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STEPP

Test statistic for the test of the null hypothesis of no covariate-treatment interaction for the STEPP
approach:

TSTEPP = max
j=1,...,K

(
|θ̂j − θ̂ALL|

σ̂j

)
, (S1)

where θ̂j is the estimated treatment effect (as the hazard ratio or the difference in Kaplan-Meier

estimates at a given time point between the study groups) in the jth of K subpopulations, θ̂ALL

the according estimate for the whole study population, and σ̂j an estimate for the standard error

of the difference between θ̂j and θ̂ALL.

Multivariable fractional polynomial interaction

Algorithm for the FP2-flex1 approach:

1. Select best powers (p1, p2) for Z in a model as described in Equation 2 of the manuscript
including T as additional covariate by finding the model (out of 36 candidates) with the
highest(log-)likelihood.

2. Define the new predictors

• Z01 = Zp1 if T = 0 and Z01 = 0 if T = 1

• Z02 = Zp2 if T = 0 and Z02 = 0 if T = 1

• Z11 = 0 if T = 0 and Z11 = Zp1 if T = 1

• Z12 = 0 if T = 0 and Z12 = Zp2 if T = 1

3. Fit the two nested models M1 with covariates T, Z01, Z02, Z11, Z12 and M2 with covariates
T, Zp1, Zp2 and compare the difference of model deviances with a χ2 distribution with two
degrees of freedom.
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Algorithm for the FP1-flex3 approach:

1. Select the best power transformation (p1) by finding the model with covariate-treatment
interaction (out of 8 candidates) with the highest (log-)likelihood considering the transformed
covariates

• Z01 = Zp1 if T = 0 and Z01 = 0 if T = 1

• Z11 = 0 if T = 0 and Z11 = Zp1 if T = 1

and treatment group.

2. Find the best power transformation in an according model without a covariate-treatment
interaction including the covariates T and Zp1 (the selected transformation can be different
to that determined for the model with interaction).

3. Compare the differences of model deviances with a χ2 distribution with one degree of free-
dom. As the models might not be nested use of a χ2 distribution is not well justified from a
theoretical point of view and consequently the result should be interpreted as “indicative”
rather than as “definitive”.

Local partial-likelihood approach

Taylor expansions for β(Z) and f(Z) around a marker value of interest z0:

β(z) ≈ β(z0) + β′(z0)(z − z0) = ζ + η(z − z0) (S2)

f(z) ≈ f(z0) + f ′(z0)(z − z0) = α+ γ(z − z0) (S3)

Local partial-likelihood within the neighbourhood of z0:

lz0(ζ,η, γ) =
1

n

n∑

i=1

Kh(Zi − z0) δi

{
ζ Ti + η Ti(Zi − z0) + γ(Zi − z0) −

log
( n∑

j=1

Yj(Xi)Kh(Zj − z0) exp
(
ζ Tj + η Tj(Zj − z0) + γ(Zj − z0)

))}
,

(S4)

where ζ, η, and γ are as defined in Equations S2 and S3, Kh(.) is a kernel weight with a given
bandwidth of h, δ is the binary status variable, and Yj(Xi) indicates, whether the observed time
of individual j is larger than the observed time of individual i.

Test statistic for the test of the null hypothesis of no covariate-treatment interaction for the local
partial likelihood approach:

QLPLE = max
1≤k≤m

(
{β̂(zk)− β̂}2

V̂ ar{β̂(zk)− β̂}

)
, (S5)

where β̂ is the estimated regression coefficient for a model assuming a constant treatment effect
over the range of the covariate z, m is the number of covariate values of interest, k indicates
the according covariate value and β̂(zk) is the local estimate of the regression coefficient at the
covariate value zk.
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Modified covariate approach

The difference between the treatment groups can then be expressed as a hazard ratio and estimated
for a given covariate value z as

∆(z) = exp{−γ′
0
W (z)}. (S6)

To test for a covariate-treatment interaction, the model presented in Equation (4) of the manuscript
can be compared with a model including only the transformed treatment variable, but not the
covariate of interest, in the matrix W ∗ using a χ2 test with an appropriate number of degrees of
freedom. The degrees of freedom depend on the transformations used for the covariate of interest
in W and consequently in W ∗ (e.g. spline function, penalized splines, ...).

Point estimates and CIs for given age values

MFPI MFPI Modif.
Age STEPP Cox FP2-flex1 FP1-flex3 LPLE covar.

Point est. 0.57 0.68 0.70 0.71 0.53 0.70
60 CI (low.) 0.28 0.39 0.40 0.41 0.26 0.42

CI (upp.) 1.20 1.18 1.23 1.21 1.07 1.16

Point est. 0.88 0.87 0.99 0.87 0.95 0.94
65 CI (low.) 0.42 0.58 0.61 0.58 0.49 0.62

CI (upp.) 1.86 1.30 1.60 1.31 1.84 1.43

Point est. 1.20 1.10 1.26 1.09 1.39 1.31
70 CI (low.) 0.63 0.79 0.82 0.78 0.77 0.87

CI (upp.) 2.32 1.54 1.93 1.51 2.53 1.98

Point est. 1.45 1.41 1.48 1.38 1.76 1.61
75 CI (low.) 0.82 0.97 1.01 0.96 1.03 1.02

CI (upp.) 2.57 2.04 2.16 1.98 2.99 2.56

Point est. 1.36 1.80 1.64 1.78 1.42 1.83
80 CI (low.) 0.68 1.09 0.98 1.08 0.77 0.97

CI (upp.) 2.73 2.95 2.74 2.93 2.60 3.44

Table S1: Point estimates for the hazard ratio with according values of the pointwise 95% confi-
dence interval for given age values of 60, 65, 70, 75 and 80 years obtained by the different methods.
For STEPP and LPLE a linear interpolation between the two closest estimates was performed to
obtain results for the given age values.

STEPP: Subpopulation treatment effects pattern plot

Cox: Cox regression with linear age-treatment interaction

MFPI: Multivariable fractional polynopmial for interaction

LPLE: Local partial likelihood estimation

Modif. covar.: Modified covariate approach
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