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Unconditional quantile regression 

To address heterogeneity in the response of a dependent variable to covariates, numerous 

studies have used a conditional quantile regression (CQR). CQR examines distributional 

outcomes of observed attributes at different points in the conditional distribution of the 

dependent variable across its entire distribution, not at the mean (Koenker and Bassett Jr, 

1978; Koenker and Hallock, 2001; Koenker, 2006). Quantile regression (QR) estimator is 

more robust to outliers in the dependent variables that often occur in the data of developing 

countries like Vietnam (Hampel et al., 2011). Therefore, a large measurement error only has a 

small impact on the coefficient estimates while it could cause a severe bias to OLS (Deaton, 

1997). Especially, since the QR technique requires less strict assumptions about the 

distribution of the error term1, it is preferred to OLS when the error term is not normally 

distributed.2 Exploring the determinants of log per capita real expenditure on the whole 

distribution but not only at moments, this study will apply a method of unconditional quantile 

regression (hereafter UQR) introduced by Firpo et al. (2009).  

     Under the QR framework, conditional quantile regression (CQR) is the most commonly 

used method in the literature. However, when the effects of covariates vary for different 

quantiles or for different set of covariates, it is not straightforward to interpret the results of 

                                                        
1
 When CQR is estimated, some distributional assumptions are needed. For instance, the distribution of the error 

terms is continuous and differentiable. It also assumes a specific structure for the conditional quantiles, that is, 

the linear dependence of quantiles on parameters. In contrast, UQR is a non-parametric estimator, therefore it is 

robust to even a misspecified set of control variables (Maclean et al., 2014). Authors thank an anonymous 

referee for pointing this out. 
2
 The normality test (D'Agostino et al., 1990) shows that the hypothesis that log per capita household 

expenditure is normally distributed is rejected for all the rounds of our dataset. We have applied the same test 

for the residuals of OLS and found that they are not normally distributed.    



CQR as its estimates cannot be generalized to the entire population (Borah and Basu, 2013). 

That is, in CQR the estimated marginal effect at each percentile is valid only if the change in 

an independent variable (e.g. expenditure) does not move the observation into a different 

percentile. Therefore, CQR cannot be easily applied to the Oaxaca-Blinder type 

decomposition. Machado and Mata (2005) proposed the counterfactual simulation method, 

but it is not only computationally demanding but also unsuitable for detailed decomposition 

as it cannot provide composition effects (Fortin et al., 2011).   

     In contrast, UQR based on the approach of Firpo et al. (2009) is more generalizable and 

intuitive to interpret due to its straightforward implementation, especially in the presence of 

multiple covariates. Moreover, it is preferred to the conditional method since it provides the 

overall inequality as measuring directly the effects on the expenditure distribution without 

conditioning on the explanatory variables. This property is particularly important for policy 

implications when we need to draw the causal inference from observational data (Angrist and 

Pischke, 2009). Besides, the method is also easy to be generalised to yield other distributional 

statistics such as the Gini or Theil coefficients. In UQR the estimated marginal effect at each 

percentile expresses the marginal effect of covariate and can be used more straightforwardly 

for the Oaxaca-Blinder type decomposition. However, the estimate shows only a partial-

equilibrium effect under the assumption that the unobserved heterogeneity is independent of 

the observed characteristics and no reversal causality exists (Koske et al., 2012).  

     The key idea of UQR is based upon the re-centered influence function (RIF) which is the 

sum of given distributional statistic (𝑞𝜃) and the influence function (IF) (Firpo et al. 2009, 

p.956).  

                                𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑌) = 𝑞𝜃 + 𝐼𝐹(𝑌𝑖; 𝑞𝜃; 𝐹𝑌)     (1) 

Here IF represents the influence of an individual observation 𝑌𝑖 (household consumption 

expenditure in our case) on the distributional statistic, 𝑞𝜃, that is, the 𝜃th
 quantile of the 



unconditional distribution of 𝑌𝑖. 𝐹𝑌 is the (unconditional) cumulative distribution function of 

𝑌𝑖. That is, RIF is the ‘adjusted quantile’ at 𝜃th
 which is equal to 𝑞𝜃 with the effect of  𝑌𝑖 on 

𝑞𝜃 given the distribution of  𝑌𝑖 accounted for. More specifically, it is written as:  

 

    

𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑌) = 𝑞𝜃 +
𝜃 − 𝕀{𝑌𝑖 ≤ 𝑞𝜃}

𝑓𝑌(𝑞𝜃)
 (1)’ 

As detailed by Firpo et al.,  𝑓𝑌(𝑞𝜃) is the marginal density of 𝑌𝑖 at the 𝜃th
 quantile, which 

could be estimated using kernel method, while 𝕀{𝑌𝑖 ≤ 𝑞𝜃} is an indicator function taking 1 if 

household expenditure is below or equal to the expenditure at the 𝜃th
 quantile. This is 

rewitten as: 

𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑌) = 𝑐1,𝜃 ∙ 𝕀{𝑌𝑖 > 𝑞𝜃} + 𝑐2,𝜃 

where 𝑐1,𝜃 =
1

𝑞𝜃
; 𝑐2,𝜃 = 𝑞𝜃 − 𝑐1,𝜃 ∙ (1 − 𝜃) 

      Here the influence function corresponds to an observed 𝑌 (household expenditure) of a 

real values function, 𝑓𝑌(𝑞𝜃), that is, the probability density function of the marginal 

distribution of 𝑌 (Firpo et al. 2009, p.958). It can be seen from this that the expectation of the 

RIF equals the population quantile of the unconditional distribution.3 

Following the law of iterated expectations, with a vector of covariate𝑋𝑖, the 

unconditional distributional statistic 𝑞𝜃, can be expressed as the conditional expectation of 

the re-centered influence function:  

  𝑞𝜃 = 𝔼[𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑦)] = 𝔼[𝔼[𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑦)|𝑋𝑖]] (2) 

We can also integrate over the conditional mean to obtain the distributional statistics 

using regression methods: 

                                                        
3
 𝔼[𝑅𝐼𝐹(𝑌; 𝑞𝜃; 𝐹𝑌)] = 𝔼[𝑞𝜃] +

𝜃−𝔼[𝕀{𝑌𝑖≤𝑞𝜃}]

𝑓𝑌(𝑞𝜃)
= 𝑞𝜃 +

𝜃−𝜃

𝑓𝑌(𝑞𝜃)
= 𝑞𝜃  



 𝔼 [𝔼[𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑦)|𝑋𝑖]] = ∫ 𝔼[𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑦)|𝑋𝑖]𝑑𝐹𝑋(𝑥) (3) 

where 𝐹𝑋(𝑥) is the marginal distribution function of covariates, 𝑥. In the simplest case, the 

conditional expectation of 𝑅𝐼𝐹(𝑌𝑖 ; 𝑞; 𝐹𝑦 ) can be written as the linear function of observable 

covariates: 

 𝔼[𝑅𝐼𝐹(𝑌𝑖; 𝑞𝜃;𝐹𝑦)|𝑋𝑖] = 𝑋𝛽𝑞 + 𝜀 (4) 

Under the zero conditional mean assumption for error term and equations (2)-(4), we obtain: 

 𝑞𝜃 = 𝔼𝑋(𝑋𝑅)𝛽𝑈 (5) 

This expression shows that RIF provides a tool to capture the effects of explanatory variables 

on the distributional statistic of interest without facing the difficulty of computing the 

counterfactual distribution.  

     Following the Firpo et al.’s (2009) procedure, firstly, one can compute the sample quantile 

𝑞�̂� of marginal distribution of 𝑌 as presented in Koenker and Bassett Jr (1978) and generate 

the density estimate 𝑓�̂� using kernel method.4 Subsequently, an estimate of RIF could be 

obtained by plugging each estimate back to equation (1) above. Finally, the coefficient matrix 

could be estimated as: 

𝛽�̂� = (∑ 𝑋𝑖 ∙ 𝑋1
′ )𝑁

𝑖=1
−1

∑ 𝑋𝑖𝑅𝐼�̂�(𝑌𝑖, 𝑞�̂�, 𝐹𝑌)𝑁
𝑖=1                                              (6) 

which is the marginal effect of an infinitesimal location shift in the distribution of observed 

covariates X on the 𝜽th
 unconditional quantile of Y, ceteris paribus.  

 

                                                        
4
 Firpo et al.’s (2009, p.960) showed that the estimator of the 𝜃th population quantile of the marginal 

distribution of 𝑌𝑖 is  𝑞�̂�, the usual 𝜃th sample quantile, which can be represented as:   

 𝑞�̂� = arg min
𝑞

∑ (𝜃 − 𝕀{𝑌𝑖 − 𝑞 ≤ 0} ∙ (𝑌𝑖 − 𝑞))𝑁
𝑖=1   

Firpo et al.’s (p.961) estimated the density of 𝑌𝑖, 𝑓�̂�(∙), using the kernel density estimator: 

 𝑓�̂�( 𝑞�̂�) =
1 

𝑁∙𝑏
∙ ∑ κ𝑌 (

𝑌𝑖−𝑞�̂�

𝑏
)𝑁

𝑖=1  

where κ𝑦(∙) is a kernel function and 𝑏 is a positive scalar bandwidth.  


