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Figure S1. HDAC6 inhibition decreases the viability of NT2/D1 and P19 cancer stem cells (CSCs).
(A and B) NT2/D1 tubastatin A-treated and HDAC6 KD cells were stained with MTS reagent and the
percentage of proliferation was determined after 24, 48, 72 and 96 h. (C and D) P19 tubastatin A-

treated and HDAC6 KD cells were stained with MTS reagent and the percentage of proliferation was
determined after 24, 48, 72 and 96 h.
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Figure S2. HDAC6 inhibition promotes differentiation and increases the stability of ACTB/B-actin. (A)
NT2/DI1 tubastatin A-treated and HDAC6 KD cells were analyzed by microscopy for morphological changes
and the percentage of cells displaying neurite outgrowths were quantified using Imagel] software. (B)
NT2/D1 HDAC6 KD cells were subjected to qRT-PCR analysis for differentiation factor ACTB. (C)
NT2/D1, HDAC6 KD cells treated with or without MG132 for 4 h were subjected to WB analysis for total
ubiquitin. The numbers below the blot correspond to densitometry quantification of blots normalized to the
loading control. (D) NT2/D1 HDAC6 KD cells were subjected to immunopreciptiation for ACTB and the
input samples we subjected to WB analysis for HDAC6 and total ubiquitin.
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Figure S3. Global proteome analysis of NT2/D1 cancer stem cells (CSCs) following HDACG6 inhibition. (A
and B) Heat maps comparing the proteomic analysis of pluripotency- and differentiation-related proteins in
tubastatin A-treated or HDAC6 KD NT2/D1 cells. (C and D) Heat map comparing the proteomic analysis of
mitochondria- and metabolism -elated proteins in tubastatin A-treated or HDAC6 KD NT2/D1 cells. (E and
F) Heat map comparing the proteomic analysis of transcription- and ribosomal-related proteins in tubastatin
A-treated or HDAC6 KD NT2/D1 cells. (G) Heat map comparing the proteomic analysis of autophagy-
related proteins in tubastatin A-treated or HDAC6 KD NT2/D1 cells. (H) Graphical depiction of examples
of selected proteins related to pluripotency, metabolism, differentiation, autophagy and ribosome which are
either upregulated (red) or downregulated (green) by both HDAC6 KD and inhibition.
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Figure S4. HDACG6 inhibitor-mediated effect on pluripotency and differentiation of CSCs is independent of
CASP3. (A and B) NT2/D1 cells were treated with tubastatin A and subjected to WB for (A) Pro-CASP3
and cleaved CASP3, (B) cleaved PARP and RIPK3. The numbers below the blots correspond to
densitometry quantification of blots normalized to the loading control. (C) P19 cells were treated with
tubastatin A and subjected to WB for Pro-CASP3 and cleaved CASP3. (D) NT2/D1 cells were pre-treated
with caspase inhibitor V or necrostatin followed by treatment with tubastatin A and subjected to WB for
Pro-CASP3 and cleaved CASP3, and cleaved PARP. (E) NT2/D1 HDAC6 KD cells were subjected to WB
for Pro-CASP3 and cleaved CASP3.
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Figure S5. HDACG6 inhibition promotes autophagy in NT2/D1 and P19 cancer stem cells (CSCs). (A)
Tubastatin A-treated NT2/D1 and (B) P19 cells were subjected to WB analysis for ATGS, LC3A-II, LC3B-II
and SQSTMI. (C and D) gqRT-PCR analysis for SOSTM1/Sqstml in (C) NT2/D1 HDAC6 KD and (D) P19
HDACG6 KD cells. (E) NT2/D1 HDAC6 KD cells were transfected with GFP-LC3-overexpressing plasmid
and treated with chloroquine (CQ), and puncta formation was analyzed by confocal microscopy and
quantified using ImageJ software.
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Figure S6. HDACS6 inhibition promotes senescence in NT2/D1 cancer stem cells (CSCs). (A) WB and qRT-
PCR analysis for CDKN1A/p21 in NT2/D1 HDAC6 KD cells. (B) NT2/D1 HDAC6 KD cells were labelled
with GLB1/b-galactosidase to detect senescence. Statistical analysis was performed with two-tailed,
Student’s #-test with 95% confidence interval; *P-values < 0.05 obtained by comparing the respective data
with the scrambled control. Not in the current Fig. S6.
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Figure S7. HDACG6 inhibition does not promote necroptosis in MDA-MB-231 and MDA-MB-468 breast
cancer cells. MDA-MB-231 treated with tubastatin A (A) or HDAC6 KD (B) were subjected to western
blot analysis for RIPK3. MDA-MB-468 treated with tubastatin A (C) or HDAC6 KD (D) were subjected
to WB analysis for RIPK3.
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Figure S8. HDACS6 inhibition does not upregulate autophagy in MDA-MB-231 and MDA-MB-468 breast
cancer cells. (A) MDA-MB-231 or (B) MDA-MB-468 HDACG6 KD cells were transfected with GFP-LC3-
overexpressing plasmid and treated with chloroquine (CQ) and puncta formation was analyzed by
confocal microscopy and quantified using ImageJ software.
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Figure S9. HDAC6 KD does not promote necroptosis and differentially regulates autophagy in
differentiated HMLER breast cancer cells and HMLERS"C2d breast cancer stem cells (BCSCs). (A)
HMLER breast cancer cells with HDAC6 KD were subjected to western blot analysis for RIPK3.
Numbers below the blots correspond to densitometry quantification of blots normalized to the loading
control. (B) HMLER or (C) HMLER®" ¢ Breast cancer stem cells (BCSCs) HDAC6 KD cells were
transfected with GFP-LC3-overexpressing plasmid and treated with chloroquine (CQ) and puncta
formation was analyzed by confocal microscopy and quantified using ImageJ software. n.s., not
significant; **, P-values < 0.005.
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Figure S10. HDAC6 differentially regulates autophagy and apoptosis in CSCs and differentiated breast
cancer cells. (A) HDAC6 KD in differentiated breast cancer cells decreases the levels of the tuberous
sclerosis tumor suppressor complex, TSC1 and TSC2. This increases the levels of phosphorylated MTOR
and inhibits autophagy. HDAC6 KD also increases the levels of cleaved CASP3, leading to increased
apoptotic cell death. (B) HDAC6 KD in CSCs increases the levels of members of the tuberous sclerosis
tumor suppressor complex, TSC1 and TSC2. This decreases the levels of phosphorylated MTOR and
increases autophagy. This also decreases the phosphorylation of the downstream targets of p-MTOR
signaling, EIF4EBP1 and RPS6KB, which inhibits protein translation. HDAC6 KD also decreases the
levels of the master pluripotency transcription factor, POUS5F1, resulting in the inhibition of pluripotency
and the promotion of differentiation in CSCs.



