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1 Magnetic bead experiment

Decrop et al. (2016, 2017) describe a response surface experiment concerning the optical

manipulation of magnetic beads. The experiment involved a two-level categorical factor

(bead type), a seven-level categorical factor (surfactant) and three quantitative factors

(ionic bu�er strength, bu�er pH and surfactant concentration). The seven levels of the

surfactant factor were `None', `Brij35', `Pluronic-F68', `Tween20', `Tween40', `Tween60'

and `Tween80'. Obviously, the factor surfactant concentration is only relevant in the event

the level of the surfactant factor di�ers from `None'. The investigators expected the e�ects

of the surfactant concentration to depend on the type of surfactant. As they also expected

surfactant concentration to be involved in two-way interactions with the factors bead type,

ionic bu�er strength and bu�er pH, this experiment includes both conditional main e�ects

and conditional quadratic e�ects of the nested factor, surfactant concentration, as well as

conditional two-factor interaction e�ects involving it.

In this experiment, the surfactant factor is a seven-level branching factor, de�ning six

nesting relationships and six nested factors. For all experimental tests using a surfactant,

the level of the nested factor, surfactant concentration, was in the range from 0.05% to 1%.

The factors bead type, ionic bu�er strength and bu�er pH are shared factors, when using

the terminology of Hung et al. (2009).

Decrop et al. (2016, 2017) studied three levels for the shared quantitative factors ionic

bu�er strength and bu�er pH and four levels for the nested factor surfactant concentration.

They eventually used the following a priorimodel to create a D-optimal experimental design

involving 80 runs:
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where

� Y denotes the response,
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� xbead is an e�ects-type coded two-level categorical variable which takes the value +1

for one bead type and the value −1 for the other,

� zsurf j is an indicator variable which takes the value 1 if the jth surfactant is used and

the value 0 otherwise,

� x1, x2 and x3 represent the levels of the quantitative factors ionic bu�er strength,

bu�er pH and surfactant concentration,

� ε is the error term, and

� β0, βbead, βsurf 1, . . . , βsurf 6, β1, β2, β11, β22, β12, β
bead

1 , βbead

2 , βsurf 1
1 , . . . , βsurf 6

2 , βsurf 1
11 , . . . , βsurf 6

22 ,

βbead

surf 1, . . . , β
bead

surf 6, β
surf 1
3 , . . . , βsurf 6

3 , βsurf 1
33 , . . . , βsurf j

33 , β13, β23, and β
bead

3 are the 60 regres-

sion coe�cients.

This model reduces to a second-order response surface model in the factors ionic bu�er

strength and bu�er pH for any bead type in the event no surfactant is used and all indicator

variables are zero. However, whenever a surfactant is used, the model reduces to a second-

order response surface model in the factors ionic bu�er strength, bu�er pH and surfactant

concentration for any bead type.

One feature of the model is that the nested factor, surfactant concentration (x3), only

enters the model through cross-products terms involving the indicator variables zsurf j. The

terms involving the cross-products x3zsurf j and x
2
3zsurf j de�ne the conditional main e�ects

and the conditional quadratic e�ects, respectively. The cross-products
(∑6

j=1 zsurf j

)
xix3

and
(∑6

j=1 zsurf j

)
x3xbead de�ne conditional interaction e�ects of the surfactant concentra-

tion (x3). In using these cross-products, rather than six cross-products of the form zsurf jxix3

and six of the form zsurf jx3xbead, Decrop et al. (2016, 2017) assumed that the conditional

interaction e�ects do not di�er across the six surfactants. Finally, because the number

of nesting relationships (six) is smaller than the number of levels of the branching factor

(seven), there is no need to drop one of the six indicator variable terms for the model to

be identi�ed. For this reason, all six terms of the form βsurf jzsurf j are present in the model.

Decrop et al. (2016, 2017) used the SAS procedure OPTEX to create their D-optimal

design. They allowed each quantitative shared factor to take three levels and the nested

3



factor to take four levels, and used a candidate set involving 450 potential test combinations

(2 × 32 = 18 test combinations without surfactant and 2 × 32 × 4 = 72 test combinations

for each of the six surfactants).

2 Illustration of the modi�ed coordinate-exchange algo-

rithm

This example illustrates the following operations unique to the modi�ed coordinate-exchange

algorithm:

1. Changing a branching factor's level from 0 to 1.

2. Changing a branching factor's level from 1 to 0.

3. Optimizing a nested factor's setting when the associated branching factor's level is 1.

First, the algorithm generates a starting design. Suppose that the following table con-

tains a 4-run starting design for the proof-of-concept example in Section 2 of the main

paper:

Run z x

1 0 −0.8

2 0 0.5

3 1 −0.5

4 1 0.7

The columns labeled z and x correspond to the branching factor (machine) and the

dial factor, respectively, in the example. A zero value for z means that the old machine

(without the dial) is used, while a one means that the new machine (with dial) is used.

Note that the column for the dial factor x takes random values on the interval [−1,+1] in

the starting design.

The model matrix X corresponding to the starting design involves columns for the

intercept, the term involving z and the term involving zx:
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Int. z zx

1 0 0.0

1 0 0.0

1 1 −0.5

1 1 0.7

The D-optimality criterion value corresponding to that model matrix, |X′X|, is 2.88.

The �rst change to the starting design the modi�ed coordinate-exchange algorithm will

consider is a swap of the level of the branching factor, z, from 0 to 1, in the �rst run. Since

such a swap means that the new machine (with dial) will be used, it requires the setting

of the dial factor, x, to be optimized as well. Suppose that the algorithm �rst considers

changing x to −1. The design matrix corresponding to these changes in z and x is

Run z x

1 1 −1.0

2 0 0.5

3 1 −0.5

4 1 0.7

The corresponding model matrix X is

Int. z zx

1 1 −1.0

1 0 0.0

1 1 −0.5

1 1 0.7

The D-optimality criterion corresponding to the modi�ed design is 4.58. In a next step,

the algorithm will consider changing x to 1 instead of −1 in the �rst run. The design

matrix resulting from that change is

Run z x

1 1 1.0

2 0 0.5

3 1 −0.5

4 1 0.7
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The corresponding model matrix is

Int. z zx

1 1 1.0

1 0 0.0

1 1 −0.5

1 1 0.7

The D-optimality criterion corresponding to this model matrix is 3.78, which is smaller

than the value of 4.58 obtained for x = −1. Therefore, it is best to switch z to 1 and x to

−1.

Now, consider row 3, to illustrate the e�ect of changing the level of the branching factor,

z, from 1 to 0. This means that, for the third run, we would use the old rather than the

new machine. The resulting design matrix is

Run z x

1 1 1.0

2 0 0.5

3 0 −0.5

4 1 0.7

The corresponding model matrix is

Int. z zx

1 1 −1.0

1 0 0.0

1 0 0.0

1 1 0.7

The D-optimality criterion value for that model matrix is 5.78, which is better than the

previous best value of 4.58. Therefore, it is better to switch the value of z from 1 to 0 in

row 3. Note that the value of x for this row is now irrelevant because zx is zero, irrespective

of the value of x.

Now, consider row 4. The e�ect of changing z from 1 to 0 in that row on the design

matrix is as follows:
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Run z x

1 1 1.0

2 0 0.5

3 0 −0.5

4 0 0.7

The corresponding model matrix is

Int. z zx

1 1 −1.0

1 0 0.0

1 0 0.0

1 0 0.0

The D-criterion value corresponding to that model matrix is 0, which is worse than the

current best determinant of 5.78. Therefore, it is better to switch z back to 1.

Now, since z is a branching factor with level 1, we need to optimize the setting of the

associated nesting factor x. If x is set to −1, the D-criterion value becomes 0 again. So,

consider the e�ect of setting x to 1:

Run z x

1 1 −1.0

2 0 0.5

3 0 −0.5

4 1 1.0

The corresponding model matrix is

Int. z zx

1 1 −1.0

1 0 0.0

1 0 0.0

1 1 1.0

The D-criterion value corresponding to that model matrix is 8, which is better than the

previous best determinant of 5.78. Therefore, it is better to switch x to 1 in the fourth

row.
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