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In Section 1, we provide the proofs of technical lemmas, Corollary 1–2, and Theorem
1–3. In Section 2, we present additional simulation results about the accuracy of Cauchy
approximation under multivariate t distributions and power comparison of different com-
bination tests. In Section 3, we provide a toy example and some discussions to illustrate
the finite-sample power of the Cauchy combination test.

1 Proof of main results

We introduce some notations. Let φ(x) and Φ(x) be the density function and the cu-
mulative distribution function of the standard normal variable, respectively. Let h(x) =
tan{[2Φ(|x|)− 3/2]π} and p(x) = 2{1− Φ(|x|)}. The Cauchy combination test statistic is
defined as T (X) =

∑d
i=1 ωih(Xi), where wi ≥ 0 for any 1 ≤ i ≤ d and

∑d
i=1wi = 1.

1.1 Technical Lemmas

We first prove a few useful technical Lemmas. Note that d is fixed in Theorem 1. The
notation o(1) and O(1) in the following proofs is with respect to t tending to +∞.
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Lemma 1 (Bonferroni inequality). Let A = ∪di=1Ai. For any k < [d/2], we have

2k∑
s=1

(−1)s−1Bs ≤ P (A) ≤
2k−1∑
s=1

(−1)s−1Bs

where Bs =
∑

1≤i1<···<is≤d P (Ai1 ∩ · · · ∩ Ais).

Lemma 2 (Mill’s ratio inequality). For any x > 0,

x

φ(x)
≤ 1

1− Φ(x)
≤ x

φ(x)
· 1 + x2

x2
.

Lemma 3 (Properties of function h). (i) For any |x| > Φ−1(3/4),

cos[p(x)π]

p(x)π
≤ h(x) ≤ 1

p(x)π
. (1)

(ii) For any constant 0 < |a| < 1, we have

lim
x→+∞

h(x)

x2h(ax)
> ca > 0, (2)

where ca is some constant only depend on a.
(iii) Suppose W0 has a standard Cauchy distribution and X0 has a standard normal

distribution, then we have

P{W0 > t} = P{h(X0) > t} =
1

tπ
+O(1/t3). (3)

Proof. (i) Note that p(x) < 1/2 when |x| > Φ−1(3/4) and h(x) = sin{[1/2−p(x)]π}/ cos{[1/2−
p(x)]π} = cos[p(x)π]/ sin[p(x)π], then (1) follows from the elementary inequalities that
z cos z ≤ sin z ≤ z for any z ∈ (0, π/2).

(ii) Since h(x) = h(−x), we only need to consider the case where 0 < a < 1. To simplify
the exposition, we write f(x) � g(x) if limx→+∞ f(x)/g(x) = c0, where constant c0 > 0
and f(x) and g(x) are two functions. Simple calculation gives that for x > 0,

h′(x) =
2πφ(x)

cos2{[1/2− p(x)]π}
> 0.

Through Mill’s inequality and (1), we have h(x) � xex
2/2 and h′(x) � x2ex

2/2. By the
mean value theorem, h(x) = h(ax) + h′(axx)(1− a)x for some constant a ≤ ax ≤ 1. Then,
for x > Φ−1(3/4)/a, we have

h(x)

x2h(ax)
≥ h′(axx)(1− a)x

x2h(ax)
� (1− a)a2xx

2ea
2
xx

2/2

ax2ea2x2/2
≥ (1− a)a.
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(iii) Let U0 = p(X0) ∼ U [0, 1]. It follows from (1) that

P

{
cos[U0π]

U0π
> t

}
≤ P{h(X0) > t} ≤ P

{
1

U0π
> t

}
=

1

tπ
.

By Taylor’s series expansion, we have

P

{
cos[U0π]

U0π
> t

}
= P

{
1− (π2/2)U2

0 + op(U
2
0 )

U0π
> t

}
and

P

{
π

2t
U2
0 + U0 −

1

tπ
> 0

}
= P

{
U0 <

1

π
(
√
t2 + 2− t)

}
=

1

π
(
√
t2 + 2− t) =

1

tπ
− 1

2πt3
+ o(

1

t3
) =

1

tπ
+O(

1

t3
).

Hence, we complete the proof.

1.2 Proof of Theorem 1

Since h(x) = h(−x), then h(Xi) = h(Xj) if Xi = Xj or Xi = −Xj. Hence, we only need
to consider the case where |σij| < 1 for any 1 ≤ i < j ≤ d. Without loss of generality, we
assume wi > 0 for any 1 ≤ i ≤ d.

Let Ai,t = {h(Xi) > (1+δt)t/ωi, T (X) > t} and Bi,t = {h(Xi) ≤ (1+δt)t/ωi, T (X) > t},
where constant δt only depends on t and satisfies that δt > 0, δt → 0 and δtt → +∞ as
t → +∞. Further let At =

⋃d
i=1Ai,t, Bt =

⋂d
i=1Bi,t, then we can decompose the rejection

region {T (X) > t} into the two disjoint sets At and Bt, and then

P{T (X) > t} = P (At) + P (Bt).

Step 1. We first show that P (Bt) = o(1/t). The event {T (X) > t} implies that there
exists at least one i such that h(Xi) > t/(ωid). Then we have

P (Bt) ≤
d∑
i=1

P (Bi,t ∩ {h(Xi) > t/(ωid)}) =
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1 + δt)t

ωi
, T (X) > t

}

≤
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

, T (X) > t

}
+

d∑
i=1

P

{
(1− δt)t

ωi
< h(Xi) ≤

(1 + δt)t

ωi

}
= I1 + I2

It is easy to see the I2 = o(1/t) by noting that δt → 0 and using Lemma 3(iii). Regarding
I1, we have
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I1 ≤
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

,
d∑
j 6=i

ωjh(Xj) > δtt

}

≤
d∑
i=1

d∑
j 6=i

P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

, h(Xj) >
δtt

(d− 1)ωj

}
.

It remains to show for any 1 ≤ i 6= j ≤ d,

I1,ij = P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

, h(Xj) >
δtt

(d− 1)ωj

}
= o(1/t). (4)

Because of the pairwise normality assumption of X, we can write Xj = σijXi + γijZij,
where σ2

ij+γ
2
ij = 1 and Zij is independent of Xi and follows a standard normal distribution.

If σij = 0, then (4) directly follows from Lemma 3(iii). Note that we also have |σij| < 1.
Hence, we only need to consider the case where 0 < |σij| < 1. Let h−1(·) be the inverse
function of h(x) when x > 0. The event in (4) implies that |Xi| > h−1( t

ωid
) → +∞.

Therefore, applying Lemma 3(ii), for sufficiently large t, we have

h(σijXi) ≤
h(Xi)

c0X2
i

≤ (1− δt)t
c0ωi[h−1(

t
ωid

)]2
<

t

c0ωi[h−1(
t
ωid

)]2
,

where c0 > 0 is a constant only depending on σij. Then by choosing δt such that
δt[h

−1( t
ωid

)]2 → +∞, we have h(σijXi) ≤ o( δtt
(d−1)ωj

). Recall that h(Xj) >
δtt

(d−1)ωj
in (4) and

Xj = σijXi + γijZij. These indicate that |Zij| > λt, where λt is some constant depending
on t and tends to +∞. Hence, by Lemma 3(iii),

I1,ij ≤ P

{
t

ωid
< h(Xi), |Zij| > λt

}
= P

{
t

ωid
< h(Xi)

}
P {|Zij| > λt} = o(1/t)

Step 2. In this step, we show that P (At) = 1/(tπ) + o(1/t). By Bonferroni inequality,

d∑
i=1

P (Ai,t)−
∑

1≤i<j≤d

P (Ai,t ∩ Aj,t) ≤ P (At) ≤
d∑
i=1

P (Ai,t).

Using a similar argument of proving I1 = o(1/t) in step 1, it is easy to see that P (Ai,t ∩
Aj,t) = o(1/t) for any 1 ≤ i < j ≤ d. Further, observe that

P (Ai,t) = P{h(Xi) > (1 + δt)t/ωi} − P{h(Xi) > (1 + δt)t/ωi, T (X) ≤ t}

and

P{h(Xi) > (1 + δt)t/ωi} =
ωi

π(1 + δt)t
+ o

(
1

(1 + δt)t

)
=
ωi
πt

+ o(1/t),
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it suffices to show
P{h(Xi) > (1 + δt)t/ωi, T (X) ≤ t} = o(1/t) (5)

for any 1 ≤ i ≤ d. The event in (5) implies that there exists at least one j 6= i such
that ωjh(Xj) ≤ −δtt(d− 1), then it can be easily seen that (5) also follows from a similar
argument of proving I1 = o(1/t) in step 1. Therefore, we complete the proof.

1.3 Proof of Corollary 1

From Theorem 1, we have ∣∣∣∣P{T (X) > t} − 1

tπ

∣∣∣∣ ≤ o(1/t),

for any given fixed weights ω = (ω1, · · · , ωd) and
∑d

i=1 ωi = 1. Since ω is independent of
X, it suffices to show that the upper bound o(1/t) does not depend on the weights.

In the proof of Theorem 1, we provide the upper bound for multiple terms. First, we
consider the term I1,ij in (4) and show that the upper bound for it does not depend on the
weights. It is obvious that

I1,ij ≤ P

{
t

ωid
< h(Xi) ≤

t

ωi
, h(Xj) > δtt

}
.

Let ε > 0 be a sufficiently small constant. If 0 < ωi ≤ 1/tε, then

I1,ij ≤ P

{
t1+ε

d
< h(Xi)

}
=

d

t1+επ
+ o(1/t1+ε).

If 1/tε < ωi < 1, we have

I1,ij ≤ P
{
t/d < h(Xi) ≤ t1+ε, h(σijXi + γijZij) > δtt

}
≤ P

[
t/d < h(Xi), |Zij| >

1

|γij|
{
h−1(δtt)− |σij|h−1(t1+ε)

}]
.

As in the proof of Theorem 1, by choosing δt such that δt[h
−1(t1+ε)]2 → +∞, we have

h−1(δtt) − |σij|h−1(t1+ε) → +∞. Combing the two cases about ωi together, we obtain an
upper bound for I1,ij, which does not depend on the weights and is o(1/t).

For the other terms, it is easy to see or can be shown using a similar argument above
for I1,ij that their upper bounds does not depend on the weights and is o(1/t). Hence, we
omit the details of the proof.
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1.4 Proof of Theorem 2

To simplify the exposition, we introduce a new notation that a � b if a is smaller than
or equal to b up to multiplying some positive constant independent of t and d. Similar to
the proof of Theorem 1, we first decompose the rejection region {T (X) > t} into the two
disjoint sets At and Bt.

Step 1. We show that P (Bt) = o(1/t). The event {T (X) > t} implies that there exists
at least one i such that h(Xi) > t/(ωid). Then we have

P (Bt) ≤
d∑
i=1

P (Bi,t ∩ {h(Xi) > t/(ωid)}) =
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1 + δt)t

ωi
, T (X) > t

}

≤
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

, T (X) > t

}
+

d∑
i=1

P

{
(1− δt)t

ωi
< h(Xi) ≤

(1 + δt)t

ωi

}

≤
d∑
i=1

P

{
t

ωid
< h(Xi) ≤

(1− δt)t
ωi

,

d∑
j 6=i

ωjh(Xj) > δtt

}

+
d∑
i=1

P

{
(1− δt)t

ωi
< h(Xi) ≤

(1 + δt)t

ωi

}
= I1 + I2

It is easy to see the I2 = o(1/t) by noting that δt → 0 and using Lemma 3(iii). It remains
to show I1 = o(1/t). Because the largest eigenvalue of Σ = (σij) is bounded by C0, we have

max1≤i≤d
∑d

j=1 σ
2
ij ≤ C0. Let 0 < σ2

0 < 1 be a constant and Ji = {j 6= i : σ2
ij ≥ σ2

0}. For

any 1 ≤ i ≤ d, the cardinality of Ji is less than or equal to C0/σ
2
0. Let δt = (C0/σ

2
0)t−ε,

where constant 0 < ε < 1. Then we have

I1 ≤
d∑
i=1

∑
j∈Ji

P

{
t

ωid
< h(Xi) ≤

t

ωi
, h(Xj) >

t1−ε

ωj

}

+
d∑
i=1

∑
j∈J c

i ,j 6=i

P

{
t

ωid
< h(Xi) ≤

t

ωi
, h(Xj) >

t1−ε

dωj

}
= I11 + I12

Recall the definition of the notation “�” introduced at the beginning of the proof. Let
d = tα for some 0 < α < 1/2. Note that min1≤i≤d ωi ≥ c0/d and the cardinality of Ji is
bounded by a constant C0/σ

2
0 for any 1 ≤ i ≤ d. Then we have

I11 =
d∑
i=1

∑
j∈Ji

P
{
t � h(Xi) � t1+α, t1+α−ε � h(Xj)

}
� d max

1≤i≤d,j∈Ji
P
{
t � h(Xi) � t1+α, t1+α−ε � h(Xj)

}
6



and

I12 =
d∑
i=1

∑
j∈J c

i ,j 6=i

P
{
t � h(Xi) � t1+α, t1−ε � h(Xj)

}
� d2 max

1≤i≤d,j∈J c
i ,j 6=i

P
{
t � h(Xi) � t1+α, t1−ε � h(Xj)

}
.

It follows from Mill’s inequality and (1) that ex
2/2 � h(x) � |x|ex2/2 for |x| > Φ−1(3/4).

Hence, √
2 log t � h−1(t) � (1 + o(1))

√
2 log t, (6)

where o(1) is positive.
Because of the pairwise normality assumption of X, we can write Xj = σijXi + γijZij,

where σ2
ij + γ2ij = 1, σijγij > 0, and Zij is independent of Xi and follows a standard normal

distribution. Combing this result with (6), we have

P
{
t � h(Xi) � t1+α, tb � h(Xj)

}
≤ P

{
t � h(Xi), |Xi| � h−1(t1+α), h−1(tb) � |Xj|

}
≤ P

{
t � h(Xi), |Xi| � (1 + o(1))

√
2(1 + α) log t,

√
2b log t � |σijXi + γijZij|

}
≤ P

t � h(Xi),

√
b−

√
(1 + o(1))(1 + α)σ2

ij

|γij|
·
√

2 log t � |Zij|


= P {t � h(Xi)}P


√
b−

√
(1 + o(1))(1 + α)σ2

ij√
1− σ2

ij

·
√

2 log t � |Zij|

 ,

where b > 0 is some positive constant. Specifically, b = 1 + α for I11 and b = 1− ε for I12.

If b < (1 + o(1))(1 + α), then the function
{√

b−
√

(1 + o(1))(1 + α)σ2
ij

}
/
√

1− σ2
ij is

monotonically decreasing with respect to σ2
ij for 0 < σ2

ij < 1. For both I11 and I12, the
values of b, i.e., b = 1 + α and b = 1− ε, is less than (1 + o(1))(1 + α) by noting that o(1)
in (6) is positive. Therefore, the maximum in both I11 and I12 can be bounded by using
the maximum of σ2

ij.
In I11, σ

2
ij ≤ σ2

max < 1 for any 1 ≤ i ≤ d, j ∈ Ji. In I12, σ
2
ij ≤ σ2

0 for any 1 ≤ i ≤ d, j ∈
J c
i , j 6= i. Note that P {t � h(Xi)} � 1/t by Lemma 3(iii). Hence, we have

I11 � t−1 · tα · P

{√
1 + α−

√
(1 + o(1))(1 + α)σ2

max√
1− σ2

max

·
√

2 log t � |Z0|

}
and

I12 � t−1 · t2α · P

{√
1− ε−

√
(1 + o(1))(1 + α)σ2

0√
1− σ2

0

·
√

2 log t � |Z0|

}
,
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where Z0 is a standard normal variable.
Through Mill’s inequality, to prove that I11 = o(1/t) and I12 = o(1/t), it suffices to

show that for some 0 < α < 1/2,

√
1 + α−

√
(1 + o(1))(1 + α)σ2

max√
1− σ2

max

> α (7)

and √
1− ε−

√
(1 + o(1))(1 + α)σ2

0√
1− σ2

0

> 2α. (8)

It is obvious that the inequality (7) holds. By letting ε and σ2
0 sufficient small, it can be

easily seen that the inequality (8) also holds for any constant 0 < α < 1/2.
Step 2. We show that P (At) = 1/(tπ) + o(1/t). This can be done by using a similar

argument in step 2 in the proof of Theorem 1 and a similar argument in step 1 in the proof
of Theorem 2. Therefore, we omit the proof.

1.5 Proof of Corollary 2

The proof strategy is analogous to that of Theorem 1 or 2. Thus, we provide an outline
here and omit the detail of the proof.

Let X = (X1, · · · , Xd) denote a vector of standard normal variables that has the same
correlation matrix as X̃ and satisfies the bivariate normality condition, where var(Xi) = 1
for any 1 ≤ i ≤ d. Note that in the proof of Theorem 1 and 2, we essentially did the
following decomposition:

P{T (X) > t} =
d∑
i=1

P{h(Xi) > t/ωi}+ I,

where I contains multiple terms and we showed that I = o(1/t).
Given the bivariate normality condition and the assumption that var(X̃i) ≤ 1, we have

P{h(X̃i) > t} ≤ P{h(Xi) > t} (9)

and
P{h(X̃i) > t, h(X̃j) > s} ≤ P{h(Xi) > t, h(Xj) > s}, (10)

for any 1 ≤ i < j ≤ d.
Then it follows from (9) that

d∑
i=1

P{h(Xi) > t/ωi} ≤
d∑
i=1

P{h(X̃i) > t/ωi}.
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The terms in I are all about the tail probabilities and we derived the upper bound for
them. Through (9) and (10), it can be easily shown that I = o(1/t) for X̃i’s. Hence, we
obtain

P{T (X̃) > t} ≤ P{T (X) > t}+ o(1/t).

1.6 Proof of Theorem 3

We first recall some notations and conditions for Theorem 3. Let h(x) = tan{[2Φ(|x|) −
3/2]π} and p(x) = 2{1 − Φ(|x|)}. The Cauchy combination test statistic is defined as
T (X) =

∑d
i=1 ωih(Xi), where min1≤i≤d ωi ≥ c0/d for some constant c0 > 0. We assume that

the individual test statistics X ∼ Nd(µ,Σ), where Σ is a banded correlation matrix, i.e.,
σij = 0 for any |i− j| > d0 for some positive constant d0 > 1. Let S = {1 ≤ i ≤ d : µi 6= 0}
denote the set of signals. Suppose that the number of signals |S| = dγ, where 0 < γ < 1/2
and |S| is the cardinality of S. The non-zero µi’s are assumed to have the same magnitude,
i.e., |µi| = µ0 =

√
2r log d for all i ∈ S, where

√
r > 1−√γ.

Now we are ready to prove Theorem 3. Let X = µ + Z, where Z ∼ N(0,Σ). We can
decompose T (X) into two parts:

T (X) =
∑
i∈S

ωih(Xi) +
∑
i∈Sc

ωih(Xi).

Since Σ is a banded correlation matrix, it is easy to see that the second part in the decom-
position is Op(1). Hence, to prove that limd→+∞ P{Rα(X) = 1} = limd→+∞ P{T (X) >
tα} = 1 for any α > 0, it suffices to show that the first part in the decomposition converges
to ∞ with probability 1.

It is obvious that∑
i∈S

ωih(Xi) ≥
c0
d
h

(
max
i∈S
|Xi|

)
+
dγ − c0
d

h

(
min
i∈S
|Xi|

)
.

Let S+ = {i ∈ S, µi > 0} and assume that |S+| ≥ |S|/2 without loss of generality. Given
the assumption that Σ is a banded correlation matrix, it follows from Lemma 6 of Cai
et al. (2014) that maxi∈S+ Zi ≥

√
2 log |S+|+ op(1). Then we have

max
i∈S
|Xi| ≥ max

i∈S+

|Xi| = max
i∈S+

|Zi + µ0| ≥ µ0 + max
i∈S+

Zi = µ0 +
√

2 log |S+|+ op(1) (11)

Hence,

h

(
max
i∈S
|Xi|

)
≥ (2π)−1/2 max

i∈S
|Xi| exp

{
(max
i∈S
|Xi|)2/2

}
+ op(1)

≥ (2π)−1/2(
√

2 log |S+|+ µ0) exp {log |S+|+ µ2
0/2 + µ0

√
2 log |S+|}+ op(1)

≥ exp {γ log d+ µ2
0/2 + µ0

√
2γ log d}+ op(1) = d(

√
γ+
√
r)2 + op(1),

9



where the first inequality follows from the left-hand side of (1) and Mill’s inequality and
the second inequality follows from (11). Given the condition that

√
γ +
√
r > 1, we obtain

(c0/d)h(maxi∈S |Xi|)→ +∞. Hence, it suffices to show that

dγ−1h

(
min
i∈S
|Xi|

)
≥ op(1). (12)

Let εd be constant such that εd > 0 and εd → 0 as d→ +∞. First of all, we have

P{min
i∈S
|Xi| < εd} ≤

∑
i∈S

P{|Xi| < εd} = dγP{|X1| < εd}

= dγ{Φ(µ0 + εd)− Φ(µ0 − εd)} ≤ 2φ(µ0 − εd)dγεd ≤ dγεd.

Following a similar argument in the proof of Lemma 3(i), it is easy to show that h(x) ≥
−1/[{1− p(x)}π] when |x| < Φ−1(3/4). Therefore,

h(εd) ≥
−1

{1− p(εd)}π
=

−1

{2Φ(εd)− 1}π
= −

√
2

π
· 1

εd
+ o(1/εd),

where the last equality follows from Φ(εd) = 1/2 + εd/
√

2π+ o(εd). Note that 0 < γ < 1/2.
By letting εd = dγ0−1 where γ < γ0 < 1/2, we have

P{min
i∈S
|Xi| < εd} ≤ dγεd = dγ+γ0−1 = o(1) and dγ−1h(εd) ≥ −

√
2

π
·dγ−γ0+o(dγ−γ0) = o(1).

Note that h(x) is increasing when x > 0, thus we prove (12).

2 Supplementary Figures

The simulation setting of Figure 1 is the same as that of Figure 1 in the main text, except
that the individual test statistics X is generated from a multivariate t distribution with
4 degrees of freedom. The result demonstrates that the p-value calculation is also very
accurate even if the normality assumption is violated.
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Figure 1: The ratio of empirical size to significance level under a variety of hypothetical
and real-data-based correlation matrices. The simulation setting is the same as that of
Figure 1 in the main text, except that X ∼ t4(0,Σ). The x-axis is the significance level at
α = 10−1, 10−2, 10−3, 10−4, 10−5.

The simulation setting of Figure 2 is the same as that of Figure 3 in the main text,
except that the critical values of CCT are calculated analytically through the Cauchy ap-
proximation. Figure 2 also demonstrates that CCT has more robust power across different
correlation and sparsity levels, compared with the other three tests.
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Figure 2: Power comparison of CCT, MinP, HC and BJ. The critical values of CCT are
calculated analytically. The x-axis is the correlation strength ρ. The columns from left to
right correspond to the dimension d = 20, 40, 60. The rows from top to bottom correspond
to the signal percentage 5%, 10% and 20%.

3 Finite-sample power

As discussed in the main text, the Cauchy combination test essentially only uses a few
smallest p-values to represent the overall significance. We illustrate this by a toy example
provided in Table 1. In this example, there are seven p-values, where two of them are
substantially smaller than the others. The Cauchy values for the smallest two p-values are
much larger than those for the other p-values and dominate the summation. Although our
combination test also relies on a sum of distributions, it essentially only uses a few smallest
p-values to represent the overall significance and therefore would be very powerful in the
presence of sparse signals.
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Table 1: A toy example
P -values 0.45 0.35 0.25 0.15 0.05 5E-03 2E-03

Cauchy values 0.16 0.51 1.00 1.96 6.31 63.7 159

If there is one p-value very close to 1, the Cauchy combination test would tend to not
reject the null hypothesis even if there are multiple other p-values that are moderately small.
In comparison, the minimum p-value method (MinP) would reject the null hypothesis in this
situation and might be more reasonable than the Cauchy combination test. However, the
distribution of the p-value (under the null or alternative) is always stochastically larger than
or equal to U [0, 1]. Therefore, the p-value could be very close to 0 with a high probability
(when from the alternative) but the chance to have a p-value close to 1 is always very small.
Hence, the situation with p-values very close to 1 could but rarely happen and therefore
would only lead to little power loss. Furthermore, from both the power theorem (i.e.,
Theorem 3 in main text) and the simulation studies (i.e., Figure 3 in the main text), we
can see that the power of the Cauchy combination test is comparable with that of MinP.
More importantly, the Cauchy combination test has fast p-value calculation and can be
applied to analyze massive data but the MinP cannot.
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