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1 Proofs of Propositions

1.1 Proposition 3.1

Proof. Let the conditional density of Y | X be f(y|x) = f(y|βT
1 x, . . . ,βT

d x), where the p×d matrix
B = (β1, . . . ,βd) contains the spanning vectors for the CD, and BTB = I. Then

∇x log f(y|x) =
d∑

j=1

gj(y|βT
1 x, . . . ,βT

d x)βj

where
gj(y|t1, . . . , td) =

∂ log f(y|t1, . . . , td)
∂tj

=
1

f(y|t1, . . . , td)
∂f(y|t1, . . . , td)

∂tj
.

Therefore

CX =

∫
f(x, y)

d∑
j=1

d∑
k=1

{
gj(y|βT

1 x, . . . ,βT
d x)gk(y|βT

1 x, . . . ,βT
d x)βjβ

T
k

}
dxdy

=
d∑

j=1

d∑
k=1

E
{
gj(y|βT

1 x, . . . ,βT
d x)gk(y|βT

1 x, . . . ,βT
d x)

}
βjβ

T
k

=(β1, . . . ,βd)G(β1, . . . ,βd)
T

where G is a d×d matrix with (j, k)th element E
{
gj(y|βT

1 x, . . . ,βT
d x)gk(y|βT

1 x, . . . ,βT
d x)

}
. Thus,

the rank of CX is equal to the rank of G. The rank of G will be less than d if and only if
g1(y|βT

1 x, . . . ,βT
d x), . . . , gd(y|βT

1 x, . . . ,βT
d x) are linearly dependent, which occurs if and only if

the rank of the CS is less than d. Further, if we diagonalize G as G = ΦΛΦT , we can rewrite
CX = B∗ΛB∗T , where the columns of B∗ = BΦ are the eigen-vectors of CX. In addition, the space
spanned by B∗ is same as the space spanned by B, i.e. the CS.
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1.2 Proposition 3.2

Proof. Let W = AX + a, and assume A is invertible. Then the density of W is fW(w) =

fX(A
−1(w− a))|det A−1|, where det A−1 is the determinant of A−1. This implies ∇wlog fW(w) =

A−T∇xlog fX(A
−1(w − a)). Therefore, the DIM for the transformed variable W is

JW = A−TJXA
−1. (1)

Using Equation (1) we get JW|Y −JW = A−T (JX|Y −JX)A
−1. Therefore, Equation (3) in Proposition

3.4 gives CW = A−TCXA
−1.

1.3 Proposition 3.3

Proof. Use Proposition 3.2 to write

CZ̃ = (ΓT
ZΣ

−1/2
X )−TCX(Γ

T
ZΣ

−1/2
X )−1 = ΓT

ZΣ
1/2
X CXΣ

1/2
X ΓZ = ΛZ.

Therefore,
CXΣ

1/2
X ΓZ = (ΓT

ZΣ
1/2
X )−1ΛZ = Σ

−1/2
X ΓZΛZ;

so that
CXΣX(Σ

−1/2
X ΓZ) = (Σ

−1/2
X ΓZ)ΛZ.

Since ΛZ is diagonal, G = Σ
−1/2
X ΓZ corresponds to the right eigen-vectors of CXΣX.
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1.4 Proposition 3.4

Proof. We apply the standard definition of DIM for the joint density f(y,x) of the vector
(Y,XT )T ∈ Rp+1 to obtain JY,X. Next we consider the lower right p × p sub-matrix of JY,X;
that is

JY,X(2, 2) =
∫ ∫

[∇xlogf(y,x)][∇xlogf(y,x)]Tf(y,x)dydx.

Since ∇xlogf(y,x) = ∇xlogf (y)(x), we have

JY,X(2, 2) =
∫ ∫

[∇xlogf (y)(x)][∇xlogf (y)(x)]Tf (y)(x)f(y)dxdy

=

∫
JX|Y=yf(y)dy = JX|Y .

(2)

Next, we apply the orthogonal score decomposition (see Section 3.2 in Lindsay and Yao (2012))
∇xlogf(y,x) = ∇xlogf (y)(x) +∇xlogf(x) to show that

JY,X(2, 2) = CX + JX. (3)

Equations (2) and (3) lead to the statement of the proposition.
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1.5 Proposition 4.1

Proof. Let S1 and S2 be two subspaces of Rp, both of dimension q. Then p− q is the dimension of
their null spaces S⊥

1 and S⊥
2 . We have

R2
o(S1,S2) =

1

p− q
tr(QS1QS2) =

1

p− q
tr((Ip − PS1)(Ip − PS2))

=
1

p− q
(p− q − q + tr(PS1PS2)) =

1

p− q
(p− 2q + qR2(S1,S2))

=
1

p− q
(p− q − q(1−R2(S1,S2))) = 1− q

p− q
(1−R2(S1,S2)).

1.6 Proposition 4.2

Lemma: Let S be a subspace of Rp with dimension d ≤ p, and let S1 and S2 be two subspaces of
S, both of dimension q. Also let PS1 and PS2 be two orthogonal projection matrices onto S1 and S2

respectively. If there are k (≤ q) common bases directions between S1 and S2, then tr(PS1PS2) = k.

Proof. Without loss of generality, let us consider the standard basis {e1, . . . , ep} of Rp (each ei ∈ Rp

has a 1 in its ith component and 0’s everywhere else) and assume that the k common directions
between S1 and S2 are {e1, . . . , ek}. Note that PS1PS2ej = PS1ej = ej for j = 1, . . . , k. For
j = k + 1, . . . , p, if PS1 contains the direction ej but PS2 does not, then PS1PS2ej = 0; if PS1

does not contain ej but PS2 does, then PS1PS2ej = PS1ej = 0; if neither PS1 nor PS2 contains ej,
then PS1PS2ej = 0. Therefore, PS1PS2ej = 0 for all j = k + 1, . . . , p. From the above argument,
the matrix PS1PS2 has eigenvalue 1 with multiplicity k, and eigenvalue 0 with multiplicity p − k.
Therefore, tr(PS1PS2) = k.
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Proof of Proposition 4.2:

Proof. Let pk = Pr[S1 and S2 have exactly k directions in common]. Note that, using the above
Lemma, E[R2(S1,S2)] = E[1

q
tr(PS1PS2)] =

1
q

q∑
k=1

tr(PS1PS2)pk =
1
q

q∑
k=1

kpk.

Out of d bases directions, q directions in S1 and S2 can be chosen in C1 =
(
d
q

)(
d
q

)
ways. For

the favorable cases, we proceed as follows: fix one between S1 and S2, in this subspace q out of d
directions can be chosen in

(
d
q

)
ways. Then, for the other subspace, set aside k common directions,

which can be chosen in
(
q
k

)
ways. The rest of the (q − k) directions can be chosen from (d − q)

directions in
(
d−q
q−k

)
ways. Hence, the total number of favorable cases is C2 =

(
d
q

)(
q
k

)(
d−q
q−k

)
. It follows

that

pk =
C2

C1

=

(
q
k

)(
d−q
q−k

)(
d
q

) , k ∈ {max(0, 2q − d), . . . , q}. (4)

Equation (4) is an hypergeometric probability distribution with parameters d (which represents
the population size) and q (which represents the number of draws without replacement, as well as
the exact number of ‘successes’ in the population in our case). Given that tr(PS1PS2) = k with k

common directions, E[tr(PS1PS2)] is simply the expectation of such hypergeometric distribution,
i.e.

E[R2(S1,S2)] =
1

q
E[tr(PS1PS2)] =

1

q
[
q2

d
] =

q

d

which is an increasing function of q.

The following two sections include the motivation behind the Density Information
Matrix (DIM) and the Covariate Information Matrix (CIM) and has been added based
on reviewers’ comments.
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2 Additional Background/Motivation about Density Infor-

mation Matrix and Covariate Information Matrix

In this section, we will introduce a unified framework called the Fisher Discrimination Matrix
(FDM) (Zhou, 2017), that can provide the motivation behind the density information matrix and
covariate information matrix. FDM can be used to find the best directions to discriminate between
two densities based on a simple eigen-analysis. Suppose we want to compare two possible densities
f(x) and g(x), respectively, for a random variable Xp×1. In the applications, we will consider the
density f to be the true unknown density which is estimated via non-parametric methods, and the
density g will be some model for the data, parametric or semi-parametric. FDM then finds the best
directions of X that violate the model assumption of g. Different model assumptions of g result
in different applications of the FDM. Alternatively, f and g can represent two distinct populations
we wish to compare.

Define the sample space score vector uf (x) for a density f to be uf (x) = ∇x log f(x) and the
basic discrimination score for comparing f and g to be uf (x)−ug(x). We define the discrimination
information matrix to be the matrix quadratic form in the discrimination scores, given by

Dw(f, g) =

∫
(uf − ug)(uf − ug)

Tw(x)dx, (5)

where w(x) is a context-specific weighting density that can be e.g. f , g, or some hybrid of f and g.

We will sometimes denote this matrix as DX = Dw(f, g), so as to indicate which random variable
is under consideration. This matrix summarizes the local discrimination directions for separating
f and g, and will be 0p×p if and only if f = g, assuming w has full support on Rp. The eigen
analysis of Dw(f, g) can give us the linear directions that best discriminate between densities f

and g. The trace of the matrix D provides a measure of the disagreement between f and g. When
f and g are normal densities, this matrix is Dw(f, g) = Σ−1(µf − µg) · (µf − µg)

TΣ−1 with rank
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1, and the non-null eigen-vector is the linear discriminant Σ−1(µf − µg). However, using more
than one direction from the eigen-analysis of Dw(f, g), we can move beyond the traditional linear
discriminant analysis to multiple linear discriminants.

We start by identifying the concept of sufficiency in this context. Let’s assume, X = (XT
1 ,X

T
2 )

T .
The conventional definition of sufficiency indicates that X1 is sufficient for comparing f and g if
the conditional densities for f and g are the same:

f(x2|x1) = g(x2|x1).

So, log f(x) − log g(x) = log f1(x1) − log g1(x1), where f1 and g1 are marginal densities of X1.
Hence, the discriminant function only depends on X1. In this case, it is obvious that

Dw(f, g) =

 Dw(f1, g1) 0

0 0

 .

That is, the discrimination information matrix, via its positive information, identifies the variables
that are sufficient for discriminating between f and g, as well as the set of variables in the null space
that are ignorable. More generally, we will say that the zero eigen-values of Dw(f, g) correspond
to an ignorable subspace, one that is irrelevant in the comparison of f and g, and its orthogonal
complement space is the sufficient subspace.

2.1 Motivation for DIM

Friedman and Tukey (1974) developed projection pursuit to explore a high-dimensional data
by examining the marginal distributions of low-dimensional linear projections. As argued later
by Huber (1985) and Jones and Sibson (1987), the Gaussian distribution is the least interesting
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one, and therefore, the most interesting directions should be those that show the least normality.
One drawback of the resulting methods has been their high computational cost, especially for
high-dimensional data, due to the need to search through the large number of possible projections.

We introduce a simple way to perform projection pursuit based on the proposed discrimination
matrix. Let g = ϕ(x) be the standard multivariate normal density (also called white noise density
in Hui and Lindsay (2010)), which refers to the null hypothesis that all variables are uninteresting,
and f(x) be the true density of X, to be estimated nonparametrically. If w(x) = f(x), Equation
(5) gives

Df (f, g) =

∫
(uf − ug)(uf − ug)

Tf(x)dx = Jf − Ip,

where
Jf = Ef{uf (X)uf (X)T},

where Jf is the so called Density Information Matrix for f defined in Section 2.1, and use the
notation JX, expressed with a random variable instead of Jf using f (density of X), when it is
useful for clarity regarding different variables involved.

Since g is the standard multivariate normal density, the task of projection pursuit can be
considered as finding the directions that can best discriminate between g and f . Therefore, the
null space of Df (f, g) provides the uninteresting directions, and its orthogonal complement provides
the interesting directions. In addition, the null space of Df (f, g) is the same as the eigen-space
of Jf associated with eigenvalue 1. Therefore, a simple eigen-analysis of Jf can be used for the
projection pursuit that reveals interesting directions of the original multivariate variable X.

Suppose ΓTJfΓ = Λ = diag{λ1, . . . , λp}. WLOG, we assume λ1 ≥ λ2 ≥ · · · ≥ λp. Then
Z = ΓTX = (Z1, . . . , Zp)

T has sample space information matrix Λ (assuming X is standardized),
and the diagonal entries of Λ measure the information in each Z coordinate in terms of extent of
discrimination between Z and the normal density. We then use the uncorrelated Z coordinates with
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the greatest information in the data analysis. Equivalently, we are discarding the Z coordinates
with the least information. More specifically, if λk+1 = 1, then λj = 1, for j ≥ k + 1. Therefore,
Zk+1, . . . , Zp are ignorable coordinates (also called white noise coordinates in Hui and Lindsay
(2010)) in the comparison of f and the white noise density g. Therefore, we can simply use the
“informative” projection coordinates Z1, Z2, . . . , Zk for further data analysis. In practice, we might
also just use a smaller set of projected variable {Z1, . . . , Zm}, where m < k (such as m = 1 or 2),
and call them as the m most informative projected variables. Hui and Lindsay (2010) provided
more detailed discussion of the applications of Jf for projection pursuit and called it a white noise
matrix.

Lindsay and Yao (2012) discussed more applications of Jf , such as Independent Component
Analysis (ICA) models and graphical models. If X is generated by an ICA model (Jutten and
Herault, 1991; Comon, 1994), Lindsay and Yao (2012) proved that the transformed variables Z =

ΓTX, given in the previous paragraph, are the independent component variables. Therefore, the
proposed discrimination matrix can be also used as an alternative tool for ICA. The ICA is closely
related to the famous cocktail-party problem and the related methods are sometimes called blind
source separation or blind signal separation. See Hyvärinen and Oja (2000) for an introduction
to ICA model and its applications. In addition, Lindsay and Yao (2012) also proved that the
conditional independence of X implies the corresponding off-diagonal zero values of Jf . Thus, the
proposed discrimination matrix FDM can also be applied to graphical models.

2.2 Motivation for CIM

In a regression setting, suppose we have a univariate response variable Y , and p-dimensional co-
variate Xp×1. In order to find the informative directions of X related to Y , let’s consider the
inverse regression/conditional density f(x|y). Under the null hypothesis that X is independent of
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Y , g = f(x) in (5). Then the discrimination information matrix, with w = f(y,x), is

Dw(f, g) =

∫
{∇x log f(x|y)−∇x log f(x)} {∇x log f(x|y)−∇x log f(x)}T f(y,x)dydx.

An eigen-analysis of Dw(f, g) would reveal the directions of X that can best discriminate between
f(x|y) and f(x), i.e. the directions of X that can best explain Y . The null space of Dw(f, g)

reveals the directions of X that are not related to Y .
In addition, note that

∇x log f(y,x) = ∇x log f(x|y),

∇x log f(y,x) = ∇x log(f(y|x)) +∇x log(f(x)).

Therefore,

Dw(f, g) =

∫
∇x log f(y|x)∇T

x log f(y|x)f(y,x)dydx =

∫
Fxf(x)dx

def
= CX,

where

Fx = EY |x
{
∇x log f(Y |x)∇T

x log(f(Y |x)
}

=

∫ [
∇x log f(y|x)∇T

x log(f(y|x)
]
f(y | x)dy.

We can think of Fx as the conditional covariate information matrix for Y |x, considering x as
“parameter” in the f(y|x) distribution. Fx tells us how much Fisher information about x exists
when we take a single observation of Y . It is a local measure in the sense that it depends on
x. Of course, it is a bit unconventional that Fx measures the Fisher information in an observed
“parameter”, and not in an unknown parameter. However, it does provide a natural way of assessing
how sensitive the distribution of Y |x is to changes in x. Henceforth, we will call CX = E{Fx} the
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(mean) Covariate Information Matrix (CIM), which can be used to perform dimension reduction.

3 Insight on the CIM for a binary response

Consider the case of a binary response Y ∈ {y1, y2}. Here f(x) = π1f(x | y1) + π2f(x | y2). For
j = 1, 2, simplifying notation, let πj(x) = P (Y = yj | x) and Uj(x) = ∇xlogf(x | yj). With
manipulations similar to those in the proof of Proposition 3.4, one can derive

CX =

∫
(U1(x)− U2(x))(U1(x)− U2(x))Tπ1(x)π2(x)dx. (6)

Thinking of this as a special case of comparing two populations with densities f and g, what we
are computing is a type of weighted information distance matrix for discrimination problems:

Qw(f, g) =

∫
(Uf (x)− Ug(x))(Uf (x)− Ug(x))Tw(x)dx,

where w is a weighting density. Comparing Equations (5) and (6), w(x) ∝ π1(x)π2(x), and since
π1(x) + π2(x) = 1, π1(x)π2(x) ≤ 1/4, the maximum is attained at π1(x) = π2(x) = 1/2. Also,
the weighting goes to zero as either of the posteriors approaches 1. This implies that we assign
maximum weight to values of x which are most central to the discrimination problem. Particularly,
if f and g are normal densities with means µf and µg and common covariance Σ, Uf (x)−Ug(x) =
Σ−1(µf − µg), independent of x. It follows that Qw(f, g) is proportional to Σ−1(µf − µg)(µf −

µg)
TΣ−1, which has rank 1 with the eigenvector corresponding to the sole non-zero eigenvalue

proportional to Σ−1(µf − µg). Thus, in this particular case, the CIM identifies the Fisher’s linear
discriminant direction.

The following section has been added based on the reviewers’ comments.
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4 Computation of Density Information Matrix using f2

Method

In this section, we give the explicit formula of the f2 computation (Hui and Lindsay, 2010). Let
the variable s have the density

f2(s) ≡
f 2(s)∫
f 2(x)dx

,

where f(x) is the density of x. We proposed to estimate the density information for f by the
density information for f2(s), denote as Js or Jf2

Jf2 =

∫
▽xf ×▽xf

Tdx∫
f 2(x)dx

.

Suppose a multivariate sample x1,x2, ...,xn are drawn from a density f . We can first estimate
f by the multivariate kernel estimate

f̂H(x) =
n∑

i=1

1

n|H|
ϕp(x − xi ; 0,H2),

where ϕp(· ; 0,H2) is the p-variate Gaussian density with mean 0 and covariance H2.
Here, we choose normal density as Kernel function K and use the bandwidth recommended by

Bowman and Foster (1993),
Hopt = (

4

p+ 2
)

1
p+4Σ

1
2n− 1

p+4 .

where the unknown Σ is usually replaced by its sample estimate. Then, the estimated density
information matrix has the following form

Ĵf2 =

∫
▽xf̂H ×▽xf̂

T
Hdx∫

f̂ 2
H(x)dx

.
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where ∫
f̂ 2
H(x)dx =

1

n2

n∑
i=i

n∑
j=1

ϕp(xi − xj; 0, 2H2),

∫
▽xf̂H ×▽xf̂

T
Hdx =

1

n2

n∑
i=i

n∑
j=1

ϕp(xi − xj; 0, 2H
2)

×
[
H−2

2
+

H−2

2
(xi − xj)(xi − xj)

T H
−2

2

]
.

Based on the above formula, we can see that one of the major advantages of f2 computation method
is that it provides explicit formula for all integrations when normal kernel is used.

5 Full Simulation Results

Here we present the detailed results including the full tables and the figures corresponding to all
the simulation models studied in the main text.

5.1 Model (1)

Table S1 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for
Model (1). The table can also be viewed online at the following link:

http://bit.ly/Model1Results

Dimension estimation plots for CIM (using L = 3 and 5 slices and SNR’s ≈ 10 and ≈ 2.5) based
on B = 500 bootstrap replicates are shown in Figure S1, and their boxplot versions in Figures S2
and S3, respectively for SNR’s ≈ 10 and ≈ 2.5.
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5.2 Model (2)

Table S2 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for
Model (2). The table can also be viewed online at the following link:

http://bit.ly/Model2Results

Dimension estimation plots for CIM (using L = 3 and 5 slices and SNR’s ≈ 10 and ≈ 2.75) based
on B = 500 bootstrap replicates are shown in Figure S4, and their boxplot versions in Figures S5
and S6, respectively for SNR’s ≈ 10 and ≈ 2.75.

5.3 Model (3)

Table S3 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for
Model (3). The table can also be viewed online at the following link:

http://bit.ly/Model3Results

Dimension estimation plots for CIM (using L = 5 and 8 slices and SNR’s ≈ 0.06 and ≈ 0.25) based
on B = 500 bootstrap replicates are shown in Figure S7, and their boxplot versions in Figures S8
and S9, respectively for SNR’s ≈ 0.06 and ≈ 0.25.

Recall that for heteroscedastic additive error models we defined SNR, a ratio between signals
in the mean and that in variance components, modulated by σ (see Section 5 of the main text).
Although with an abuse of notation we simply denote this as SNR, it is different than the conven-
tional signal-to-noise ratio. The different σ’s (along with βT

2 X) used in model (3) give rise to the
SNR’s presented in Table S3.

5.4 Model (4)

Table S4 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for
Model (4). The table can also be viewed online at the following link:
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http://bit.ly/Model4Results

Dimension estimation plots for CIM (using L = 5 and 8 slices and SNR’s ≈ 0.06 and ≈ 0.25) based
on B = 500 bootstrap replicates are shown in Figure S10, and their boxplot versions in Figures
S11 and S12, respectively for SNR’s ≈ 0.06 and ≈ 0.25. The different σ’s (along with βT

2 X) used
in model (4) give rise to the SNR’s summarized in Table S4.

5.5 Model (5)

Table S5 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for
Model (5). The table can also be viewed online at the following link:

http://bit.ly/Model5Results

Dimension estimation plots for CIM (using L = 5 and 8 slices and SNR’s ≈ 0.02 and ≈ 0.24) based
on B = 500 bootstrap replicates are shown in Figure S13, and their boxplot versions in Figures
S14 and S15, respectively for SNR’s ≈ 0.02 and ≈ 0.24. The SNR’s corresponding to different σ’s
are presented in Table S5.

The diagnostic plots along with their boxplot versions in Figures S1-S15 are updated based on
the revised definition of the Signal-to-Noise Ratio (SNR).

5.6 Model (6)

Table S6 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for a
discrete Y ∈ {0, 1, 2, 3}. The table can also be viewed online at the following link:

http://bit.ly/Model6Results
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SNR computation

Following the definition of Signal-to-Noise Ratio (SNR) for the heteroscedastic error simulations
with continuous Y , we compute the same for discrete-Y examples as well.

We define, βT
1 x = γ1(x) and βT

2 x = γ2(x). Firstly, we compute the conditional mean.

E [Y |X = x] = E [I(γ1(X) + σϵ > 1) + 2 · I(γ2(X) · σϵ > 1)|X = x]

= P

(
ϵ >

1− γ1(x)

σ

)
+ 2 · P (γ2(x) · σϵ > 1)

= Φ

(
−1− γ1(x)

σ

)
+ 2 · P (γ2(x) · σϵ > 1)

(where Φ is the distribution function of standard normal)

= p1(x, σ) + 2 · p2(x, σ), for notational simplicity. (7)

Note that, p2(x, σ) simplifies to:

p2(x, σ) = P (γ2(x) · σϵ > 1) (8)

=


Φ
(
− 1

σγ2(x)

)
for γ2(x) > 0;

Φ
(

1
σγ2(x)

)
for γ2(x) < 0;

0 for γ2(x) = 0.

=

Φ
(
− 1

σ|γ2(x)|

)
for γ2(x) ̸= 0;

0 for γ2(x) = 0.
(9)

= Φ

(
− 1

σ|γ2(x)|

)
· I(γ2(x) ̸= 0). (10)
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Next, we compute the conditional variance.

V ar [Y |X = x] = V ar [I(γ1(X) + σϵ > 1)|X = x] + 4 · V ar [I(γ2(X) · σϵ > 1)|X = x]

+ 2 · Cov [I(γ1(X) + σϵ > 1), I(γ2(X) · σϵ > 1)|X = x]

= p1(x, σ)(1− p1(x, σ)) + 4 · p2(x, σ)(1− p2(x, σ))

+ 2 · Cov [I(γ1(x) + σϵ > 1), I(γ2(x) · σϵ > 1)] . (11)

The covariance term in Equation (11) is computed as follows:

Cov [I(γ1(x) + σϵ > 1), I(γ2(x) · σϵ > 1)]

=E [I(γ1(x) + σϵ > 1) · I(γ2(x) · σϵ > 1)]− E [I(γ1(x) + σϵ > 1)] · E [I(γ2(x) · σϵ > 1)]

=p1,2(x, σ)− p1(x, σ) · p2(x, σ),

where

p1,2(x, σ) =


P
(
ϵ > max{1−γ1(x)

σ
, 1
σγ2(x)}

)
for γ2(x) > 0;

P
(

1−γ1(x)
σ

< ϵ < 1
σγ2(x)

)
for γ2(x) < 0;

0 for γ2(x) = 0.

=


Φ
(
− max{1−γ1(x)

σ
, 1
σγ2(x)}

)
for γ2(x) > 0;

max {0,Φ
(

1
σγ2(x)

)
− Φ

(
1−γ1(x)

σ

)
} for γ2(x) < 0;

0 for γ2(x) = 0.

=Φ

(
− max{1− γ1(x)

σ
,

1

σγ2(x)
}
)
· I(γ2(x) ≥ 0)

+ max
{
0,Φ

(
1

σγ2(x)

)
− Φ

(
1− γ1(x)

σ

)}
· I(γ2(x) < 0). (12)
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We define the SNR as:
SNR =

V ar (E[Y |X])

E [V ar(Y |X)]
. (13)

Note that, the probabilities p1(x, σ), p2(x, σ) and p1,2(x, σ) can be estimated from the data by
simply replacing x with xi. Therefore, using Equations (7) and (10), we estimate the numerator
in Equation (13) with the sample variance using the data {x1, . . . ,xn}, as shown below:

V̂ ar(E[Y |X]) = V ar{p1(xi, σ) + 2 · p2(xi, σ); i = 1, 2, . . . , n}.

Similarly, using p1(xi, σ), p2(xi, σ), p1,2(xi, σ), and Equations (7), (10), (11), and (12), the denom-
inator in Equation (13) can be estimated by the sample mean of V ar(Y |xi; i = 1, 2, . . . , n).

We repeat the calculations 200 times, and report the average SNR as the final estimate of (13).

5.7 Model (7)

Table S7 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for a
discrete Y ∈ {0, 1, 2}. The table can also be viewed online at the following link:

http://bit.ly/Model7Results

SNR computation

We denote, βT
1 x = γ1(x), βT

2 x = γ2(x), and Y0 = 2γ1(x) + 2exp(γ2(x)) · σϵ.
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Firstly, we compute the conditional mean.

E [Y |X = x] = E [I(−2 < Y0 < 2) + 2 · I(Y0 ≥ 2)|X = x]

= P (−2 < Y0 < 2) + 2 · P (Y0 ≥ 2)

= P (Y0 < 2)− P (Y0 ≤ −2) + 2P (Y0 ≥ 2)

= P

(
ϵ <

2− 2γ1(x)

2exp(γ2(x))σ

)
− P

(
ϵ ≤ −2− 2γ1(x)

2exp(γ2(x))σ

)
+ 2 · P

(
ϵ >

2− 2γ1(x)

2exp(γ2(x))σ

)
= Φ

(
2− 2γ1(x)

2exp(γ2(x))σ

)
− Φ

(
−2− 2γ1(x)

2exp(γ2(x))σ

)
+ 2 · Φ

(
− 2− 2γ1(x)

2exp(γ2(x))σ

)
(where Φ is the distribution function of standard normal)

= p1(x, σ) + 2 · p2(x, σ), for notational simplicity. (14)

Next, we compute the conditional variance.

V ar [Y |X = x] =V ar [I(−2 < Y0 < 2)|X = x] + 4 · V ar [I(Y0 ≥ 2)|X = x]

+ 2 · Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x]

=p1(x, σ)(1− p1(x, σ)) + 4 · p2(x, σ)(1− p2(x, σ))

+ 2 · Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x] . (15)

The covariance term in Equation (15) is computed as follows:

Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x]

=E [I(−2 < Y0 < 2) · I(Y0 ≥ 2)|X = x]− E [I(−2 < Y0 < 2)|X = x] · E [I(Y0 ≥ 2)|X = x]

=− p1(x, σ) · p2(x, σ), (16)

where p1(x, σ) and p2(x, σ) are defined in Equation (14).
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We define the SNR as:
SNR =

V ar (E[Y |X])

E [V ar(Y |X)]
. (17)

Note that, the probabilities p1(x, σ) and p2(x, σ) can be estimated from the data by simply replacing
x with xi. Therefore, using Equation (14), we estimate the numerator in Equation (17) with the
sample variance using the data {x1, . . . ,xn}, as shown below:

V̂ ar(E[Y |X]) = V ar{p1(xi, σ) + 2 · p2(xi, σ); i = 1, 2, . . . , n}.

Similarly, using p1(xi, σ), p2(xi, σ), and Equations (14), (15), and (16), the denominator in Equation
(17) can be estimated by the sample mean of V ar(Y |xi; i = 1, 2, . . . , n). We repeat the calculations
200 times, and report the average SNR as the final estimate of (17).

5.8 Model (8)

Table S8 presents the performance of CIM, other SDR methods and a ‘Random’ benchmark for a
discrete Y ∈ {0, 1, 2}. The table can also be viewed online at the following link:

http://bit.ly/Model8Results

SNR computation

We denote, βT
1 x = γ1(x), βT

2 x = γ2(x), and Y0 = 2γ2
1(x) + 2exp(γ2(x)) · σϵ.
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Firstly, we compute the conditional mean.

E [Y |X = x] = E [I(−2 < Y0 < 2) + 2 · I(Y0 ≥ 2)|X = x]

= P (−2 < Y0 < 2) + 2 · P (Y0 ≥ 2)

= P (Y0 < 2)− P (Y0 ≤ −2) + 2P (Y0 ≥ 2)

= P

(
ϵ <

2− 2γ2
1(x)

2exp(γ2(x))σ

)
− P

(
ϵ ≤ −2− 2γ2

1(x)

2exp(γ2(x))σ

)
+ 2 · P

(
ϵ >

2− 2γ2
1(x)

2exp(γ2(x))σ

)
= Φ

(
2− 2γ2

1(x)

2exp(γ2(x))σ

)
− Φ

(
−2− 2γ2

1(x)

2exp(γ2(x))σ

)
+ 2 · Φ

(
− 2− 2γ2

1(x)

2exp(γ2(x))σ

)
(where Φ is the distribution function of standard normal)

= p1(x, σ) + 2 · p2(x, σ), for notational simplicity. (18)

Next, we compute the conditional variance.

V ar [Y |X = x] =V ar [I(−2 < Y0 < 2)|X = x] + 4 · V ar [I(Y0 ≥ 2)|X = x]

+ 2 · Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x]

=p1(x, σ)(1− p1(x, σ)) + 4 · p2(x, σ)(1− p2(x, σ))

+ 2 · Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x] . (19)

The covariance term in Equation (19) is computed as follows:

Cov [I(−2 < Y0 < 2), I(Y0 ≥ 2)|X = x]

=E [I(−2 < Y0 < 2) · I(Y0 ≥ 2)|X = x]− E [I(−2 < Y0 < 2)|X = x] · E [I(Y0 ≥ 2)|X = x]

=− p1(x, σ) · p2(x, σ), (20)

where p1(x, σ) and p2(x, σ) are defined in Eqn. (18).
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We define the SNR as:
SNR =

V ar (E[Y |X])

E [V ar(Y |X)]
. (21)

Note that, the probabilities p1(x, σ) and p2(x, σ) can be estimated from the data by simply replacing
x with xi. Therefore, using Equation (18), we estimate the numerator in Equation (21) with the
sample variance using the data {x1, . . . ,xn}, as shown below:

V̂ ar(E[Y |X]) = V ar{p1(xi, σ) + 2 · p2(xi, σ); i = 1, 2, . . . , n}.

Similarly, using p1(xi, σ), p2(xi, σ), and Equations (18), (19), and (20), the denominator in Equation
(21) can be estimated by the sample mean of V ar(Y |xi; i = 1, 2, . . . , n). We repeat the calculations
200 times, and report the average SNR as the final estimate of (21).

5.9 Computation Time

Table S11 presents in detail the comparative times (in seconds) to generate d = 2 output directions
for models (2), (5), and (8) using n = 400, Independent X, and specified σ’s.

5.10 Some Remarks

• Performance of CIM depends on the number of slices (see Tables S1 - S5); small values
(e.g. L = 3) are best for homoscedastic models whereas moderate ones (e.g. L = 5) appear
necessary for heteroscedastic models. Finer slicing (e.g. L = 8, 10) worsens performance,
likely due to kernel density estimation deteriorating with fewer points in each slice.

• Estimation can result in a negative definite ĈX = ĴX|Y − ĴX, in which case, one can set the
negative eigen-values to zero.

• For the sake of fair comparison, we used the same simulation datasets for the Fourier and
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the Semiparametric methods which are implemented in R and FORTRAN90 programming
languages respectively.

• Due to the difficult task of tuning the 4 bandwidths (for the CS structural dimension d = 2)
involved in the Semiparametric method, we did not include this method for comparison in
the main text. Rather, we focused on models (1), (2), and (5), and after extensive efforts,
managed to find a “clean” set of bandwidths producing reliable results for models (1) and
(2), only for a subset of the scenarios considered. Please see Tables S9 and S10 (also found
in the sheets named “WithSemiparam” in the online links for full results for models (1) and
(2)) for the comparative performance with all other methods. In addition to tuning the 4

bandwidths, the semiparametric method requires initialization; results in Tables S9 and S10
are based on initializing the algorithm with perturbed versions of the true β vectors.

6 Additional Details on Real Data Applications

6.1 Wine Recognition Data

Dimension estimation plot for CIM with L = 3 (number of response classes) and the its boxplot
versions are provided in Figure S16. The panels in Figure S17 show scatter-plots of the standardized
Wine data projected onto the 2-dimensional CS estimated by (a) CIM, (b) SIR and (c) SR, as well
as a random 2D projection for benchmarking.

6.2 Ozone Data

Firstly, Figure S18 shows the autocorrelation function for the response (Ozone concentration) up
to lag = 25; strong autocorrelation exists, also at large lags.
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Dimension estimation plots for CIM with varying number of slices (L ∈ [3, 10]) and the their
boxplot versions are provided in Figures S19 - S24.

The trace correlations (R) among the first CIM directions, the second CIM directions and the
2D CIM estimates of the CS obtained using varying number of slices L ∈ [3, 10] are close to 1,
indicating that the estimation is stable across varying L. These results are presented in Tables
S12, S13 and S14, respectively.

Fixing d̂ = 2, the trace correlations between first directions, second directions and estimated 2D
subspaces obtained via CIM, and SIR, SAVE, SR (using L = 3, 5, 8, 10), PHD, MAVE, dMAVE,
Fourier, and Semiparametric methods are provided in Table S15.

Using our proposed dimension estimation plot for SIR with L = 3, 5, 8, 10 (Figures S25 - S28),
we get a strong indication of d̂ = 1 across all L’s, confirming that SIR misses the second direction,
along which the response is symmetric in mean, and heteroschedastic.

Similarly, using our proposed dimension estimation plots for SAVE (Figures S29 - S32), we get
a strong indication of d̂ = 1 for L = 8 and 10 and of d̂ = 2 for L = 3 and 5.

Finally, Figure S33 displays scatterplots of the response against the first and the second CIM
directions obtained using L = 5 and 10 slices, and also that of the first two CIM directions against
each other in each case.
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Table S1: Mean (SD) of trace correlation (R) in 200 repetitions for Model (1) using n = 200 and 400; SNR’s 10, 5, 2.5 and 1; L = 5, 10 for SIR,
SAVE, SR and 2, 3, 5, 8, 10 for CIM; Independent (Ind.), Correlated (Corr.) and Non-linear (NonL) X. Highest R in each row is boldfaced.

σ, Sample Size
(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.25,n = 200
(10.91, 9.47, 9.47)

Ind. 0.42 (0.129) 0.419 (0.122) 0.918 (0.052) 0.873 (0.080) 0.7 (0.203) 0.572 (0.214) 0.944 (0.029) 0.997 (0.002) 0.964 (0.060) 0.809 (0.090) 0.916 (0.056) 0.92 (0.049) 0.908 (0.066) 0.859 (0.104) 0.826 (0.1) 0.421 (0.133)
Corr. 0.43 (0.132) 0.419 (0.144) 0.866 (0.061) 0.819 (0.079) 0.695 (0.194) 0.557 (0.207) 0.893 (0.045) 0.995 (0.003) 0.943 (0.075) 0.777 (0.083) 0.865 (0.063) 0.874 (0.061) 0.851 (0.081) 0.816 (0.089) 0.776 (0.098) 0.417 (0.132)
NonL 0.401 (0.132) 0.409 (0.15) 0.784 (0.097) 0.740 (0.100) 0.594 (0.197) 0.547 (0.198) 0.859 (0.085) 0.988 (0.026) 0.959 (0.055) 0.606 (0.134) 0.787 (0.107) 0.78 (0.099) 0.761 (0.095) 0.734 (0.090) 0.714 (0.105) 0.427 (0.130)

σ = 0.25,n = 400
(10.9, 9.87, 9.48)

Ind. 0.442 (0.138) 0.458 (0.141) 0.969 (0.014) 0.962 (0.017) 0.868 (0.173) 0.745 (0.202) 0.977 (0.009) 0.999 (0.000) 0.995 (0.003) 0.926 (0.064) 0.966 (0.014) 0.972 (0.011) 0.973 (0.011) 0.971 (0.014) 0.966 (0.017) 0.419 (0.124)
Corr. 0.406 (0.135) 0.408 (0.131) 0.942 (0.031) 0.933 (0.033) 0.872 (0.147) 0.694 (0.208) 0.948 (0.025) 0.998 (0.001) 0.991 (0.006) 0.868 (0.083) 0.944 (0.031) 0.952 (0.026) 0.952 (0.030) 0.943 (0.032) 0.941 (0.034) 0.429 (0.126)
NonL 0.418 (0.132) 0.423 (0.139) 0.841 (0.099) 0.806 (0.097) 0.687 (0.185) 0.616 (0.216) 0.902 (0.080) 0.997 (0.003) 0.990 (0.007) 0.645 (0.125) 0.875 (0.099) 0.870 (0.096) 0.838 (0.103) 0.809 (0.107) 0.780 (0.096) 0.423 (0.130)

σ = 0.35,n = 200
(5.56, 4.83, 4.83)

Ind. 0.434 (0.138) 0.439 (0.144) 0.911 (0.047) 0.864 (0.083) 0.667 (0.212) 0.553 (0.199) 0.947 (0.024) 0.994 (0.003) 0.939 (0.077) 0.792 (0.094) 0.911 (0.053) 0.914 (0.054) 0.906 (0.056) 0.854 (0.092) 0.818 (0.100) 0.443 (0.118)
Corr. 0.421 (0.139) 0.421 (0.140) 0.849 (0.076) 0.798 (0.099) 0.657 (0.197) 0.542 (0.194) 0.886 (0.055) 0.990 (0.005) 0.914 (0.090) 0.762 (0.084) 0.854 (0.076) 0.859 (0.074) 0.836 (0.089) 0.800 (0.098) 0.745 (0.103) 0.433 (0.119)
NonL 0.416 (0.147) 0.424 (0.158) 0.773 (0.105) 0.712 (0.111) 0.593 (0.185) 0.523 (0.193) 0.848 (0.107) 0.982 (0.033) 0.947 (0.066) 0.609 (0.136) 0.794 (0.104) 0.777 (0.104) 0.761 (0.099) 0.728 (0.113) 0.706 (0.106) 0.421 (0.129)

σ = 0.35,n = 400
(5.56, 4.83, 4.84)

Ind. 0.424 (0.129) 0.417 (0.132) 0.964 (0.017) 0.954 (0.023) 0.854 (0.164) 0.712 (0.209) 0.973 (0.011) 0.998 (0.001) 0.992 (0.004) 0.922 (0.059) 0.965 (0.016) 0.970 (0.012) 0.970 (0.014) 0.964 (0.025) 0.959 (0.023) 0.404 (0.129)
Corr. 0.426 (0.138) 0.426 (0.130) 0.935 (0.033) 0.921 (0.040) 0.846 (0.156) 0.667 (0.212) 0.944 (0.026) 0.996 (0.002) 0.985 (0.015) 0.871 (0.076) 0.940 (0.032) 0.949 (0.023) 0.942 (0.035) 0.933 (0.036) 0.923 (0.048) 0.437 (0.131)
NonL 0.411 (0.137) 0.412 (0.141) 0.827 (0.094) 0.796 (0.107) 0.681 (0.189) 0.601 (0.208) 0.900 (0.091) 0.996 (0.004) 0.984 (0.023) 0.633 (0.131) 0.871 (0.093) 0.859 (0.093) 0.834 (0.095) 0.794 (0.092) 0.774 (0.095) 0.437 (0.131)

σ = 0.50,n = 200
(2.73, 2.37, 2.37)

Ind. 0.427 (0.136) 0.448 (0.133) 0.879 (0.075) 0.815 (0.097) 0.640 (0.202) 0.554 (0.194) 0.934 (0.033) 0.987 (0.007) 0.903 (0.094) 0.774 (0.106) 0.901 (0.064) 0.904 (0.062) 0.876 (0.079) 0.817 (0.100) 0.775 (0.104) 0.424 (0.129)
Corr. 0.413 (0.136) 0.417 (0.133) 0.822 (0.086) 0.761 (0.101) 0.620 (0.186) 0.523 (0.172) 0.878 (0.061) 0.978 (0.015) 0.877 (0.095) 0.725 (0.089) 0.844 (0.082) 0.833 (0.082) 0.797 (0.099) 0.739 (0.111) 0.692 (0.107) 0.437 (0.126)
NonL 0.428 (0.137) 0.431 (0.144) 0.743 (0.112) 0.682 (0.112) 0.591 (0.176) 0.523 (0.180) 0.834 (0.097) 0.961 (0.057) 0.921 (0.069) 0.588 (0.128) 0.77 (0.113) 0.769 (0.110) 0.744 (0.111) 0.707 (0.105) 0.688 (0.106) 0.432 (0.123)

σ = 0.50,n = 400
(2.73, 2.37, 2.37)

Ind. 0.42 (0.133) 0.417 (0.133) 0.956 (0.022) 0.943 (0.032) 0.805 (0.176) 0.648 (0.220) 0.969 (0.013) 0.995 (0.002) 0.982 (0.029) 0.893 (0.071) 0.959 (0.024) 0.965 (0.016) 0.961 (0.018) 0.952 (0.028) 0.939 (0.042) 0.432 (0.130)
Corr. 0.415 (0.129) 0.412 (0.126) 0.924 (0.035) 0.903 (0.048) 0.768 (0.180) 0.586 (0.215) 0.937 (0.030) 0.991 (0.005) 0.964 (0.043) 0.831 (0.083) 0.93 (0.035) 0.935 (0.027) 0.929 (0.031) 0.911 (0.049) 0.893 (0.058) 0.431 (0.119)
NonL 0.416 (0.141) 0.412 (0.141) 0.797 (0.095) 0.754 (0.099) 0.686 (0.200) 0.588 (0.192) 0.890 (0.086) 0.990 (0.006) 0.974 (0.026) 0.615 (0.142) 0.862 (0.102) 0.849 (0.094) 0.819 (0.093) 0.779 (0.092) 0.754 (0.092) 0.420 (0.132)

σ = 0.8,0.75,0.75,
n = 200

(1.07, 1.05, 1.05)

Ind. 0.423 (0.134) 0.409 (0.139) 0.820 (0.099) 0.746 (0.122) 0.580 (0.188) 0.473 (0.175) 0.896 (0.059) 0.935 (0.068) 0.829 (0.106) 0.701 (0.120) 0.854 (0.096) 0.844 (0.096) 0.797 (0.112) 0.739 (0.122) 0.716 (0.110) 0.431 (0.130)
Corr. 0.416 (0.132) 0.418 (0.128) 0.745 (0.100) 0.685 (0.106) 0.550 (0.193) 0.470 (0.157) 0.833 (0.072) 0.909 (0.082) 0.786 (0.097) 0.655 (0.105) 0.784 (0.094) 0.773 (0.086) 0.728 (0.113) 0.675 (0.125) 0.631 (0.132) 0.429 (0.124)
NonL 0.429 (0.141) 0.423 (0.141) 0.695 (0.113) 0.632 (0.111) 0.566 (0.183) 0.487 (0.172) 0.796 (0.100) 0.892 (0.106) 0.834 (0.099) 0.551 (0.136) 0.743 (0.102) 0.720 (0.115) 0.691 (0.112) 0.662 (0.115) 0.640 (0.115) 0.430 (0.129)

σ = 0.8,0.75,0.75,
n = 400

(1.06, 1.05, 1.05)

Ind. 0.439 (0.135) 0.426 (0.143) 0.926 (0.042) 0.890 (0.066) 0.729 (0.195) 0.565 (0.210) 0.953 (0.023) 0.981 (0.012) 0.938 (0.068) 0.829 (0.095) 0.941 (0.026) 0.939 (0.032) 0.932 (0.038) 0.907 (0.058) 0.887 (0.071) 0.443 (0.123)
Corr. 0.420 (0.135) 0.420 (0.124) 0.885 (0.057) 0.844 (0.073) 0.676 (0.179) 0.523 (0.177) 0.915 (0.037) 0.972 (0.020) 0.904 (0.079) 0.786 (0.098) 0.904 (0.045) 0.902 (0.048) 0.886 (0.061) 0.847 (0.081) 0.816 (0.090) 0.428 (0.125)
NonL 0.435 (0.138) 0.438 (0.139) 0.774 (0.105) 0.720 (0.103) 0.661 (0.197) 0.566 (0.193) 0.868 (0.094) 0.961 (0.059) 0.952 (0.034) 0.592 (0.134) 0.832 (0.103) 0.824 (0.093) 0.791 (0.103) 0.747 (0.115) 0.730 (0.105) 0.412 (0.131)26



Table S2: Mean (SD) of trace correlation (R) in 200 repetitions for Model (2) using n = 200 and 400; SNR’s 10, 4.7, 2.75 and 1; L = 5, 10
for SIR, SAVE, SR and 2, 3, 5, 8, 10 for CIM; Independent (Ind.), Correlated (Corr.) and Non-linear (NonL) X. Highest R in each row is
boldfaced.
σ, Sample Size

(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.55,n = 200
(9.93, 9.93, 9.97)

Ind. 0.722 (0.044) 0.725 (0.050) 0.802 (0.091) 0.710 (0.046) 0.860 (0.132) 0.812 (0.118) 0.729 (0.048) 0.995 (0.002) 0.990 (0.004) 0.959 (0.022) 0.953 (0.018) 0.962 (0.016) 0.956 (0.021) 0.926 (0.046) 0.879 (0.078) 0.429 (0.126)
Corr. 0.766 (0.073) 0.775 (0.087) 0.765 (0.089) 0.679 (0.068) 0.901 (0.113) 0.859 (0.119) 0.720 (0.043) 0.991 (0.004) 0.982 (0.008) 0.927 (0.038) 0.924 (0.032) 0.939 (0.029) 0.930 (0.038) 0.890 (0.065) 0.843 (0.091) 0.424 (0.136)
NonL 0.788 (0.062) 0.814 (0.062) 0.692 (0.042) 0.663 (0.061) 0.763 (0.079) 0.756 (0.069) 0.776 (0.105) 0.987 (0.029) 0.947 (0.072) 0.820 (0.055) 0.792 (0.103) 0.767 (0.097) 0.753 (0.090) 0.731 (0.072) 0.722 (0.072) 0.437 (0.129)

σ = 0.55,n = 400
(9.9, 9.92, 9.93)

Ind. 0.733 (0.048) 0.739 (0.055) 0.964 (0.029) 0.891 (0.080) 0.943 (0.108) 0.891 (0.129) 0.733 (0.042) 0.998 (0.001) 0.995 (0.002) 0.984 (0.007) 0.979 (0.008) 0.984 (0.006) 0.984 (0.006) 0.982 (0.007) 0.980 (0.008) 0.437 (0.128)
Corr. 0.818 (0.077) 0.826 (0.083) 0.926 (0.056) 0.816 (0.093) 0.980 (0.046) 0.960 (0.082) 0.731 (0.045) 0.996 (0.002) 0.992 (0.003) 0.966 (0.015) 0.968 (0.014) 0.976 (0.011) 0.977 (0.010) 0.973 (0.013) 0.969 (0.013) 0.439 (0.116)
NonL 0.837 (0.053) 0.865 (0.049) 0.701 (0.029) 0.691 (0.027) 0.780 (0.089) 0.789 (0.087) 0.789 (0.118) 0.996 (0.002) 0.986 (0.022) 0.847 (0.044) 0.811 (0.101) 0.794 (0.101) 0.785 (0.096) 0.759 (0.088) 0.745 (0.082) 0.423 (0.115)

σ = 0.8,n = 200
(4.69, 4.69, 4.71)

Ind. 0.720 (0.049) 0.725 (0.055) 0.758 (0.076) 0.703 (0.044) 0.833 (0.128) 0.781 (0.112) 0.725 (0.046) 0.988 (0.005) 0.979 (0.009) 0.948 (0.028) 0.942 (0.028) 0.948 (0.021) 0.935 (0.031) 0.891 (0.067) 0.840 (0.088) 0.429 (0.130)
Corr. 0.743 (0.067) 0.752 (0.078) 0.718 (0.060) 0.668 (0.069) 0.854 (0.123) 0.814 (0.113) 0.716 (0.051) 0.981 (0.010) 0.965 (0.019) 0.918 (0.034) 0.906 (0.045) 0.922 (0.038) 0.894 (0.060) 0.833 (0.088) 0.772 (0.100) 0.422 (0.124)
NonL 0.773 (0.069) 0.800 (0.069) 0.685 (0.041) 0.648 (0.073) 0.741 (0.072) 0.746 (0.074) 0.764 (0.103) 0.968 (0.055) 0.892 (0.102) 0.799 (0.062) 0.799 (0.103) 0.768 (0.092) 0.746 (0.080) 0.721 (0.066) 0.708 (0.066) 0.426 (0.124)

σ = 0.8,n = 400
(4.68, 4.69, 4.69)

Ind. 0.731 (0.045) 0.734 (0.051) 0.911 (0.070) 0.791 (0.081) 0.923 (0.115) 0.880 (0.124) 0.736 (0.047) 0.995 (0.002) 0.990 (0.004) 0.980 (0.009) 0.974 (0.009) 0.979 (0.008) 0.979 (0.009) 0.975 (0.011) 0.971 (0.012) 0.435 (0.134)
Corr. 0.799 (0.076) 0.806 (0.087) 0.843 (0.087) 0.748 (0.070) 0.965 (0.061) 0.931 (0.096) 0.736 (0.050) 0.992 (0.003) 0.984 (0.007) 0.960 (0.018) 0.959 (0.016) 0.966 (0.014) 0.968 (0.013) 0.963 (0.015) 0.954 (0.030) 0.428 (0.136)
NonL 0.821 (0.056) 0.850 (0.052) 0.696 (0.019) 0.687 (0.029) 0.767 (0.086) 0.774 (0.085) 0.798 (0.118) 0.991 (0.005) 0.968 (0.044) 0.826 (0.048) 0.800 (0.103) 0.777 (0.097) 0.748 (0.084) 0.733 (0.068) 0.718 (0.056) 0.422 (0.125)

σ = 1.05,n = 200
(2.72, 2.72, 2.74)

Ind. 0.709 (0.043) 0.71 (0.046) 0.725 (0.058) 0.694 (0.037) 0.790 (0.120) 0.760 (0.110) 0.724 (0.049) 0.979 (0.010) 0.962 (0.026) 0.935 (0.040) 0.924 (0.037) 0.929 (0.037) 0.905 (0.057) 0.837 (0.088) 0.780 (0.101) 0.420 (0.120)
Corr. 0.720 (0.063) 0.735 (0.074) 0.693 (0.058) 0.655 (0.083) 0.827 (0.116) 0.772 (0.107) 0.714 (0.049) 0.967 (0.019) 0.938 (0.031) 0.901 (0.043) 0.877 (0.065) 0.883 (0.063) 0.855 (0.084) 0.783 (0.098) 0.733 (0.107) 0.436 (0.132)
NonL 0.752 (0.070) 0.775 (0.075) 0.674 (0.047) 0.642 (0.081) 0.728 (0.070) 0.720 (0.066) 0.767 (0.103) 0.932 (0.080) 0.848 (0.107) 0.769 (0.069) 0.772 (0.095) 0.766 (0.095) 0.726 (0.072) 0.701 (0.059) 0.697 (0.062) 0.423 (0.130)

σ = 1.05,n = 400
(2.72, 2.72, 2.72)

Ind. 0.726 (0.047) 0.730 (0.054) 0.825 (0.088) 0.744 (0.058) 0.884 (0.128) 0.841 (0.123) 0.735 (0.050) 0.990 (0.004) 0.981 (0.008) 0.975 (0.010) 0.966 (0.014) 0.972 (0.011) 0.971 (0.014) 0.964 (0.016) 0.959 (0.018) 0.425 (0.130)
Corr. 0.791 (0.080) 0.795 (0.085) 0.769 (0.077) 0.719 (0.048) 0.944 (0.078) 0.906 (0.103) 0.729 (0.046) 0.985 (0.007) 0.972 (0.012) 0.952 (0.021) 0.950 (0.022) 0.955 (0.020) 0.953 (0.019) 0.941 (0.031) 0.928 (0.045) 0.404 (0.128)
NonL 0.809 (0.058) 0.828 (0.062) 0.696 (0.024) 0.686 (0.030) 0.763 (0.092) 0.763 (0.080) 0.791 (0.115) 0.981 (0.029) 0.937 (0.071) 0.802 (0.055) 0.786 (0.098) 0.775 (0.096) 0.751 (0.085) 0.727 (0.063) 0.718 (0.063) 0.426 (0.133)

σ = 1.75,n = 200
(0.98, 0.98, 0.99)

Ind. 0.691 (0.057) 0.682 (0.060) 0.695 (0.041) 0.674 (0.065) 0.733 (0.106) 0.678 (0.102) 0.723 (0.054) 0.921 (0.045) 0.843 (0.101) 0.875 (0.082) 0.853 (0.071) 0.838 (0.077) 0.797 (0.085) 0.722 (0.099) 0.668 (0.116) 0.415 (0.129)
Corr. 0.670 (0.076) 0.668 (0.081) 0.671 (0.063) 0.633 (0.091) 0.717 (0.109) 0.665 (0.113) 0.708 (0.053) 0.890 (0.059) 0.781 (0.109) 0.829 (0.080) 0.797 (0.085) 0.784 (0.089) 0.742 (0.091) 0.675 (0.096) 0.608 (0.120) 0.437 (0.127)
NonL 0.693 (0.074) 0.697 (0.085) 0.656 (0.055) 0.620 (0.084) 0.692 (0.075) 0.659 (0.092) 0.714 (0.102) 0.813 (0.114) 0.726 (0.114) 0.708 (0.070) 0.752 (0.084) 0.726 (0.080) 0.693 (0.072) 0.672 (0.068) 0.658 (0.079) 0.434 (0.119)

σ = 1.75,n = 400
(0.98, 0.98, 0.98)

Ind. 0.712 (0.047) 0.710 (0.048) 0.742 (0.057) 0.716 (0.039) 0.822 (0.126) 0.767 (0.121) 0.725 (0.044) 0.963 (0.021) 0.944 (0.030) 0.950 (0.027) 0.933 (0.031) 0.939 (0.026) 0.931 (0.037) 0.907 (0.048) 0.886 (0.064) 0.418 (0.124)
Corr. 0.724 (0.069) 0.734 (0.073) 0.719 (0.052) 0.700 (0.044) 0.839 (0.107) 0.772 (0.113) 0.723 (0.051) 0.946 (0.030) 0.909 (0.056) 0.918 (0.036) 0.903 (0.052) 0.905 (0.054) 0.886 (0.063) 0.849 (0.077) 0.822 (0.082) 0.437 (0.122)
NonL 0.750 (0.066) 0.769 (0.074) 0.678 (0.034) 0.662 (0.052) 0.742 (0.083) 0.713 (0.071) 0.767 (0.102) 0.907 (0.090) 0.830 (0.111) 0.734 (0.056) 0.764 (0.093) 0.754 (0.086) 0.732 (0.076) 0.713 (0.066) 0.700 (0.057) 0.442 (0.129)
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Table S3: Mean (SD) of trace correlation (R) in 200 repetitions for Model (3) using n = 200 and 400; σ = 0.32, 0.45, 0.64, 1 and 4; L = 5, 10
for SIR, SAVE, SR and 2, 3, 5, 8, 10 for CIM; Independent (Ind.), Correlated (Corr.) and Non-linear (NonL) X. SNR values within parentheses
correspond to Ind., Corr., and NonL X respectively. Highest R in each row is boldfaced.

σ, Sample Size
(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.32,n = 200
(9.87, 9.9, 38.69)

Ind. 0.738 (0.039) 0.74 (0.039) 0.742 (0.042) 0.732 (0.072) 0.751 (0.053) 0.748 (0.049) 0.584 (0.111) 0.863 (0.077) 0.772 (0.068) 0.748 (0.049) 0.739 (0.046) 0.744 (0.048) 0.751 (0.047) 0.764 (0.061) 0.763 (0.060) 0.426 (0.123)
Corr. 0.711 (0.019) 0.716 (0.024) 0.707 (0.020) 0.680 (0.066) 0.720 (0.034) 0.718 (0.023) 0.419 (0.106) 0.790 (0.063) 0.731 (0.041) 0.714 (0.023) 0.689 (0.030) 0.711 (0.030) 0.716 (0.024) 0.722 (0.035) 0.718 (0.033) 0.430 (0.130)
NonL 0.658 (0.047) 0.688 (0.033) 0.519 (0.069) 0.497 (0.046) 0.711 (0.027) 0.717 (0.033) 0.415 (0.126) 0.796 (0.065) 0.715 (0.023) 0.678 (0.022) 0.667 (0.019) 0.683 (0.014) 0.693 (0.011) 0.696 (0.010) 0.697 (0.010) 0.436 (0.127)

σ = 0.32,n = 400
(9.81, 9.81, 38.5)

Ind. 0.743 (0.042) 0.741 (0.042) 0.750 (0.051) 0.753 (0.050) 0.753 (0.057) 0.743 (0.045) 0.595 (0.095) 0.881 (0.072) 0.804 (0.090) 0.751 (0.048) 0.751 (0.053) 0.756 (0.054) 0.762 (0.061) 0.771 (0.063) 0.771 (0.065) 0.432 (0.124)
Corr. 0.714 (0.016) 0.719 (0.021) 0.720 (0.022) 0.722 (0.024) 0.720 (0.023) 0.721 (0.019) 0.417 (0.127) 0.823 (0.062) 0.753 (0.060) 0.721 (0.028) 0.709 (0.027) 0.726 (0.035) 0.730 (0.032) 0.732 (0.033) 0.731 (0.033) 0.436 (0.133)
NonL 0.681 (0.027) 0.699 (0.023) 0.522 (0.042) 0.525 (0.051) 0.713 (0.023) 0.721 (0.031) 0.432 (0.116) 0.828 (0.063) 0.713 (0.017) 0.689 (0.013) 0.672 (0.015) 0.686 (0.010) 0.695 (0.007) 0.699 (0.006) 0.700 (0.006) 0.436 (0.126)

σ = 0.45,n = 200
(4.99, 5, 19.56)

Ind. 0.736 (0.042) 0.741 (0.047) 0.750 (0.052) 0.712 (0.089) 0.747 (0.051) 0.746 (0.046) 0.584 (0.104) 0.862 (0.079) 0.800 (0.091) 0.749 (0.052) 0.740 (0.052) 0.748 (0.050) 0.758 (0.058) 0.766 (0.067) 0.760 (0.060) 0.425 (0.122)
Corr. 0.709 (0.025) 0.708 (0.022) 0.704 (0.035) 0.617 (0.111) 0.711 (0.020) 0.715 (0.026) 0.414 (0.114) 0.790 (0.061) 0.752 (0.064) 0.715 (0.029) 0.688 (0.037) 0.709 (0.030) 0.716 (0.036) 0.720 (0.037) 0.710 (0.032) 0.451 (0.122)
NonL 0.660 (0.039) 0.687 (0.037) 0.518 (0.067) 0.502 (0.057) 0.707 (0.026) 0.712 (0.034) 0.429 (0.110) 0.801 (0.066) 0.726 (0.042) 0.676 (0.020) 0.665 (0.022) 0.679 (0.018) 0.686 (0.015) 0.690 (0.103) 0.689 (0.016) 0.441 (0.130)

σ = 0.45,n = 400
(4.96, 4.96, 19.47)

Ind. 0.744 (0.042) 0.744 (0.047) 0.774 (0.066) 0.772 (0.067) 0.764 (0.061) 0.748 (0.050) 0.586 (0.111) 0.881 (0.071) 0.875 (0.109) 0.769 (0.062) 0.748 (0.053) 0.764 (0.062) 0.788 (0.071) 0.784 (0.073) 0.786 (0.073) 0.412 (0.135)
Corr. 0.716 (0.022) 0.717 (0.020) 0.727 (0.036) 0.728 (0.040) 0.725 (0.037) 0.721 (0.029) 0.434 (0.116) 0.829 (0.064) 0.816 (0.102) 0.724 (0.033) 0.706 (0.027) 0.726 (0.035) 0.737 (0.042) 0.738 (0.042) 0.739 (0.044) 0.425 (0.123)
NonL 0.678 (0.027) 0.697 (0.020) 0.522 (0.047) 0.522 (0.050) 0.714 (0.026) 0.723 (0.034) 0.432 (0.111) 0.836 (0.059) 0.725 (0.034) 0.688 (0.013) 0.667 (0.016) 0.682 (0.012) 0.689 (0.010) 0.693 (0.009) 0.694 (0.008) 0.436 (0.128)

σ = 0.64,n = 200
(2.47, 2.47, 9.67)

Ind. 0.735 (0.041) 0.738 (0.045) 0.760 (0.068) 0.619 (0.137) 0.750 (0.057) 0.750 (0.056) 0.585 (0.103) 0.864 (0.073) 0.853 (0.106) 0.772 (0.062) 0.737 (0.050) 0.760 (0.063) 0.769 (0.064) 0.763 (0.062) 0.767 (0.070) 0.427 (0.124)
Corr. 0.698 (0.025) 0.702 (0.024) 0.684 (0.054) 0.470 (0.155) 0.709 (0.034) 0.708 (0.026) 0.407 (0.117) 0.796 (0.068) 0.801 (0.090) 0.709 (0.036) 0.673 (0.034) 0.703 (0.040) 0.715 (0.039) 0.707 (0.045) 0.699 (0.038) 0.421 (0.131)
NonL 0.656 (0.049) 0.685 (0.035) 0.510 (0.065) 0.487 (0.048) 0.701 (0.032) 0.704 (0.032) 0.424 (0.105) 0.790 (0.070) 0.754 (0.076) 0.669 (0.024) 0.658 (0.025) 0.670 (0.022) 0.677 (0.018) 0.683 (0.019) 0.679 (0.021) 0.421 (0.124)

σ = 0.64,n = 400
(2.45, 2.45, 9.63)

Ind. 0.739 (0.038) 0.739 (0.040) 0.803 (0.079) 0.812 (0.081) 0.773 (0.083) 0.764 (0.069) 0.588 (0.111) 0.888 (0.065) 0.960 (0.067) 0.792 (0.076) 0.753 (0.056) 0.796 (0.076) 0.816 (0.080) 0.819 (0.079) 0.810 (0.079) 0.418 (0.132)
Corr. 0.708 (0.019) 0.711 (0.020) 0.743 (0.057) 0.739 (0.052) 0.731 (0.053) 0.723 (0.043) 0.433 (0.119) 0.815 (0.059) 0.928 (0.075) 0.738 (0.048) 0.707 (0.035) 0.740 (0.054) 0.749 (0.053) 0.748 (0.053) 0.747 (0.051) 0.434 (0.127)
NonL 0.676 (0.032) 0.696 (0.020) 0.512 (0.050) 0.511 (0.043) 0.713 (0.035) 0.719 (0.041) 0.462 (0.113) 0.833 (0.063) 0.771 (0.081) 0.687 (0.014) 0.665 (0.020) 0.674 (0.014) 0.683 (0.013) 0.686 (0.012) 0.688 (0.013) 0.431 (0.123)

σ = 1,n = 200
(1.01, 1.01, 3.96)

Ind. 0.730 (0.045) 0.734 (0.045) 0.734 (0.104) 0.555 (0.141) 0.752 (0.070) 0.744 (0.057) 0.564 (0.101) 0.845 (0.078) 0.932 (0.086) 0.799 (0.081) 0.731 (0.050) 0.772 (0.074) 0.781 (0.078) 0.758 (0.065) 0.764 (0.069) 0.432 (0.123)
Corr. 0.681 (0.029) 0.684 (0.032) 0.615 (0.108) 0.427 (0.124) 0.706 (0.048) 0.712 (0.051) 0.416 (0.128) 0.766 (0.078) 0.881 (0.082) 0.725 (0.054) 0.661 (0.042) 0.705 (0.057) 0.714 (0.053) 0.695 (0.058) 0.681 (0.059) 0.436 (0.121)
NonL 0.641 (0.046) 0.668 (0.041) 0.511 (0.063) 0.490 (0.058) 0.686 (0.050) 0.692 (0.055) 0.421 (0.118) 0.747 (0.069) 0.822 (0.097) 0.664 (0.029) 0.648 (0.034) 0.654 (0.032) 0.663 (0.029) 0.664 (0.032) 0.661 (0.031) 0.439 (0.125)

σ = 1,n = 400
(1, 1, 3.94)

Ind. 0.739 (0.043) 0.737 (0.042) 0.869 (0.082) 0.861 (0.086) 0.805 (0.104) 0.771 (0.082) 0.587 (0.112) 0.885 (0.066) 0.988 (0.029) 0.850 (0.087) 0.754 (0.059) 0.854 (0.085) 0.876 (0.079) 0.874 (0.075) 0.854 (0.082) 0.405 (0.126)
Corr. 0.701 (0.026) 0.704 (0.029) 0.770 (0.069) 0.749 (0.093) 0.743 (0.084) 0.741 (0.076) 0.421 (0.123) 0.790 (0.072) 0.966 (0.026) 0.778 (0.069) 0.697 (0.037) 0.768 (0.067) 0.792 (0.072) 0.782 (0.068) 0.774 (0.065) 0.434 (0.125)
NonL 0.674 (0.033) 0.694 (0.029) 0.517 (0.060) 0.517 (0.048) 0.738 (0.075) 0.741 (0.077) 0.437 (0.118) 0.802 (0.066) 0.898 (0.081) 0.679 (0.017) 0.655 (0.025) 0.662 (0.023) 0.668 (0.021) 0.672 (0.019) 0.673 (0.021) 0.431 (0.119)

σ = 4,n = 200
(0.06, 0.06, 0.25)

Ind. 0.672 (0.067) 0.660 (0.071) 0.680 (0.071) 0.665 (0.077) 0.715 (0.128) 0.660 (0.126) 0.581 (0.111) 0.708 (0.102) 0.932 (0.046) 0.831 (0.090) 0.650 (0.084) 0.793 (0.100) 0.776 (0.096) 0.713 (0.114) 0.676 (0.116) 0.430 (0.124)
Corr. 0.538 (0.093) 0.515 (0.092) 0.555 (0.092) 0.53 (0.098) 0.607 (0.139) 0.536 (0.156) 0.408 (0.109) 0.546 (0.117) 0.837 (0.069) 0.668 (0.109) 0.498 (0.107) 0.636 (0.107) 0.622 (0.111) 0.551 (0.131) 0.504 (0.128) 0.431 (0.110)
NonL 0.524 (0.091) 0.518 (0.093) 0.540 (0.104) 0.518 (0.107) 0.602 (0.141) 0.547 (0.133) 0.440 (0.118) 0.581 (0.107) 0.846 (0.068) 0.588 (0.079) 0.568 (0.100) 0.600 (0.109) 0.602 (0.122) 0.586 (0.108) 0.559 (0.122) 0.437 (0.127)

σ = 4,n = 400
(0.06, 0.06, 0.25)

Ind. 0.708 (0.054) 0.707 (0.056) 0.753 (0.067) 0.733 (0.059) 0.838 (0.136) 0.793 (0.129) 0.589 (0.105) 0.747 (0.109) 0.978 (0.011) 0.929 (0.043) 0.712 (0.070) 0.925 (0.046) 0.921 (0.052) 0.900 (0.060) 0.873 (0.075) 0.430 (0.134)
Corr. 0.604 (0.065) 0.605 (0.069) 0.670 (0.053) 0.647 (0.053) 0.768 (0.156) 0.681 (0.146) 0.436 (0.123) 0.583 (0.115) 0.924 (0.030) 0.818 (0.074) 0.593 (0.072) 0.808 (0.069) 0.818 (0.062) 0.782 (0.077) 0.751 (0.082) 0.423 (0.130)
NonL 0.583 (0.071) 0.595 (0.073) 0.588 (0.109) 0.588 (0.108) 0.755 (0.156) 0.690 (0.139) 0.441 (0.117) 0.632 (0.111) 0.927 (0.032) 0.635 (0.055) 0.609 (0.075) 0.668 (0.109) 0.699 (0.110) 0.691 (0.104) 0.678 (0.095) 0.440 (0.131)
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Table S4: Mean (SD) of trace correlation (R) in 200 repetitions for Model (4) using n = 200 and 400; σ = 0.32, 0.45, 0.64, 1 and 4; L = 5, 10
for SIR, SAVE, SR and 2, 3, 5, 8, 10 for CIM; Independent (Ind.), Correlated (Corr.) and Non-linear (NonL) X. SNR values within parentheses
correspond to Ind., Corr., and NonL X respectively. Highest R in each row is boldfaced.

σ, Sample Size
(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.32,n = 200
(9.96, 10.06, 38.75)

Ind. 0.741 (0.042) 0.741 (0.043) 0.744 (0.049) 0.735 (0.045) 0.744 (0.044) 0.744 (0.049) 0.568 (0.108) 0.855 (0.077) 0.764 (0.066) 0.744 (0.044) 0.734 (0.044) 0.749 (0.054) 0.754 (0.054) 0.751 (0.048) 0.755 (0.053) 0.424 (0.135)
Corr. 0.713 (0.024) 0.717 (0.024) 0.709 (0.024) 0.674 (0.064) 0.716 (0.028) 0.719 (0.026) 0.423 (0.109) 0.791 (0.065) 0.729 (0.039) 0.715 (0.028) 0.688 (0.032) 0.710 (0.026) 0.716 (0.025) 0.719 (0.031) 0.719 (0.034) 0.432 (0.133)
NonL 0.669 (0.047) 0.695 (0.038) 0.513 (0.066) 0.500 (0.051) 0.712 (0.023) 0.718 (0.033) 0.420 (0.119) 0.799 (0.070) 0.724 (0.032) 0.679 (0.022) 0.669 (0.019) 0.686 (0.016) 0.695 (0.012) 0.699 (0.010) 0.700 (0.012) 0.437 (0.117)

σ = 0.32,n = 400
(9.91, 10.02, 38.6)

Ind. 0.740 (0.042) 0.742 (0.041) 0.751 (0.051) 0.752 (0.051) 0.745 (0.049) 0.745 (0.047) 0.592 (0.104) 0.891 (0.072) 0.790 (0.085) 0.748 (0.047) 0.752 (0.054) 0.756 (0.054) 0.759 (0.056) 0.764 (0.060) 0.764 (0.058) 0.434 (0.132)
Corr. 0.716 (0.020) 0.718 (0.019) 0.722 (0.027) 0.721 (0.026) 0.721 (0.025) 0.720 (0.024) 0.426 (0.123) 0.818 (0.064) 0.754 (0.062) 0.722 (0.028) 0.711 (0.029) 0.721 (0.028) 0.730 (0.034) 0.733 (0.034) 0.734 (0.035) 0.444 (0.135)
NonL 0.695 (0.033) 0.710 (0.026) 0.522 (0.049) 0.523 (0.053) 0.719 (0.023) 0.731 (0.035) 0.466 (0.112) 0.827 (0.065) 0.725 (0.029) 0.690 (0.011) 0.674 (0.013) 0.688 (0.010) 0.697 (0.007) 0.700 (0.006) 0.701 (0.006) 0.425 (0.132)

σ = 0.45,n = 200
(5.04, 5.09, 19.59)

Ind. 0.738 (0.040) 0.74 (0.043) 0.747 (0.052) 0.689 (0.113) 0.745 (0.049) 0.739 (0.044) 0.569 (0.111) 0.859 (0.075) 0.796 (0.088) 0.757 (0.057) 0.737 (0.045) 0.746 (0.050) 0.755 (0.057) 0.755 (0.057) 0.751 (0.055) 0.446 (0.123)
Corr. 0.712 (0.029) 0.710 (0.022) 0.706 (0.035) 0.610 (0.126) 0.717 (0.033) 0.715 (0.027) 0.408 (0.116) 0.789 (0.065) 0.744 (0.063) 0.719 (0.032) 0.687 (0.035) 0.707 (0.028) 0.716 (0.031) 0.714 (0.032) 0.713 (0.034) 0.437 (0.123)
NonL 0.663 (0.043) 0.691 (0.038) 0.512 (0.065) 0.494 (0.048) 0.706 (0.022) 0.716 (0.034) 0.431 (0.128) 0.799 (0.066) 0.723 (0.039) 0.675 (0.021) 0.663 (0.025) 0.676 (0.017) 0.685 (0.016) 0.690 (0.015) 0.689 (0.019) 0.416 (0.127)

σ = 0.45,n = 400
(5.01, 5.07, 19.52)

Ind. 0.743 (0.042) 0.747 (0.045) 0.766 (0.062) 0.767 (0.060) 0.750 (0.054) 0.759 (0.059) 0.595 (0.097) 0.888 (0.072) 0.870 (0.106) 0.763 (0.059) 0.750 (0.050) 0.766 (0.062) 0.785 (0.073) 0.774 (0.067) 0.783 (0.068) 0.421 (0.127)
Corr. 0.712 (0.015) 0.716 (0.018) 0.729 (0.038) 0.728 (0.036) 0.727 (0.037) 0.728 (0.036) 0.433 (0.118) 0.824 (0.064) 0.826 (0.098) 0.726 (0.033) 0.704 (0.026) 0.727 (0.040) 0.738 (0.045) 0.741 (0.042) 0.747 (0.048) 0.434 (0.129)
NonL 0.686 (0.034) 0.706 (0.027) 0.522 (0.047) 0.519 (0.057) 0.716 (0.023) 0.729 (0.039) 0.457 (0.117) 0.829 (0.060) 0.735 (0.047) 0.689 (0.013) 0.670 (0.015) 0.683 (0.011) 0.691 (0.009) 0.695 (0.008) 0.696 (0.008) 0.432 (0.120)

σ = 0.64,n = 200
(2.49, 2.52, 9.69)

Ind. 0.737 (0.040) 0.737 (0.040) 0.749 (0.062) 0.624 (0.137) 0.754 (0.063) 0.750 (0.058) 0.581 (0.104) 0.865 (0.075) 0.874 (0.100) 0.763 (0.059) 0.738 (0.050) 0.755 (0.057) 0.765 (0.067) 0.763 (0.059) 0.761 (0.069) 0.446 (0.120)
Corr. 0.698 (0.027) 0.698 (0.022) 0.685 (0.051) 0.480 (0.157) 0.707 (0.033) 0.707 (0.031) 0.415 (0.113) 0.782 (0.067) 0.792 (0.091) 0.714 (0.037) 0.677 (0.031) 0.700 (0.034) 0.712 (0.038) 0.712 (0.043) 0.699 (0.042) 0.441 (0.130)
NonL 0.656 (0.048) 0.680 (0.037) 0.512 (0.065) 0.489 (0.049) 0.702 (0.033) 0.709 (0.043) 0.426 (0.112) 0.782 (0.065) 0.752 (0.070) 0.674 (0.022) 0.657 (0.029) 0.668 (0.025) 0.678 (0.019) 0.679 (0.023) 0.678 (0.025) 0.418 (0.130)

σ = 0.64,n = 400
(2.48, 2.50, 9.65)

Ind. 0.740 (0.040) 0.742 (0.044) 0.800 (0.079) 0.807 (0.082) 0.763 (0.071) 0.771 (0.073) 0.579 (0.112) 0.875 (0.072) 0.957 (0.074) 0.792 (0.076) 0.752 (0.054) 0.788 (0.073) 0.818 (0.082) 0.811 (0.080) 0.821 (0.080) 0.440 (0.132)
Corr. 0.712 (0.025) 0.714 (0.023) 0.737 (0.045) 0.736 (0.056) 0.735 (0.057) 0.729 (0.047) 0.437 (0.115) 0.817 (0.061) 0.928 (0.070) 0.740 (0.046) 0.707 (0.032) 0.739 (0.049) 0.749 (0.052) 0.749 (0.052) 0.747 (0.051) 0.422 (0.126)
NonL 0.689 (0.036) 0.707 (0.033) 0.519 (0.049) 0.517 (0.041) 0.722 (0.042) 0.732 (0.055) 0.466 (0.110) 0.833 (0.063) 0.782 (0.081) 0.687 (0.013) 0.665 (0.019) 0.676 (0.013) 0.683 (0.012) 0.687 (0.011) 0.688 (0.010) 0.431 (0.142)

σ = 1,n = 200
(1.02, 1.03, 3.97)

Ind. 0.732 (0.043) 0.734 (0.041) 0.755 (0.094) 0.570 (0.121) 0.754 (0.075) 0.752 (0.068) 0.573 (0.110) 0.863 (0.076) 0.941 (0.077) 0.808 (0.080) 0.732 (0.051) 0.780 (0.078) 0.798 (0.079) 0.778 (0.076) 0.765 (0.076) 0.431 (0.135)
Corr. 0.684 (0.031) 0.686 (0.030) 0.607 (0.128) 0.404 (0.121) 0.701 (0.047) 0.707 (0.051) 0.420 (0.100) 0.749 (0.070) 0.869 (0.094) 0.731 (0.061) 0.662 (0.046) 0.700 (0.054) 0.708 (0.057) 0.693 (0.052) 0.669 (0.058) 0.434 (0.125)
NonL 0.652 (0.044) 0.674 (0.038) 0.510 (0.081) 0.492 (0.068) 0.696 (0.059) 0.690 (0.051) 0.440 (0.117) 0.756 (0.075) 0.824 (0.098) 0.665 (0.028) 0.651 (0.037) 0.656 (0.035) 0.664 (0.027) 0.663 (0.032) 0.658 (0.039) 0.428 (0.129)

σ = 1,n = 400
(1.02, 1.03, 3.95)

Ind. 0.735 (0.039) 0.738 (0.046) 0.864 (0.081) 0.860 (0.087) 0.780 (0.091) 0.769 (0.080) 0.585 (0.110) 0.889 (0.069) 0.991 (0.005) 0.864 (0.082) 0.752 (0.058) 0.839 (0.086) 0.872 (0.080) 0.865 (0.079) 0.852 (0.087) 0.436 (0.130)
Corr. 0.700 (0.023) 0.701 (0.025) 0.770 (0.072) 0.737 (0.088) 0.750 (0.086) 0.736 (0.067) 0.438 (0.106) 0.795 (0.069) 0.966 (0.030) 0.773 (0.067) 0.695 (0.035) 0.766 (0.070) 0.789 (0.075) 0.784 (0.068) 0.773 (0.067) 0.416 (0.126)
NonL 0.674 (0.033) 0.692 (0.028) 0.520 (0.048) 0.516 (0.053) 0.737 (0.070) 0.735 (0.067) 0.450 (0.114) 0.803 (0.068) 0.897 (0.083) 0.681 (0.017) 0.655 (0.030) 0.662 (0.023) 0.668 (0.022) 0.673 (0.019) 0.674 (0.020) 0.435 (0.126)

σ = 4,n = 200
(0.06, 0.06, 0.25)

Ind. 0.662 (0.069) 0.666 (0.078) 0.685 (0.081) 0.668 (0.077) 0.723 (0.121) 0.676 (0.117) 0.584 (0.099) 0.705 (0.124) 0.932 (0.057) 0.840 (0.081) 0.648 (0.085) 0.796 (0.104) 0.791 (0.098) 0.734 (0.110) 0.690 (0.118) 0.438 (0.136)
Corr. 0.540 (0.087) 0.532 (0.091) 0.570 (0.088) 0.547 (0.087) 0.603 (0.157) 0.558 (0.153) 0.406 (0.113) 0.549 (0.110) 0.845 (0.065) 0.670 (0.102) 0.507 (0.097) 0.647 (0.109) 0.634 (0.108) 0.588 (0.113) 0.517 (0.124) 0.419 (0.122)
NonL 0.515 (0.096) 0.525 (0.096) 0.533 (0.106) 0.511 (0.111) 0.617 (0.136) 0.560 (0.142) 0.364 (0.123) 0.586 (0.118) 0.848 (0.057) 0.589 (0.076) 0.571 (0.095) 0.600 (0.109) 0.618 (0.105) 0.579 (0.113) 0.573 (0.118) 0.424 (0.129)

σ = 4,n = 400
(0.06, 0.06, 0.25)

Ind. 0.704 (0.055) 0.709 (0.061) 0.760 (0.071) 0.733 (0.058) 0.837 (0.131) 0.773 (0.130) 0.579 (0.104) 0.747 (0.096) 0.978 (0.011) 0.928 (0.042) 0.712 (0.058) 0.929 (0.042) 0.926 (0.049) 0.897 (0.069) 0.885 (0.071) 0.412 (0.117)
Corr. 0.611 (0.059) 0.610 (0.060) 0.661 (0.059) 0.644 (0.052) 0.763 (0.152) 0.697 (0.143) 0.421 (0.116) 0.590 (0.101) 0.925 (0.032) 0.808 (0.072) 0.588 (0.068) 0.812 (0.070) 0.808 (0.069) 0.778 (0.082) 0.752 (0.096) 0.430 (0.128)
NonL 0.584 (0.073) 0.591 (0.070) 0.594 (0.092) 0.595 (0.098) 0.756 (0.154) 0.671 (0.152) 0.447 (0.130) 0.628 (0.107) 0.923 (0.034) 0.633 (0.048) 0.606 (0.071) 0.676 (0.100) 0.708 (0.099) 0.689 (0.088) 0.678 (0.083) 0.431 (0.122)
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Table S5: Mean (SD) of trace correlation (R) in 200 repetitions for Model (5) using n = 200 and 400; σ = 0.01, 0.03, 0.04, 0.06 and 0.2;
L = 5, 10 for SIR, SAVE, SR and 2, 3, 5, 8, 10 for CIM; Independent (Ind.), Correlated (Corr.) and Non-linear (NonL) X. SNR values within
parentheses correspond to Ind., Corr., and NonL X respectively. Highest R in each row is boldfaced.

σ, Sample Size
(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.01,n = 200
(8.49, 10.24, 12.94)

Ind. 0.424 (0.131) 0.434 (0.144) 0.760 (0.064) 0.809 (0.081) 0.696 (0.151) 0.651 (0.172) 0.765 (0.068) 0.881 (0.079) 0.823 (0.103) 0.745 (0.057) 0.744 (0.050) 0.751 (0.054) 0.766 (0.067) 0.778 (0.072) 0.771 (0.065) 0.422 (0.119)
Corr. 0.348 (0.120) 0.353 (0.119) 0.713 (0.049) 0.727 (0.067) 0.671 (0.152) 0.625 (0.188) 0.720 (0.049) 0.847 (0.074) 0.765 (0.072) 0.713 (0.047) 0.719 (0.037) 0.728 (0.043) 0.734 (0.049) 0.736 (0.051) 0.735 (0.056) 0.449 (0.131)
NonL 0.695 (0.052) 0.701 (0.049) 0.656 (0.071) 0.560 (0.109) 0.719 (0.065) 0.723 (0.075) 0.601 (0.080) 0.837 (0.077) 0.799 (0.090) 0.696 (0.020) 0.704 (0.020) 0.707 (0.025) 0.711 (0.022) 0.713 (0.032) 0.710 (0.029) 0.446 (0.127)

σ = 0.01,n = 400
(8.31, 9.98, 12.65)

Ind. 0.420 (0.129) 0.431 (0.153) 0.789 (0.078) 0.882 (0.079) 0.743 (0.074) 0.742 (0.127) 0.766 (0.066) 0.903 (0.071) 0.933 (0.089) 0.764 (0.060) 0.748 (0.054) 0.758 (0.055) 0.802 (0.080) 0.861 (0.086) 0.865 (0.082) 0.429 (0.124)
Corr. 0.346 (0.119) 0.355 (0.120) 0.734 (0.046) 0.784 (0.076) 0.724 (0.079) 0.720 (0.100) 0.739 (0.048) 0.872 (0.070) 0.823 (0.098) 0.726 (0.036) 0.730 (0.040) 0.732 (0.040) 0.749 (0.048) 0.783 (0.072) 0.800 (0.078) 0.430 (0.124)
NonL 0.710 (0.043) 0.715 (0.049) 0.700 (0.019) 0.678 (0.053) 0.744 (0.070) 0.776 (0.097) 0.632 (0.061) 0.881 (0.074) 0.838 (0.105) 0.699 (0.011) 0.710 (0.013) 0.709 (0.009) 0.714 (0.015) 0.715 (0.016) 0.715 (0.018) 0.433 (0.112)

σ = 0.03,n = 200
(0.94, 1.14, 1.44)

Ind. 0.423 (0.133) 0.427 (0.147) 0.839 (0.092) 0.855 (0.083) 0.704 (0.157) 0.635 (0.176) 0.794 (0.070) 0.888 (0.072) 0.973 (0.049) 0.811 (0.081) 0.736 (0.047) 0.789 (0.081) 0.853 (0.089) 0.831 (0.089) 0.793 (0.087) 0.437 (0.122)
Corr. 0.360 (0.120) 0.362 (0.125) 0.757 (0.077) 0.771 (0.082) 0.649 (0.173) 0.582 (0.194) 0.734 (0.066) 0.838 (0.076) 0.918 (0.085) 0.736 (0.069) 0.711 (0.043) 0.733 (0.058) 0.777 (0.079) 0.752 (0.078) 0.737 (0.076) 0.435 (0.130)
NonL 0.687 (0.058) 0.689 (0.058) 0.646 (0.091) 0.592 (0.116) 0.751 (0.099) 0.733 (0.089) 0.602 (0.089) 0.841 (0.078) 0.957 (0.039) 0.700 (0.030) 0.699 (0.044) 0.708 (0.039) 0.739 (0.063) 0.719 (0.049) 0.717 (0.052) 0.432 (0.127)

σ = 0.03,n = 400
(0.92, 1.11, 1.41)

Ind. 0.415 (0.144) 0.428 (0.148) 0.946 (0.041) 0.957 (0.025) 0.804 (0.122) 0.719 (0.180) 0.815 (0.065) 0.913 (0.066) 0.994 (0.003) 0.873 (0.089) 0.747 (0.057) 0.873 (0.082) 0.954 (0.040) 0.956 (0.034) 0.945 (0.043) 0.425 (0.139)
Corr. 0.344 (0.128) 0.344 (0.129) 0.843 (0.083) 0.891 (0.054) 0.766 (0.102) 0.709 (0.159) 0.763 (0.063) 0.876 (0.060) 0.982 (0.014) 0.779 (0.079) 0.726 (0.045) 0.773 (0.075) 0.863 (0.079) 0.887 (0.065) 0.874 (0.068) 0.421 (0.123)
NonL 0.706 (0.046) 0.713 (0.056) 0.700 (0.060) 0.691 (0.071) 0.811 (0.122) 0.789 (0.109) 0.626 (0.079) 0.866 (0.069) 0.984 (0.020) 0.704 (0.023) 0.709 (0.027) 0.716 (0.036) 0.763 (0.080) 0.742 (0.066) 0.733 (0.055) 0.445 (0.122)

σ = 0.04,n = 200
(0.53, 0.64, 0.81)

Ind. 0.420 (0.133) 0.411 (0.142) 0.891 (0.069) 0.890 (0.071) 0.706 (0.161) 0.584 (0.182) 0.804 (0.072) 0.881 (0.073) 0.985 (0.013) 0.841 (0.082) 0.733 (0.048) 0.833 (0.086) 0.892 (0.073) 0.857 (0.089) 0.819 (0.089) 0.430 (0.126)
Corr. 0.347 (0.123) 0.352 (0.129) 0.780 (0.085) 0.785 (0.089) 0.652 (0.171) 0.541 (0.195) 0.729 (0.073) 0.822 (0.081) 0.958 (0.041) 0.758 (0.076) 0.705 (0.045) 0.745 (0.068) 0.798 (0.083) 0.777 (0.084) 0.741 (0.080) 0.444 (0.123)
NonL 0.681 (0.054) 0.686 (0.057) 0.644 (0.091) 0.601 (0.123) 0.743 (0.098) 0.736 (0.094) 0.590 (0.101) 0.828 (0.083) 0.962 (0.030) 0.701 (0.036) 0.696 (0.037) 0.712 (0.050) 0.751 (0.076) 0.736 (0.063) 0.727 (0.063) 0.437 (0.136)

σ = 0.04,n = 400
(0.52, 0.62, 0.79)

Ind. 0.419 (0.144) 0.435 (0.133) 0.961 (0.028) 0.965 (0.020) 0.813 (0.129) 0.747 (0.167) 0.829 (0.067) 0.913 (0.061) 0.995 (0.002) 0.911 (0.067) 0.750 (0.058) 0.915 (0.065) 0.968 (0.022) 0.963 (0.024) 0.960 (0.025) 0.425 (0.133)
Corr. 0.352 (0.116) 0.364 (0.118) 0.890 (0.056) 0.912 (0.039) 0.782 (0.125) 0.713 (0.169) 0.767 (0.066) 0.862 (0.067) 0.986 (0.007) 0.832 (0.084) 0.732 (0.049) 0.831 (0.077) 0.906 (0.052) 0.912 (0.048) 0.898 (0.057) 0.441 (0.117)
NonL 0.704 (0.047) 0.705 (0.049) 0.704 (0.062) 0.698 (0.066) 0.821 (0.123) 0.797 (0.121) 0.607 (0.103) 0.849 (0.077) 0.987 (0.006) 0.702 (0.020) 0.712 (0.031) 0.722 (0.043) 0.785 (0.094) 0.760 (0.077) 0.748 (0.066) 0.428 (0.130)

σ = 0.06,n = 200
(0.24, 0.28, 0.36)

Ind. 0.424 (0.133) 0.417 (0.138) 0.912 (0.063) 0.895 (0.065) 0.685 (0.179) 0.603 (0.174) 0.787 (0.084) 0.843 (0.105) 0.987 (0.007) 0.853 (0.086) 0.733 (0.048) 0.862 (0.086) 0.908 (0.064) 0.869 (0.078) 0.815 (0.100) 0.439 (0.129)
Corr. 0.367 (0.112) 0.358 (0.126) 0.824 (0.075) 0.802 (0.077) 0.667 (0.157) 0.548 (0.185) 0.709 (0.071) 0.773 (0.104) 0.969 (0.019) 0.761 (0.088) 0.697 (0.047) 0.768 (0.082) 0.839 (0.075) 0.782 (0.092) 0.737 (0.105) 0.427 (0.131)
NonL 0.672 (0.060) 0.671 (0.068) 0.670 (0.104) 0.644 (0.111) 0.752 (0.105) 0.726 (0.108) 0.567 (0.118) 0.779 (0.107) 0.966 (0.019) 0.703 (0.044) 0.691 (0.049) 0.739 (0.075) 0.775 (0.095) 0.742 (0.076) 0.723 (0.071) 0.419 (0.128)

σ = 0.06,n = 400
(0.23, 0.28, 0.35)

Ind. 0.437 (0.130) 0.428 (0.136) 0.972 (0.013) 0.968 (0.013) 0.860 (0.143) 0.713 (0.207) 0.824 (0.066) 0.868 (0.094) 0.995 (0.002) 0.940 (0.050) 0.748 (0.056) 0.952 (0.041) 0.976 (0.013) 0.970 (0.019) 0.965 (0.022) 0.421 (0.117)
Corr. 0.331 (0.123) 0.342 (0.123) 0.927 (0.031) 0.922 (0.033) 0.783 (0.161) 0.661 (0.211) 0.752 (0.069) 0.802 (0.103) 0.988 (0.006) 0.871 (0.068) 0.725 (0.050) 0.881 (0.057) 0.937 (0.033) 0.927 (0.041) 0.922 (0.041) 0.430 (0.109)
NonL 0.701 (0.055) 0.706 (0.059) 0.733 (0.069) 0.727 (0.063) 0.844 (0.130) 0.792 (0.118) 0.611 (0.100) 0.821 (0.095) 0.987 (0.006) 0.703 (0.028) 0.711 (0.038) 0.777 (0.093) 0.833 (0.099) 0.799 (0.096) 0.786 (0.089) 0.421 (0.128)

σ = 0.20,n = 200
(0.02, 0.03, 0.03)

Ind. 0.427 (0.130) 0.422 (0.137) 0.882 (0.073) 0.840 (0.083) 0.642 (0.189) 0.562 (0.192) 0.645 (0.099) 0.675 (0.086) 0.893 (0.099) 0.741 (0.073) 0.689 (0.065) 0.867 (0.082) 0.870 (0.078) 0.809 (0.090) 0.759 (0.096) 0.422 (0.134)
Corr. 0.351 (0.119) 0.342 (0.128) 0.804 (0.075) 0.755 (0.088) 0.603 (0.199) 0.521 (0.185) 0.543 (0.108) 0.617 (0.101) 0.863 (0.100) 0.670 (0.068) 0.626 (0.075) 0.791 (0.080) 0.796 (0.089) 0.736 (0.094) 0.678 (0.104) 0.432 (0.135)
NonL 0.595 (0.091) 0.599 (0.091) 0.728 (0.088) 0.701 (0.085) 0.730 (0.136) 0.683 (0.135) 0.560 (0.113) 0.649 (0.100) 0.904 (0.060) 0.657 (0.075) 0.626 (0.089) 0.785 (0.100) 0.794 (0.094) 0.760 (0.100) 0.731 (0.105) 0.441 (0.127)

σ = 0.20,n = 400
(0.02, 0.02, 0.03)

Ind. 0.415 (0.134) 0.411 (0.139) 0.957 (0.030) 0.943 (0.040) 0.796 (0.134) 0.675 (0.187) 0.700 (0.088) 0.698 (0.084) 0.980 (0.041) 0.798 (0.081) 0.724 (0.055) 0.958 (0.023) 0.957 (0.034) 0.948 (0.035) 0.931 (0.051) 0.440 (0.140)
Corr. 0.355 (0.132) 0.355 (0.133) 0.918 (0.035) 0.900 (0.044) 0.783 (0.156) 0.645 (0.205) 0.589 (0.111) 0.626 (0.085) 0.974 (0.017) 0.740 (0.081) 0.683 (0.052) 0.913 (0.035) 0.927 (0.029) 0.910 (0.043) 0.897 (0.048) 0.426 (0.130)
NonL 0.648 (0.068) 0.656 (0.065) 0.787 (0.087) 0.757 (0.074) 0.867 (0.118) 0.810 (0.130) 0.573 (0.110) 0.665 (0.103) 0.952 (0.035) 0.690 (0.047) 0.674 (0.069) 0.880 (0.081) 0.893 (0.070) 0.887 (0.078) 0.874 (0.081) 0.418 (0.123)
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Table S6: Mean (SD) of trace correlation (R) in 200 repetitions for Model (6) using n = 200 − 400,
σ = 3 and 6 (SNRs 0.12 and 0.06 respectively) and Independent X. Slice-based methods, namely SIR,
SAVE, SR, and CIM naturally use L = 4. Highest R in each row is boldfaced.

SIR SAVE SR PHD MAVE dMAVE Fourier CIM Random
σ = 3,SNR ≈ 0.12

n=200 0.926 (0.026) 0.567 (0.140) 0.911 (0.045) 0.493 (0.138) 0.583 (0.137) 0.799 (0.087) 0.906 (0.026) 0.855 (0.077) 0.430 (0.130)
n=300 0.950 (0.017) 0.682 (0.094) 0.948 (0.022) 0.526 (0.138) 0.621 (0.138) 0.835 (0.091) 0.941 (0.023) 0.932 (0.043) 0.424 (0.130)
n=400 0.961 (0.015) 0.739 (0.093) 0.958 (0.028) 0.545 (0.130) 0.641 (0.123) 0.879 (0.078) 0.955 (0.020) 0.957 (0.019) 0.433 (0.124)

σ = 6,SNR ≈ 0.06
n=200 0.866 (0.056) 0.645 (0.095) 0.828 (0.069) 0.448 (0.137) 0.519 (0.142) 0.752 (0.067) 0.813 (0.075) 0.778 (0.075) 0.451 (0.122)
n=300 0.901 (0.049) 0.720 (0.063) 0.867 (0.068) 0.469 (0.132) 0.554 (0.130) 0.772 (0.064) 0.862 (0.072) 0.839 (0.079) 0.449 (0.127)
n=400 0.926 (0.036) 0.743 (0.061) 0.888 (0.064) 0.490 (0.134) 0.529 (0.132) 0.786 (0.071) 0.885 (0.069) 0.888 (0.069) 0.436 (0.133)
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Table S7: Mean (SD) of trace correlation (R) in 200 repetitions for Model (7) using n = 200 − 400,
σ = 2, 3, and 4 (SNRs 0.12, 0.08, and 0.06 respectively) and Independent X. Slice-based methods, namely
SIR, SAVE, SR, and CIM naturally use L = 3. Highest R in each row is boldfaced.

SIR SAVE SR PHD MAVE dMAVE Fourier CIM Random
σ = 2,SNR ≈ 0.12

n = 200 0.893 (0.041) 0.730 (0.107) 0.908 (0.040) 0.568 (0.142) 0.676 (0.087) 0.851 (0.085) 0.898 (0.039) 0.891 (0.054) 0.416 (0.126)
n = 300 0.927 (0.027) 0.826 (0.088) 0.943 (0.022) 0.623 (0.153) 0.719 (0.076) 0.921 (0.046) 0.931 (0.025) 0.940 (0.025) 0.420 (0.128)
n = 400 0.944 (0.021) 0.892 (0.065) 0.961 (0.014) 0.710 (0.127) 0.734 (0.081) 0.952 (0.022) 0.949 (0.019) 0.961 (0.014) 0.436 (0.127)

σ = 3,SNR ≈ 0.08
n = 200 0.868 (0.047) 0.644 (0.134) 0.862 (0.054) 0.541 (0.157) 0.631 (0.097) 0.775 (0.106) 0.872 (0.043) 0.842 (0.074) 0.430 (0.126)
n = 300 0.909 (0.035) 0.752 (0.114) 0.908 (0.043) 0.607 (0.150) 0.670 (0.088) 0.841 (0.092) 0.913 (0.034) 0.910 (0.048) 0.434 (0.128)
n = 400 0.927 (0.024) 0.814 (0.101) 0.937 (0.026) 0.671 (0.135) 0.693 (0.086) 0.905 (0.065) 0.932 (0.023) 0.943 (0.025) 0.427 (0.126)

σ = 4,SNR ≈ 0.06
n = 200 0.846 (0.053) 0.583 (0.138) 0.820 (0.077) 0.528 (0.143) 0.590 (0.107) 0.697 (0.117) 0.849 (0.051) 0.789 (0.096) 0.432 (0.124)
n = 300 0.884 (0.044) 0.682 (0.132) 0.874 (0.062) 0.591 (0.156) 0.634 (0.095) 0.781 (0.094) 0.889 (0.044) 0.872 (0.066) 0.429 (0.133)
n = 400 0.910 (0.036) 0.744 (0.122) 0.908 (0.043) 0.621 (0.139) 0.661 (0.110) 0.823 (0.103) 0.914 (0.034) 0.908 (0.054) 0.426 (0.129)
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Table S8: Mean (SD) of trace correlation (R) in 200 repetitions for Model (8) using n = 200 − 400,
σ = 3, 4, and 5 (SNRs 0.07, 0.06, and 0.05 respectively) and Independent X. Slice-based methods, namely
SIR, SAVE, SR, and CIM naturally use L = 3. Highest R in each row is boldfaced.

SIR SAVE SR PHD MAVE dMAVE Fourier CIM Random
σ = 3,SNR ≈ 0.07

n = 200 0.699 (0.055) 0.643 (0.101) 0.726 (0.105) 0.619 (0.108) 0.576 (0.152) 0.766 (0.121) 0.736 (0.081) 0.823 (0.090) 0.439 (0.129)
n = 300 0.704 (0.042) 0.720 (0.091) 0.749 (0.112) 0.667 (0.059) 0.653 (0.134) 0.844 (0.103) 0.776 (0.085) 0.897 (0.054) 0.430 (0.130)
n = 400 0.718 (0.049) 0.762 (0.095) 0.786 (0.125) 0.681 (0.048) 0.681 (0.119) 0.894 (0.088) 0.821 (0.093) 0.924 (0.045) 0.429 (0.122)

σ = 4,SNR ≈ 0.06
n = 200 0.686 (0.047) 0.594 (0.130) 0.686 (0.088) 0.598 (0.095) 0.541 (0.146) 0.660 (0.145) 0.710 (0.070) 0.776 (0.102) 0.426 (0.134)
n = 300 0.711 (0.056) 0.673 (0.105) 0.742 (0.110) 0.623 (0.109) 0.594 (0.133) 0.759 (0.127) 0.757 (0.085) 0.849 (0.090) 0.416 (0.128)
n = 400 0.718 (0.045) 0.723 (0.100) 0.760 (0.103) 0.658 (0.066) 0.633 (0.136) 0.819 (0.113) 0.783 (0.085) 0.896 (0.065) 0.432 (0.119)

σ = 5,SNR ≈ 0.05
n = 200 0.689 (0.056) 0.556 (0.133) 0.676 (0.075) 0.542 (0.128) 0.520 (0.144) 0.599 (0.148) 0.702 (0.069) 0.727 (0.096) 0.440 (0.121)
n = 300 0.701 (0.050) 0.643 (0.112) 0.710 (0.088) 0.604 (0.110) 0.551 (0.145) 0.693 (0.135) 0.735 (0.075) 0.799 (0.097) 0.422 (0.117)
n = 400 0.713 (0.047) 0.685 (0.095) 0.736 (0.090) 0.622 (0.078) 0.579 (0.140) 0.741 (0.132) 0.767 (0.082) 0.856 (0.076) 0.436 (0.126)
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Table S9: Mean (SD) of trace correlation (R) in 200 repetitions for Model (1) for the subset of scenarios where Semiparamteric method
produces reliable outputs for a chosen set of bandwidths. Highest R in each row is boldfaced.
σ, Sample Size

(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier Semiparametric CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.25,n = 200
(10.91, 9.47)

Ind. 0.42 (0.129) 0.419 (0.122) 0.918 (0.052) 0.873 (0.080) 0.7 (0.203) 0.572 (0.214) 0.944 (0.029) 0.997 (0.002) 0.964 (0.060) 0.809 (0.090) 0.994 (0.003) 0.916 (0.056) 0.92 (0.049) 0.908 (0.066) 0.859 (0.104) 0.826 (0.1) 0.421 (0.133)
Corr. 0.43 (0.132) 0.419 (0.144) 0.866 (0.061) 0.819 (0.079) 0.695 (0.194) 0.557 (0.207) 0.893 (0.045) 0.995 (0.003) 0.943 (0.075) 0.777 (0.083) 0.990 (0.005) 0.865 (0.063) 0.874 (0.061) 0.851 (0.081) 0.816 (0.089) 0.776 (0.098) 0.417 (0.132)

σ = 0.25,n = 400
(10.9, 9.87)

Ind. 0.442 (0.138) 0.458 (0.141) 0.969 (0.014) 0.962 (0.017) 0.868 (0.173) 0.745 (0.202) 0.977 (0.009) 0.999 (0.000) 0.995 (0.003) 0.926 (0.064) 0.998 (0.001) 0.966 (0.014) 0.972 (0.011) 0.973 (0.011) 0.971 (0.014) 0.966 (0.017) 0.419 (0.124)
Corr. 0.406 (0.135) 0.408 (0.131) 0.942 (0.031) 0.933 (0.033) 0.872 (0.147) 0.694 (0.208) 0.948 (0.025) 0.998 (0.001) 0.991 (0.006) 0.868 (0.083) 0.996 (0.002) 0.944 (0.031) 0.952 (0.026) 0.952 (0.030) 0.943 (0.032) 0.941 (0.034) 0.429 (0.126)

σ = 0.35,n = 200
(5.56, 4.83)

Ind. 0.434 (0.138) 0.439 (0.144) 0.911 (0.047) 0.864 (0.083) 0.667 (0.212) 0.553 (0.199) 0.947 (0.024) 0.994 (0.003) 0.939 (0.077) 0.792 (0.094) 0.991 (0.004) 0.911 (0.053) 0.914 (0.054) 0.906 (0.056) 0.854 (0.092) 0.818 (0.100) 0.443 (0.118)
Corr. 0.421 (0.139) 0.421 (0.140) 0.849 (0.076) 0.798 (0.099) 0.657 (0.197) 0.542 (0.194) 0.886 (0.055) 0.990 (0.005) 0.914 (0.090) 0.762 (0.084) 0.985 (0.008) 0.854 (0.076) 0.859 (0.074) 0.836 (0.089) 0.800 (0.098) 0.745 (0.103) 0.433 (0.119)

σ = 0.35,n = 400
(5.56, 4.83)

Ind. 0.424 (0.129) 0.417 (0.132) 0.964 (0.017) 0.954 (0.023) 0.854 (0.164) 0.712 (0.209) 0.973 (0.011) 0.998 (0.001) 0.992 (0.004) 0.922 (0.059) 0.997 (0.001) 0.965 (0.016) 0.970 (0.012) 0.970 (0.014) 0.964 (0.025) 0.959 (0.023) 0.404 (0.129)
Corr. 0.426 (0.138) 0.426 (0.130) 0.935 (0.033) 0.921 (0.040) 0.846 (0.156) 0.667 (0.212) 0.944 (0.026) 0.996 (0.002) 0.985 (0.015) 0.871 (0.076) 0.994 (0.003) 0.940 (0.032) 0.949 (0.023) 0.942 (0.035) 0.933 (0.036) 0.923 (0.048) 0.437 (0.131)

σ = 0.50,n = 400
(2.73, 2.37)

Ind. 0.42 (0.133) 0.417 (0.133) 0.956 (0.022) 0.943 (0.032) 0.805 (0.176) 0.648 (0.220) 0.969 (0.013) 0.995 (0.002) 0.982 (0.029) 0.893 (0.071) 0.994 (0.002) 0.959 (0.024) 0.965 (0.016) 0.961 (0.018) 0.952 (0.028) 0.939 (0.042) 0.432 (0.130)
Corr. 0.415 (0.129) 0.412 (0.126) 0.924 (0.035) 0.903 (0.048) 0.768 (0.180) 0.586 (0.215) 0.937 (0.030) 0.991 (0.005) 0.964 (0.043) 0.831 (0.083) 0.989 (0.005) 0.93 (0.035) 0.935 (0.027) 0.929 (0.031) 0.911 (0.049) 0.893 (0.058) 0.431 (0.119)

Table S10: Mean (SD) of trace correlation (R) in 200 repetitions for Model (2) for the subset of scenarios where Semiparamteric method
produces reliable outputs for a chosen set of bandwidths. Highest R in each row is boldfaced.
σ, Sample Size

(SNR) X SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier Semiparametric CIM (2) CIM (3) CIM (5) CIM (8) CIM (10) Random

σ = 0.55,n = 200
(9.93, 9.93)

Ind. 0.722 (0.044) 0.725 (0.050) 0.802 (0.091) 0.710 (0.046) 0.860 (0.132) 0.812 (0.118) 0.729 (0.048) 0.995 (0.002) 0.990 (0.004) 0.959 (0.022) 0.993 (0.003) 0.953 (0.018) 0.962 (0.016) 0.956 (0.021) 0.926 (0.046) 0.879 (0.078) 0.429 (0.126)
Corr. 0.766 (0.073) 0.775 (0.087) 0.765 (0.089) 0.679 (0.068) 0.901 (0.113) 0.859 (0.119) 0.720 (0.043) 0.991 (0.004) 0.982 (0.008) 0.927 (0.038) 0.988 (0.005) 0.924 (0.032) 0.939 (0.029) 0.930 (0.038) 0.890 (0.065) 0.843 (0.091) 0.424 (0.136)

σ = 0.55,n = 400
(9.9, 9.92)

Ind. 0.733 (0.048) 0.739 (0.055) 0.964 (0.029) 0.891 (0.080) 0.943 (0.108) 0.891 (0.129) 0.733 (0.042) 0.998 (0.001) 0.995 (0.002) 0.984 (0.007) 0.997 (0.001) 0.979 (0.008) 0.984 (0.006) 0.984 (0.006) 0.982 (0.007) 0.980 (0.008) 0.437 (0.128)
Corr. 0.818 (0.077) 0.826 (0.083) 0.926 (0.056) 0.816 (0.093) 0.980 (0.046) 0.960 (0.082) 0.731 (0.045) 0.996 (0.002) 0.992 (0.003) 0.966 (0.015) 0.995 (0.002) 0.968 (0.014) 0.976 (0.011) 0.977 (0.010) 0.973 (0.013) 0.969 (0.013) 0.439 (0.116)

σ = 0.8,n = 200
(4.69, 4.69)

Ind. 0.720 (0.049) 0.725 (0.055) 0.758 (0.076) 0.703 (0.044) 0.833 (0.128) 0.781 (0.112) 0.725 (0.046) 0.988 (0.005) 0.979 (0.009) 0.948 (0.028) 0.986 (0.006) 0.942 (0.028) 0.948 (0.021) 0.935 (0.031) 0.891 (0.067) 0.840 (0.088) 0.429 (0.130)
Corr. 0.743 (0.067) 0.752 (0.078) 0.718 (0.060) 0.668 (0.069) 0.854 (0.123) 0.814 (0.113) 0.716 (0.051) 0.981 (0.010) 0.965 (0.019) 0.918 (0.034) 0.976 (0.012) 0.906 (0.045) 0.922 (0.038) 0.894 (0.060) 0.833 (0.088) 0.772 (0.100) 0.422 (0.124)

σ = 0.8,n = 400
(4.68, 4.69)

Ind. 0.731 (0.045) 0.734 (0.051) 0.911 (0.070) 0.791 (0.081) 0.923 (0.115) 0.880 (0.124) 0.736 (0.047) 0.995 (0.002) 0.990 (0.004) 0.980 (0.009) 0.994 (0.003) 0.974 (0.009) 0.979 (0.008) 0.979 (0.009) 0.975 (0.011) 0.971 (0.012) 0.435 (0.134)
Corr. 0.799 (0.076) 0.806 (0.087) 0.843 (0.087) 0.748 (0.070) 0.965 (0.061) 0.931 (0.096) 0.736 (0.050) 0.992 (0.003) 0.984 (0.007) 0.960 (0.018) 0.990 (0.004) 0.959 (0.016) 0.966 (0.014) 0.968 (0.013) 0.963 (0.015) 0.954 (0.030) 0.428 (0.136)

σ = 1.05,n = 400
(2.72, 2.72)

Ind. 0.726 (0.047) 0.730 (0.054) 0.825 (0.088) 0.744 (0.058) 0.884 (0.128) 0.841 (0.123) 0.735 (0.050) 0.990 (0.004) 0.981 (0.008) 0.975 (0.010) 0.989 (0.004) 0.966 (0.014) 0.972 (0.011) 0.971 (0.014) 0.964 (0.016) 0.959 (0.018) 0.425 (0.130)
Corr. 0.791 (0.080) 0.795 (0.085) 0.769 (0.077) 0.719 (0.048) 0.944 (0.078) 0.906 (0.103) 0.729 (0.046) 0.985 (0.007) 0.972 (0.012) 0.952 (0.021) 0.983 (0.008) 0.950 (0.022) 0.955 (0.020) 0.953 (0.019) 0.941 (0.031) 0.928 (0.045) 0.404 (0.128)
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Table S11: Computation time in seconds (average of 200 runs; SD in parentheses) to generate
d = 2 output directions for Models (2), (5), and (8) with n = 400, Independent X, and specified
σ. Number of slices L = 3 naturally for Model (8) with discrete Y .

Model (2): Homoscedastic, Continuous Y (σ = 0.55)
SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier Semiparametric CIM(2) CIM(3) CIM(5) CIM(8) CIM(10)

5e-04
(3e-04)

4e-04
(2e-04)

6e-04
(2e-04)

7e-04
(2e-04)

0.8499
(0.0433)

0.8787
(0.0593)

0.0026
(4e-04)

1.1625
(0.0944)

12.1979
(0.9517)

0.0127
(0.00889)

1.1711
(0.0779)

0.6527
(0.0501)

0.5737
(0.0287)

0.5253
(0.0351)

0.4892
(0.0257)

0.4809
(0.0304)

Model (5): Heteroscedastic, Continuous Y (σ = 0.20)
SIR (5) SIR (10) SAVE (5) SAVE (10) SR (5) SR (10) PHD MAVE dMAVE Fourier Semiparametric CIM(2) CIM(3) CIM(5) CIM(8) CIM(10)

5e-04
(4e-04)

4e-04
(1e-04)

6e-04
(2e-04)

7e-04
(4e-04)

0.8358
(0.0141)

0.8660
(0.0137)

0.0026
(3e-04)

2.0753
(0.0534)

12.8684
(2.0811)

0.0131
(0.00817)

6.7422
(1.8080)

0.6582
(0.0167)

0.5830
(0.0175)

0.5290
(0.0096)

0.4958
(0.0095)

0.4856
(0.0079)

Model (8): Heteroscedastic, Discrete Y (σ = 4)
SIR SAVE SR PHD MAVE dMAVE Fourier Semiparametric CIM
6e-04

(5e-04)
8e-04

(3e-04)
0.8202

(0.0149)
0.0026
(5e-04)

2.0446
(0.0229)

17.5507
(0.1781)

0.0132
(0.0088) XX 0.5906

(0.0084)
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Table S12: Trace Correlation (R) between the first CIM directions obtained using varying
number of slices L ∈ [3, 10] for Ozone Data.

CIM (5) CIM (6) CIM (7) CIM (8) CIM (10)
CIM (3) 0.9855 0.9967 0.9967 0.9979 0.9898
CIM (5) 0.9950 0.9882 0.9918 0.9980
CIM (6) 0.9967 0.9980 0.9969
CIM (7) 0.9978 0.9888
CIM (8) 0.9930

Table S13: Trace Correlation (R) between the second CIM directions obtained using varying
number of slices L ∈ [3, 10] for Ozone Data.

CIM (5) CIM (6) CIM (7) CIM (8) CIM (10)
CIM (3) 0.9761 0.9817 0.9821 0.9865 0.9471
CIM (5) 0.9910 0.9799 0.9835 0.9834
CIM (6) 0.9877 0.9896 0.9762
CIM (7) 0.9938 0.9786
CIM (8) 0.9775
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Table S14: Trace Correlation (R) between the estimated 2D Central Subspaces obtained by
CIM using varying number of slices L ∈ [3, 10] for Ozone Data.

CIM 2D CS CIM (5) CIM (6) CIM (7) CIM (8) CIM (10)
CIM (3) 0.9933 0.9916 0.9895 0.9929 0.9774
CIM (5) 0.9973 0.9947 0.995 0.9912
CIM (6) 0.9936 0.9943 0.9886
CIM (7) 0.9961 0.9909
CIM (8) 0.9896

Table S15: Fixing d = 2 for Ozone Data, trace correlation (R) between the subspaces spanned by
the first directions (DIR 1), the second directions (DIR 2), and the estimated 2D Subspaces (2D)
obtained via CIM, and SIR, SAVE, SR (using L = 3, 5, 8, 10 slices), PHD, MAVE, dMAVE,
Fourier, and Semiparametric methods. Highest R in each row is boldfaced.

SIR (L) SAVE (L) SR (L) PHD MAVE dMAVE Fourier Semiparametric

CIM (3)
DIR 1 0.9386 0.9702 0.9121 0.7713 0.9029 0.877 0.9358 0.5237
DIR2 0.4607 0.946 0.8526 0.2759 0.3844 0.472 0.8876 0.5966

2D 0.7838 0.9847 0.9362 0.6744 0.7429 0.7872 0.9472 0.8008

CIM (5)
DIR 1 0.9711 0.9973 0.9665 0.8434 0.9533 0.9378 0.9738 0.4989
DIR2 0.3167 0.9431 0.7344 0.1278 0.2875 0.3894 0.8971 0.4846

2D 0.7437 0.9718 0.8858 0.6644 0.7242 0.7605 0.9438 0.7719

CIM (8)
DIR 1 0.939 0.9813 0.9318 0.7996 0.9246 0.8989 0.9556 0.535
DIR2 0.0873 0.9163 0.5615 0.2077 0.3198 0.411 0.8805 0.5286

2D 0.7094 0.9658 0.814 0.6756 0.7337 0.7732 0.9459 0.7848

CIM (10)
DIR 1 0.9558 0.9772 0.965 0.8326 0.9401 0.927 0.9626 0.4702
DIR2 0.6042 0.8761 0.7181 0.0766 0.2519 0.3286 0.8831 0.4254

2D 0.8196 0.9283 0.8656 0.6719 0.7141 0.7421 0.9353 0.748
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(a) (b)

(c) (d)

Figure S1: Dimension estimation plots (500 replicates) for CIM in Model (1) using Independent
X, n = 400, SNRs ≈ 10.9 (σ = 0.25) and ≈ 2.73 (σ = 0.5), and L = 3 slices (panels (a) and (b))
and 5 slices (panels (c) and (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure S2: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (1)
using Independent X, n = 400, SNR ≈ 10.9 (σ = 0.25), and L = 3 slices (panels (a)-(c)) and 5
slices (panels (d)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (1)
using Independent X, n = 400, SNR ≈ 2.73 (σ = 0.5), and L = 3 slices (panels (a)-(c)) and 5 slices
(panels (d)-(f)).
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(a) (b)

(c) (d)

Figure S4: Dimension estimation plots (500 replicates) for CIM in Model (2) using Independent
X, n = 400, SNRs ≈ 9.9 (σ = 0.55) and ≈ 2.72 (σ = 1.05), and L = 3 slices (panels (a) and (b))
and 5 slices (panels (c) and (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure S5: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (2)
using Independent X, n = 400, SNR ≈ 9.9 (σ = 0.55), and L = 3 slices (panels (a)-(c)) and 5 slices
(panels (d)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure S6: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (2)
using Independent X, n = 400, SNR ≈ 2.72 (σ = 1.05), and L = 3 slices (panels (a)-(c)) and 5
slices (panels (d)-(f)).
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(a) (b)

(c) (d)

Figure S7: Dimension estimation plots (500 replicates) for CIM in Model (3) using Independent
X, n = 400, SNR’s ≈ 0.06 (σ = 4) and ≈ 0.24 (σ = 2.03), and L = 5 slices (panels (a) and (b))
and 8 slices (panels (c) and (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure S8: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (3)
using Independent X, n = 400, SNR ≈ 0.06 (σ = 4), and L = 5 slices (panels (a)-(c)) and 8 slices
(panels (d)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure S9: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model (3)
using Independent X, n = 400, SNR ≈ 0.24 (σ = 2.03), and L = 5 slices (panels (a)-(c)) and 8
slices (panels (d)-(f)).
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(a) (b)

(c) (d)

Figure S10: Dimension estimation plots (500 replicates) for CIM in Model (4) using Independent
X, n = 400, SNR’s ≈ 0.06 (σ = 4) and ≈ 0.25 (σ = 2.03), and L = 5 slices (panels (a) and (b))
and 8 slices (panels (c) and (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure S11: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model
(4) using Independent X, n = 400, SNR ≈ 0.06 (σ = 4), and L = 5 slices (panels (a)-(c)) and 8
slices (panels (d)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure S12: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model
(4) using Independent X, n = 400, SNR ≈ 0.25 (σ = 2.03), and L = 5 slices (panels (a)-(c)) and
8 slices (panels (d)-(f)).
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(a) (b)

(c) (d)

Figure S13: Dimension estimation plots (500 replicates) for CIM in Model (5) using Independent
X, n = 400, SNR’s ≈ 0.02 (σ = 0.2) and ≈ 0.23 (σ = 0.06), and L = 5 slices (panels (a) and (b))
and 8 slices (panels (c) and (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure S14: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model
(5) using Independent X, n = 400, SNR ≈ 0.02 (σ = 0.2), and L = 5 slices (panels (a)-(c)) and 8
slices (panels (d)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure S15: Boxplot versions of dimension estimation plots (500 replicates) for CIM in Model
(5) using Independent X, n = 400, SNR ≈ 0.23 (σ = 0.06), and L = 5 slices (panels (a)-(c)) and
8 slices (panels (d)-(f)).
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(a) (b)

(c) (d)

Figure S16: Panel (a): Dimension estimation plot (500 replicates) for CIM for Wine Recognition
Data with L = 3 slices (for 3 response classes). Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S17: 2D projections of the Wine Recognition Data on the CS estimated via (a) CIM,
(b) SIR, and (c) SR. (d): a Random 2D projection.
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Figure S18: Autocorrelation function for the (de-meaned) Ozone concentration response in the
Ozone Data.

55



(a) (b)

(c) (d)

Figure S19: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 3 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S20: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 5 slices. Panels (b) - (d): Boxplot versions of (a).

57



(a) (b)

(c) (d)

Figure S21: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 6 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S22: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 7 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S23: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 8 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S24: Panel (a): Dimension estimation plot (500 replicates) for CIM for Ozone Data with
L = 10 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S25: Panel (a): Dimension estimation plot (500 replicates) for SIR for Ozone Data with
L = 3 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S26: Panel (a): Dimension estimation plot (500 replicates) for SIR for Ozone Data with
L = 5 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S27: Panel (a): Dimension estimation plot (500 replicates) for SIR for Ozone Data with
L = 8 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S28: Panel (a): Dimension estimation plot (500 replicates) for SIR for Ozone Data with
L = 10 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S29: Panel (a): Dimension estimation plot (500 replicates) for SAVE for Ozone Data
with L = 3 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S30: Panel (a): Dimension estimation plot (500 replicates) for SAVE for Ozone Data
with L = 5 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S31: Panel (a): Dimension estimation plot (500 replicates) for SAVE for Ozone Data
with L = 8 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

Figure S32: Panel (a): Dimension estimation plot (500 replicates) for SAVE for Ozone Data
with L = 10 slices. Panels (b) - (d): Boxplot versions of (a).
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(a) (b)

(c) (d)

(e) (f)

Figure S33: Panels (a) - (b): Scatterplots of Ozone concentration (mixing ratios in pphm by vol.)
against the first and the second CIM directions respectively using L = 5 for Ozone Data. Solid
lines are LOESS fits; dashed lines around them represent 95% prediction bands obtained using the
CRAN package ‘msir’. Panels (c) - (d): Similar plots using L = 10. Panels (e) - (f): Scatterplots
of the first and the second CIM directions using L = 5 and L = 10 respectively.
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