term U first,

in the normal response case, from equation (2) we have o[ Mnom {0, vech(A)}],s}/06, = 0 for
_ _ n

all r,s,t = 1,...,dim(8) except for o[ Mnom{0,vech(A)}p11,p+1}1/00 =—1271¢7* ¥ 2 Az
i=1

Therefore since ¢ lies inside the ball {8 : |0 — 8°|| = d'/?n~1/2K; }, then we obtain

a\** 1 d i
Uy = —12K; (—) P |

3/2
SIRTTICARMLE STV

n -1

n
2 Az
i=1

d7/?
=K;0, <W> by Conditions (C2)-(C3) and Lemma 1

=o0,(1) by Condition (C6).

11
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For Poisson response case, from equation (2), and denoting B; = (a:lT, z; )T, we have

— n —
0[Mpois{0,vech(A)}]s} /06, = ¥ exp (x] &+ 2 B) |0,(d*n1)| By BBy forr,s,t =1,...,dim(6)
i=1
where B;, refers to the r-th element of B;. The same expression in obtained by the Bernoulli re-

sponse case. Since (&, 3) lies inside the ball {8 : |6 — 8°|| = d'/>n~1/2K; }, then we obtain

U2 Kl (

32
—K} (%) 0, (a7/?) " by Conditions (C2)-(C3)

1/2

| &

3/2 [ dim(0) n g
) ) (Z exp (w?k%—z?ﬁ) ’0p(d2n1)|BirBisBit>

rst=1 \i=1

=0, (1) by Condition (C6).

It remains then to determine the order of term U;. We have

3/2 /dim(0) 3080 N 2\ /2
U = Kf’ (£l> Z (M)
n) \,%= 96069

3/2 dim(8) /53 o\ 2 1/2
= K13 (%) nOp ( Z (#ﬁgg}) by independence of the observations

rst=1

Kid*? d3/2 dim(0 12
< ( Z G2, (y110) ) by Condition (C5)
rst=1
de3/2
YV

0,(d*?) = K}o,(d) by Condition (C6).

Combining the order results of U; and U, above, we conclude that 73 = 0,,(d).

To summarize then, we have T = K10,(d),T> < —K?dTmin, T3 = op(d). It follows that if
provided we choose K large enough, then 7, which is negative asymptotically dominates 77 and
T, and the probability statement in (3) follows. Therefore we conclude that there exists a local
maximizer of £(¥, ) satisfying ||@ — 8°|| = 0, (d'/>n~'/2). Finally, since as a function of 6 the
variational log-likelihood £(W, &) resembles a generalized linear model with a quadratic penalty on

the smoothing coefficients a, then it is straightforward to show that the variational log-likelihood is

12
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strictly convex with respect to @ for the three response types considered. Hence 0 coincides with

the VA estimate (the global maximizer) and the required result follows.

A.6 Proof of Theorem 2
Based on equation (1) in the proof of Theorem 1, we have the following expressions for the first
derivatives of the variational log-likelihood evaluated at (¥, €) = {8, vech(A)},

1 ) 1 ) I N T
0= 1/2 VgﬁNorm{B VeCh(A)} 1/2 ng(@) — <0, _m;zi AZl‘, mSkG)

1 . 1 A 1 & . . d? 1 )
0= 1/2V9€POIS{0 vech(A)} = I/ZVQE(O) i Z{exp(m?n—kz?a) o (7> ' B;— (O, mSAa)

1 . 1 s 1 & e Ta d? 1
0= 1/2Vg€Bem{0 vech(A)} = 1/2V9€(0) 5 ;exp(a:,- R+z; a)l0 - B;— O,WSAa .

We aim to prove that for all three response types, the first derivatives of the variational log-
likelihood is dominated by Vg/ (é) First, we have by Theorem 1 that ¢ LN ¢°. Thus applying this

~ n ~
result along with Conditions (C2)-(C3) and (C6’) and Lemma 1, we have n1/ 2¢_2 Yy ziTAz,- <
i=1

n12¢2 é |zi]1*|| A|| = 0p(a@*n~1/2) = 0,(d~"/?). Also, by Conditions (C6") and A; = o(n'/2d 1)
for all j :lil, ...,¢, we have n_l/ZSAB = o(d_'/z) element-wise. Turning to the Poisson and
Bernoulli response case, by the estimation consistency result from Theorem 1 along with Condi-
tions (C2)-(C3) and (C6’), we have n~!/2 i exp(z; &+ 2 B)|0(d®n~1)| B = 0p(d*n~1/?) =
0,(d~'/?) element-wise. -

Applying the above results, we therefore obtain

1

0= 1/2 resp{e vech(A)} =

1

7 —=Vol(0) + 8y,

where 8, = 0,(d~'/?) element-wise and Lresp10,vech(A)} refers to one of Iyom {0, vech(A)},

lpois{0,vech(A)}, or lg., {0, vech(A)} depending on the response type. Next, applying a Taylor

13



183

184

185

186

187

189

190

191

192

193

194

series expansion to V() about 8°, we have

1 A
0= n1/2V9€(0)—|—(51

1 1 A 1
l/zvgz(eo) {_nge(eo)}nl/z(e—eo) 21/2V—|—51

dim(0) _ . .
where v is a vector with ¢-th element v, = Y 93¢(0)/96,00,06, (8 — 6°),(8 — 0°); with
r,s=1

(6 — 69), denoting the r-th element of (6 —6°), and 8 lies on the line segment joining § and 6°.

Note that by the Cauchy-Schwarz inequality,

i=1 r,s=1

1 1 s o2y aalo V2 ..
W|Vz| < m”(@—O || Z Z G2, () by Condition (C5)

d2
=0, ( I /2) by independence of the observations and Theorem 1

1 .. ,
=0, (m) by Condition (C6’).
In addition, with a similar proof to that of Proposition 2, we can show that under Condition (C6),
|-n"'V30(6°) — .7 (6% =0, <d_3/2>. Applying these two results, we obtain

1 1 A 1
0= 1/2vez(¢90) {ﬂ(00)+0(3/2>}n1/2(9—00) 17 . (4)

Furthermore, rearranging equation (4) we obtain n'/2.#(6°)(8 — 6°) = n=1/2v40(6°) + &, where
8 = 0,(d"'/?) element-wise.
Let G be a k x dim(8) matrix with k < d a fixed constant and satisfying GG" = I;. Then

following straightforward manipulation, we obtain

n'?GO-6") = — G5 (6°)Vel(6°) + G5 (8%)8. (5)

nl/2

We now show that the last term on the right hand side of (5) is asymptotically negligible. To do this,

let Tmax(-) and Toiq(-) denote the maximum and minimum eigenvalues of a matrix. As .# ~1(6°)

14



s and G G are both positive-semidefinite matrix, it follows that

Tmax{Z 109G GZ1(0°)} < 10 {7 ()} T (G G)

= '7:max{fﬂ71 (00)}2TmaX(GGT)
1
i 7 (69))2

= O(1) by Condition (C4).

s Therefore, |G- 1(6°)8]]> < Tmax{-# 1 (0°)GT G771 (8°)}]|8> = 0,(1) since § = 0,(d~"/?)

107 element-wise. Equation (5) hence reduces to

A 1 _
n'2G(6-6°) = —7GI 1(0%)Vgl(8°) +0,(1).

19s To establish the asymptotic normality of the VA estimates, we let L; =n~'/2G.7 =1 (6°)d In £(v;|6°) /960

n
o suchthat ¥ L;=n"'2G.7~1(8°)Vl(6°). Note that E (L;) =0 and Var (L;) =n~'G.# ' (6°)G "
i=1
200 by Conditions (C3) and (C4) respectively. We need to show the Lindeberg condition is satisfied.

201 Thatis, for any € > 0

. (1 ot
tin | (2 B(L) (;Gf G >G) {Li—E(L)}

i=1

x1 {Li—E(Li)}T(%Gf*I (00)G7)71 {L,-—E(L,-)}>n8:| =0

22 To see the above is true, first note that from the prove of Theorem 1 it is straightforward to
203 show L; = Op(n_l/ 2) element-wise (see also Theorem 14.4.1, Bishop et al., 2007). Therefore

o E(|Li—E(L)[?)* =E (L))’ = 0, (n~2). By Markov’s inequality then,

2 £ d d
Btz ewpss) =P(ILI7 =) < SEQILIY) =0, (Z) _

s Next, note that ax{ (G-~ (89)GT) '} = Twin{ -7~ (80)GT G} " = Toin{ .7~ (8°)} " = Tnax {7 (6°)1.

15



e Furthermore, by the Gershgorin circle theorem Timax (% (0°)) is at most of order O, (d). It follows
207 that

-1

T = lim - ZE {L;—E(L)}' (%GJ‘I(OO)GT) {L; - E(L;)}

n—oo n

1 {Li-E(L)} (tar- (0°>GT)"{Li—E(Li>}>ns]

—1
T 0 T )
_I}%ZE(L (Gf Cate ) L,anT(Gw(eo)GT)lLM)

im 3B (a7 (O} X Ly o091

n

1/2
< Tmax{j(eo } hm Z ( |L || ) X E <]1HL1'H2>STmaX{j(90)}71) )
i=1

d3/?
= o | | =0

28 Thus the Lindeberg condition is satisfied and we can apply the multivariate Lindeberg-Feller central

20 limit theorem to obtain n~'/2G.7~1(0°)V4£(6°) 4 N (0,GZ1(0°)GT), and
n'2G0 -6 % v (0,Gs ' (00G).

20 Taking G as the matrix which identifies the elements of & in 6, recalling that dim(x) = p is finite,

2 it follows that n!/2 (& — k) 4 #(0,771(6°),) as required.
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B Illustration of How to Construct P-spline Basis Functions

We provide a simple illustration of how to construct P-spline (penalized B-spline) basis functions
and perform the centering constraint. A general overview of spline basis construction as part of
GAMs can be found in Sections 4.1 and 4.2 of Wood (2006), while more technical details on
P-splines may be found in Eilers and Marx (1996), Poliakoff et al. (1999) and De Boor (2001).
Consider covariate j = 1,...,q, for which we want to construct a B-spline basis of degree m; =3
and K; = 5 interior knots. In what follows, we shall suppress the dependence on j for ease of notation.
With K interior knots, we define a total of K + 2m+ 2 knot locations ug < u; < up < -+ < Ug+2m-+1,
with the first and last m knots placed at essentially arbitrary locations. Generally, the k" B-
spline basis function of degree m, written as Z ,,(u), can be defined recursively as follows. For

k=0,...,K+2m+1,

U—ug Uptm+1 — U
Zikmu) = ———Zg 1 () + ————Zp 1 m—1(1)
" (Ups-m — uk) " Wktm1 — Ukt 1 o ’
and
I ifuy <u<uggps
Zk,o(u) =

0 if otherwise.

The above recursion is referred to as the Cox-de Boor recursion formula (De Boor, 2001). Note
that m = 0 corresponds to a step function assigning one if u is in the &' knot span [uy, 1 1). When
m =1, Z; 1 (u) spans two intervals and is piecewise linear while Z; »(u) spans three intervals and is
piecewise quadratic, Z; 3(u) spans four intervals that is piecewise cubic, and so on. As discussed
in the main text, the most common choice is cubic B-splines with m = 3, as it provides sufficient
flexibility for approximating most functions. Note the local support of B-splines is one of main

computational advantages, in contrast to standard polynomial splines, for instance.
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At value u; for observation i = 1,...,n the B-spline basis function smooth is then given by
K+m
s(i) =Y Ziw(ui) B =2/ B,
k=0
as given in Section 2 of the main text, where 3 = (ﬁlT ey ﬁdT)T is the vector of smoothing
coefficients of dimensiond = K +m+ 1.

Note that the first basis function k = 0 is often referred to as the “intercept”, and in typical
B-spline implementations is removed to avoid multicollinearity issues. This in turn leaves z; being
of dimension d = K + m. In the below, we assume that this has been done.

P-splines are formed by combining the above B-spline basis functions with a difference penalty
on the smoothing coefficients to control for overfitting. Typically this is based on squared difference
of adjacent coefficients, such that the penalty can be written in the form P = A4 ZkKL’" (Bir1 — Br)>.

This however can also be written in matrix form

poag” g

=2B" 8B,

where A > 0 is the smoothing parameter.

The construction of P-splines outlined above does not enforce any centering constraint, which
is reflected in the fact that both the n x (K 4 m) B-spline model matrix Z is only of rank (K +
m— 1). To enforce this constraint, we want the mean of the elements Z3 to be zero, which is
equivalent to wanting 17 Z3 = 0 where 1 is a n—vector of ones. This constraint can be achieved
via reparameterization: specifically, if we can find a (K 4+ m) X (K +m — 1) orthogonal matrix H

such that 1T ZH = 0, then we can set 3 = H 3 for a new vector of smoothing coefficients 3 of
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254

length (K +m— 1) such that Z@ = Z H3 = Z 3 automatically satisfies the centering constraint.
Note that in turn, the smoothing penalty is redefined as 3" S8 =8"TH SHB3 =375/ and the
penalization is on the reparameterized smoothing coefficients 3. Such an orthogonal matrix can be
found by applying a QR decomposition to the vector of columns sums of Z and then taking the last
(K 4+m— 1) columns of the associated Q matrix.

In the script pspline_set_up.R, we present code which demonstrates how the above is imple-

mented in R. This code is used as part of our main fitting function vagam in the script vagam main.R.
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C Additional Simulation Results

1) VA assuming an unstructured covariance for A (VA-Unstruc); 2) VA assuming a block diagonal
structure A (VA-Bdiag); 3) A penalized likelihood approach using mgcv, with all settings set at
the default options (mgcv-Default); 4) mgcv using P-splines and all other settings set at the default
(mgcv-P—splines); 5) A mixed model approach using gamm4 with P-splines and all other settings set
at the default (gamm4). Note that methods 1, 2, and 5 employ a mixed model framework for GAMs,
while methods 3 and 4 employ a penalized likelihood framework.

We used a variety of criteria to assess performance, as discussed in Section 6 in the main text.

C.1 Poisson Responses

20



Table 1: Results for Poisson GAMs, based on averaging across simulated datasets. Below, we
present results for the: bias and mean squared error of the parametric component (Bias, and MSE,),
coverage probability and mean width of the 95% confidence interval for the parametric component
(CI coveragep, and CI width,,), mean squared error for the overall fit on the linear predictor scale and
mean response scale (MSE and MSE/.), mean width of the 95% confidence interval and interval
score for the ten out of sample validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgev (P-splines) gamm4
Bias, -0.007 -0.005 -0.009 -0.010  -0.008
MSE, 0.012 0.014 0.010 0.016 0.012
CI coverage, 0.972 0.949 0.936 0.957 0975
100 CI width,, 0.545 0.505 0.348 0473 0474
MSE 0.328 0.330 17.581 1346.472  0.627
MSEesp 22.820 22.786 21.021 23.329 22.803
CI width 2.371 2.092 5.358 90.981 3.350
Interval score 33.331 33.938 35.469 119.501 32.051
Bias, -0.004 -0.004 -0.003 -0.005 -0.004
MSE, 0.003 0.003 0.002 0.003  0.003
CI coverage, 0.967 0.959 0.941 0.948 0.961
200 CI width,, 0.224 0.217 0.167 0.205 0.213
MSE 0.205 0.203 10.197 36.133  0.395
MSEesp 19.619 19.297 16.647 20.103 19.615
CI width 1.654 1.548 2.511 3.153  2.221
Interval score 34.887 35.154 35.692 35.190 34.169
Bias, 0.000 0.000 0.000 -0.001 0.000
MSE, 0.001 0.001 0.001 0.001 0.001
CI coverage, 0.946 0.943 0.930 0.938  0.941
500 CI width,, 0.103 0.101 0.084 0.097  0.100
MSE 0.125 0.124 2.720 1145.791 0.206
MSEresp 13.404 13.198 9.583 13.503 13.396
CI width 1.179 1.143 1.281 5.359 1.448
Interval score 36.594 36.696 37.366 40.420 36.258
Bias, -0.000 -0.000 -0.000 -0.000 -0.000
MSE, 0.000 0.000 0.000 0.000  0.000
CI coverage, 0.968 0.963 0.951 0.965  0.965
1000 CI width,, 0.061 0.060 0.054 0.059  0.060
MSE 0.076 0.076 0.430 0.201 0.111
MSEesp 9.250 9.110 6.472 9.445  9.244
CI width 0.883 0.867 0.791 0.949 1.040
Interval score 37.386 37.398 37.919 37.310 37.202
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Table 2: Results for Poisson GAMs, based on taking the median across simulated datasets. Below,
we present results for the: bias and mean squared error of the parametric component (Bias, and
MSE,), mean width of the 95% confidence interval for the parametric component (CI width,), mean
squared error for the overall fit on the linear predictor scale and mean response scale (MSE and
MSE;esp), mean width of the 95% confidence interval and interval score for the ten out of sample
validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgcv (P-splines) gamm4
Bias, -0.000 -0.005 -0.005 -0.009 -0.002
MSE, 0.005 0.005 0.003 0.007  0.005
CI width,, 0.483 0.444 0.333 0.452  0.465
100 MSE 0.285 0.287 0.838 0.402  0.451
MSEesp 17.802 17.611 16.217 18.282 17.721
CI width 2.327 2.035 2.841 2.928 3.134
Interval score 34.176 34.084 34.395 33.845 32.096
Bias,, -0.003 -0.003 -0.004 -0.006 -0.003
MSE, 0.001 0.001 0.001 0.001  0.001
CI width,, 0.214 0.209 0.165 0.202  0.209
200 MSE 0.180 0.179 0.530 0.224  0.267
MSEesp 16.461 16.241 13.266 16.997 16.469
CI width 1.627 1.514 1.743 1.868  2.087
Interval score 34.163 36.854 36.563 34,109 34.158
Bias, -0.001 -0.001 0.000 -0.001 -0.001
MSE, 0.000 0.000 0.000 0.000  0.000
CI widthy, 0.101 0.100 0.083 0.097  0.099
500 MSE 0.101 0.101 0.357 0.118 0.130
MSEesp 12.192 11.973 8.546 12.264 12.172
CI width 1.150 1.116 1.036 1.209  1.381
Interval score 37.125 37.114 37.204 37.126 37.212
Bias,, -0.000 -0.001 -0.000 -0.001  -0.000
MSE, 0.000 0.000 0.000 0.000  0.000
CI width,, 0.060 0.060 0.054 0.059  0.060
1000 MSE 0.061 0.061 0.335 0.066 0.076
MSEesp 8.523 8.384 5.664 8.665 8.494
CI width 0.859 0.843 0.735 0.882  0.996
Interval score 36.986 36.985 37.420 37.013 37.098
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Figure 1: Comparative boxplots of computation time in seconds for various methods of estimating
GAMs with Poisson responses. Note time on the y-axis is on the log scale. Outliers have also been

removed to better visualize the differences in time between the methods.
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x C.2 Bernoulli responses
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Table 3: Results for Bernoulli GAMs, based on averaging across simulated datasets. Below, we
present results for the: bias and mean squared error of the parametric component (Bias, and MSE,),
coverage probability and mean width of the 95% confidence interval for the parametric component
(CI coveragep, and CI width,,), mean squared error for the overall fit on the linear predictor scale and
mean response scale (MSE and MSE/.), mean width of the 95% confidence interval and interval
score for the ten out of sample validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgcv (P-splines) gamm4
Bias, -0.072 -0.075 10.666 12417 0305
MSE, 0.319 0.313 2069.048 1468.879  5.934
CI coverage, 0.964 0.965 0.960 0.990 0.934

oo Clwidthy 2.340 2.327 (> 10% (>10%  3.989
MSE 2.021 2.070 (> 10% (>10% 33.948
MSEesp 0.020 0.021 0.063 0.085  0.022
CI width 2.690 2.590 (> 10% (>10% 10473
Interval score 31.466 31.690 (> 10% (>10% 30.305
Bias, -0.060 -0.061 1.471 6.638  0.040
MSE, 0.174 0.173 712.480 908.577  0.269
CI coverage, 0.963 0.965 0.928 0.951 0.931

hop  Clwidthy 1.692 1.687 255.685 4166.608  1.862
MSE 1.191 1.209 (> 10% (>10% 1417
MSEresp 0.012 0.012 0.018 0.037 0.012
CI width 2.234 2.168 3894.705 (>10%  4.567
Interval score 33.138 33.356 3918.445 (> 10% 29.235
Bias, -0.032 -0.033 0.019 0.009  0.023
MSE, 0.067 0.067 0.083 0.082  0.083
CI coverage, 0.962 0.961 0.956 0.958  0.952

sop  Clwidthy 1.083 1.081 1.153 1.161  1.141
MSE 0.635 0.663 17.013 (>10%  0.650
MSEresp 0.007 0.007 0.006 0.008  0.007
CI width 1.718 1.669 3.251 8.954  3.166
Interval score 35.086 35.189 33.735 37.202 32.158
Bias, -0.028 -0.029 -0.001 -0.012  0.006
MSE, 0.037 0.037 0.041 0.039  0.042
CI coverage, 0.952 0.954 0.961 0.957  0.952

1000 C1widthy 0.772 0.771 0.798 0.795  0.798
MSE 0.356 0.379 0.619 0.566  0.350
MSEresp 0.004 0.004 0.003 0.004  0.004
CI width 1.368 1.335 2.073 2445 2381
Interval score 35.932 36.079 34.997 33.685 33.765
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Table 4: Results for Bernoulli GAMs, based on taking the median across simulated datasets. Below,
we present results for the: bias and mean squared error of the parametric component (Bias, and
MSE,), mean width of the 95% confidence interval for the parametric component (CI width;,), mean
squared error for the overall fit on the linear predictor scale and mean response scale (MSE and
MSE;esp), mean width of the 95% confidence interval and interval score for the ten out of sample
validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgcv (P-splines) gamm4
Bias, -0.071 -0.071 0.669 3,576  0.117
MSE, 0.133 0.131 5.915 168.796  0.286
CI widthy, 2.317 2.307 36.566 634.870  2.718
100 MSE 1.948 1.992 5267.241 (>10%  2.004
MSEesp 0.019 0.020 0.064 0.093  0.020
CI widthg 2.627 2.519 2139.575 (>10%  5.908
Interval score 31.051 31.148 2141.575 (>10% 27.103
Bias, -0.067 -0.067 0.061 0.121  0.031
MSE, 0.069 0.068 0.120 0.255  0.099
CI width,, 1.684 1.681 1.989 2.089  1.836
200 MSE 1.127 1.152 3.040 3.185 1.109
MSEesp 0.011 0.011 0.015 0.019 0.012
CI widthg 2.171 2.118 5.889 7.612  4.308
Interval score 34.020 34.010 31.908 35.013 28.869
Bias, -0.029 -0.032 0.023 0.016 0.034
MSE, 0.028 0.028 0.038 0.035 0.038
CI width,, 1.080 1.078 1.146 1.146  1.135
500 MSE 0.595 0.630 0.679 0.633  0.550
MSEesp 0.006 0.007 0.006 0.007  0.006
CI widthg 1.685 1.624 2.870 3.284  3.079
Interval score 34.182 36.247 34.448 31.690 31.564
Bias, -0.027 -0.027 -0.002 -0.006  0.011
MSE, 0.017 0.017 0.017 0.017 0.017
CI widthy, 0.772 0.770 0.796 0.794  0.797
1000 MSE 0.328 0.356 0.351 0.324  0.311
MSEesp 0.004 0.004 0.003 0.004  0.004
CI widthg 1.337 1.306 2.001 2.340 2.342
Interval score 37.256 37.240 34.364 34291 34.320
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Figure 2: Comparative boxplots of computation time in seconds for various methods of estimating
GAMs with Bernoulli responses. Note time on the y-axis is on the log scale. Outliers have also

been removed to better visualize the differences in time between the methods.
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Table 5: Results for normal GAMs, based on averaging across simulated datasets. Below, we
present results for the: bias and mean squared error of the parametric component (Bias, and MSE),
coverage probability and mean width of the 95% confidence interval for the parametric component
(CI coveragep, and CI widthy,), mean squared error for the overall fit on the linear predictor scale
(MSE; note this is same as the MSE on the mean response scale), mean width of the 95% confidence
interval and interval score for the ten out of sample validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgcv (P-splines) gammé4
Biasp -0.013 -0.011 -0.010 -0.015 -0.012
MSE, 0.188 0.188 0.190 0.197 0.187
CI coverage,, 0.932 0.941 0.937 0.933  0.937
100 CI width,, 1.658 1.668 1.647 1.646  1.655
MSE 0.671 0.687 0.709 0.771  0.675
CI width 3.355 3.094 3.316 3.598 3.534
Interval score 30.963 31.666 31.488 30.466 30.546
Bias, 0.003 0.002 0.002 0.001  0.003
MSE, 0.084 0.084 0.085 0.084  0.084
CI coverage,, 0.947 0.948 0.947 0948 0.946
200 CI widthy, 1.148 1.154 1.140 1.143 1.147
MSE 0.389 0.397 0.389 0416  0.390
CI width 2.535 2.386 2.331 2.587 2.642
Interval score 32.695 33.046 33.255 32.547 32.406
Bias, -0.002 -0.002 -0.003 -0.002  -0.002
MSE, 0.035 0.035 0.034 0.035 0.035
CI coverage, 0.950 0.951 0.949 0.951  0.950
500 CI width,, 0.715 0.715 0.711 0.713  0.715
MSE 0.201 0.196 0.180 0.203  0.200
CI width 1.875 1.802 1.506 1.825  1.925
Interval score 34.743 34.898 35.790 34.817 34.593
Bias,, 0.004 0.004 0.004 0.004  0.004
MSE, 0.015 0.015 0.015 0.015 0.015
CI coverage, 0.956 0.958 0.961 0.956 0.955
1000 CI width,, 0.501 0.502 0.500 0.501  0.501
MSE 0.115 0.112 0.103 0.113  0.115
CI width 1.412 1.368 1.089 1.355 1.443
Interval score 36.080 36.228 36.937 36.151 35.995
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Table 6: Results for normal GAMs, based on taking the median across simulated datasets. Below,
we present results for the: bias and mean squared error of the parametric component (Bias, and
MSE,), mean width of the 95% confidence interval for the parametric component (CI width,), mean
squared error for the overall fit on the linear predictor scale (MSE; note this is same as the MSE on
the mean response scale), mean width of the 95% confidence interval and interval score for the ten
out of sample validation points (CI width and Interval score).

n VA (Unstruc) VA (Bdiag) mgcv (Default) mgcv (P-splines) gammé4
Bias, -0.018 -0.020 -0.003 -0.028 -0.022
MSE, 0.082 0.085 0.085 0.081 0.084
CI width,, 1.650 1.662 1.645 1.641 1.652

100 MSE 0.649 0.663 0.661 0.709  0.652
CI width 3.337 3.065 3.272 3.509 3.522
Interval score 31.323 31.239 31.355 31.297 31.346
Biasp 0.005 0.008 -0.004 0.001  0.007
MSE, 0.039 0.038 0.037 0.039  0.038
CI width,, 1.144 1.149 1.140 1.142  1.144

100 MSE 0.374 0.377 0.370 0.391 0.374
CI width 2.523 2.379 2.310 2.565 2.631
Interval score 34.255 34.226 34.190 34.149 31.179
Bias, -0.010 -0.011 -0.008 -0.009  -0.009
MSE, 0.017 0.016 0.017 0.017 0.017
CI width,, 0.715 0.716 0.711 0.714  0.715

100 MSE 0.196 0.190 0.173 0.195 0.195
CI width 1.870 1.796 1.498 1.808 1.919
Interval score 33.947 33.890 37.387 33.941 33.979
Bias, 0.003 0.003 0.003 0.004  0.003
MSE, 0.007 0.007 0.007 0.007  0.007
CI width,, 0.501 0.501 0.500 0.501  0.501

100 MSE 0.114 0.109 0.100 0.110 0.113
CI width 1.407 1.362 1.077 1.344 1436
Interval score 37.362 37.325 37.092 37.289 37.386
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Figure 3: Comparative boxplots of computation time in seconds for various methods of estimating
GAMs with normal responses. Note time on the y-axis is on the log scale. Outliers have also been

removed to better visualize the differences in time between the methods.
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« D Additional Results for Application

Figure 4: Smooths from the fitted GAM using mgcv with default settings (top) and gamm4 with
default settings (bottom), regressing union membership as a function of six covariates. In both fitted
GAMs, results show that no evidence of a relationship between probability of a worker being in
a union and their age, borderline evidence of a relationship to education, and a strong non-linear
relationship with their hourly wage.
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