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A Details on the simulation protocol

In this section, we first introduce the model used for the simulation study in Section 2 of the

main text. Next, we outline our simulation protocol and discuss the two-step approach of

Jones and Nachtsheim (2017), which we used to analyze the data simulated from projected

definitive screening designs (pDSDs). The pDSDs under study in the simulations are con-

structed by dropping four columns from the 21-run 10-factor standard definitive screening

design (sDSD) in Table 1 of the main text. More specifically, pDSDa is constructed by

dropping the last four columns from this sDSD, while pDSDb is constructed by dropping

the columns C6, C8, C9 and C10.

1



A.1 Model

The model assumed for the motivating example in Section 2 is

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X1X2 + β6X1X3+

β7X1X4 + β8X2X3 + β9X2X4 + β10X3X4 + β11X
2
1 + εi,

(S1)

where Yi denotes the i-th response, X1, X2, X3 and X4 denote the four active factors, and

εi ∼ N(0, 1). The two inactive factors are denoted by X5 and X6. This model has four

linear effects (LEs), six two-factor interactions (TFIs) and one quadratic effect (QE).

A.2 Simulation protocol

For each pDSD option, each of our 1,000 simulations consisted of the following steps:

1. We assigned the active factors to four columns of the design. The inactive factors

are arbitrarily assigned to the remaining two columns. We conducted the simulation

study for each of the
(
6
4

)
= 15 possible assignments of the active factors to the

columns. Table S1 shows one possible factor assignment.

2. We obtained the coefficients, βj, for the active effects by randomly sampling (with

replacement) 11 values from the set {−2,+2}. The SNRs are therefore 2 for all active

effects.

3. Let X be the matrix consisting of the columns corresponding to the active effects in

model (S1) and β be the vector of coefficients for the active effects. We generated a

response vector as y = Xβ + ε with εi ∼ N(0, 1).

4. The set of effects declared active was determined using the approach of Jones and

Nachtsheim (2017), described in Section A.3.

After the 1,000 simulations, we calculated the powers for the active effects and type-

I error rates for the inactive effects. We calculated the power of an active effect as the

fraction of the simulations for which it was declared active. We calculated the type-I error

rate of an inactive effect as the fraction of the simulations for which it was declared active.

An R implementation of our simulation protocol is included in the supplementary files.
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A.3 Analysis strategy

The set of effects declared active was determined using the two-step approach of Jones and

Nachtsheim (2017). In the first step of these authors’ method, standard significance tests

are used to identify the active LEs. To this end, the k columns that are dropped from the

(m+ k)-factor sDSD, are used to provide an unbiased estimate of the error variance based

on k degrees of freedom. In the second step, all subsets regression is used to identify the

active TFIs and QEs among those factors identified in the first step. More specifically, the

best subset of second-order effects is determined using the residual sum of squares. The

largest subset size to be explored is (m+ k)/2 but the search can be stopped prematurely

using significance tests which compare subsets of different sizes.

For our simulations, we use the settings recommended by Jones and Nachtsheim (2017),

with one exception. In the second step, we use seven, the number of active second-order

effects, as the maximum subset size to be considered in all subsets regression, instead of

(m + k)/2 = 5. Note also that, for pDSDa, we use the columns C7-C10 from the 10-factor

sDSD in Table 1 of the main text to compute the unbiased estimate of the error variance

in the first step. For pDSDb, we use the columns C6, C8, C9 and C10.

A.4 Simulation results

We addressed the detection of the active LEs and second-order effects separately. One of

the results was that both pDSDs had powers for the active LEs equal to one for all factor

assignments. The type-I error rates for the inactive LEs were very close to zero for both

designs and all factor assignments; the maximum type-I error rate for these effects was

0.07. So, both pDSDs were comparable when considering the power and FDR for the LEs.

Table S2 shows the powers and type-I error rates for the second-order effects for both

pDSDs. The first column of the table shows the assignment of the active factors to the

columns in the designs. The second and fourth column show the ranges of the powers for

the six active TFIs and the active QE for pDSDa and pDSDb, respectively. The third and

and fifth column show the maximum type-I error rates for the inactive second-order effects

for pDSDa and pDSDb, respectively.
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Table S1: Example of an assignment of the active factors to the columns in pDSDa and

pDSDb. The active factors X1, X2, X3 and X4, are assigned to the last columns of the

designs. The inactive factors X5 and X6 are arbitrarily assigned to the first two columns.

pDSDa: design constructed by dropping the last columns of the 10-factor 21-run sDSD in

Table 1 of the main text; pDSDb: design constructed by dropping the columns C6, C8, C9

and C10.

(a) pDSDa

X5 X6 X1 X2 X3 X4

C1 C2 C3 C4 C5 C6

0 1 1 1 1 1

1 0 −1 −1 −1 −1

1 −1 0 −1 1 1

1 −1 −1 0 1 1

1 −1 1 1 0 −1

1 −1 1 1 −1 0

1 1 −1 1 −1 1

1 1 −1 1 1 −1

1 1 1 −1 −1 1

1 1 1 −1 1 −1

−1 −1 −1 1 −1 1

−1 −1 −1 1 1 −1

−1 −1 1 −1 −1 1

−1 −1 1 −1 1 −1

−1 1 −1 −1 1 0

−1 1 −1 −1 0 1

−1 1 1 0 −1 −1

−1 1 0 1 −1 −1

−1 0 1 1 1 1

0 −1 −1 −1 −1 −1

(b) pDSDb

X5 X6 X1 X2 X3 X4

C1 C2 C3 C4 C5 C7

0 1 1 1 1 1

1 0 −1 −1 −1 1

1 −1 0 −1 1 −1

1 −1 −1 0 1 1

1 −1 1 1 0 −1

1 −1 1 1 −1 1

1 1 −1 1 −1 0

1 1 −1 1 1 −1

1 1 1 −1 −1 −1

1 1 1 −1 1 1

−1 −1 −1 1 −1 −1

−1 −1 −1 1 1 1

−1 −1 1 −1 −1 1

−1 −1 1 −1 1 0

−1 1 −1 −1 1 −1

−1 1 −1 −1 0 1

−1 1 1 0 −1 −1

−1 1 0 1 −1 1

−1 0 1 1 1 −1

0 −1 −1 −1 −1 −1
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Table S2 shows that pDSDa has powers smaller than 0.42 and maximum type-I error

rates larger than 0.58 for three factor assignments. For the other 12 assignments, pDSDa

has powers around 0.47-0.98 and maximum type-I error rates smaller than or equal to 0.38.

In contrast, pDSDb has powers smaller than 0.4 for only two of the 15 possible assignments

of the active factors to the columns. For the rest of the assignments, this design had powers

around 0.46-0.98 and maximum type-I error rates smaller than or equal to 0.37. The fact

that pDSDb had powers in the range 0.46-0.98 and maximum type-I error rates smaller

than 0.37 for more factor assignments than pDSDa, indicates that dropping the columns

C6, C8, C9 and C10 from the 10-factor sDSD is a better option than dropping the last

columns.

B Design properties and derivations

In this section, we derive the properties of pDSDs constructed by dropping columns from

sDSDs. For notational simplicity, let n = m+k and assume that the pDSD with m factors

and N = 2n + 1 runs is constructed by dropping k columns from an n-factor sDSD. Note

that, if k = 0, then the design is the original sDSD; otherwise, it is a pDSD.

B.1 Models with main effects only

The D-efficiencies for models with m LEs and the standard errors for the LE estimates in

the models do not depend on the set of k columns dropped from an n-factor sDSD, because

(i) the LEs’ contrast vectors in a sDSD are orthogonal to each other and to the column

of ones in the model matrix (corresponding to the intercept) and (ii) the precision is the

same for each LE estimate.

Consider the N × (m+ 1) matrix Xl including the intercept and all LE contrast vectors

of an m-factor pDSD. It is easy to show that XT
l Xl is a diagonal matrix with determinant

|XT
l Xl | = [2n+1][2n−2]m. For an m-factor sDSD, this determinant equals (2m+1)(2m−

2)m. Therefore, the relative D-efficiency of a N -run pDSD and a (2m+ 1)-run sDSD for a

model with all the LEs is:

Dle =

[
2n+ 1

2m+ 1

(
2n− 2

2m− 2

)m] 1
m+1

=

(
1 +

2k

2m+ 1

) 1
m+1

(
1 +

k

m− 1

) m
m+1

. (S2)
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Table S2: Simulation results for each of the 15 possible assignments of the active factors to

the columns in the pDSD options. pDSDa: design constructed by dropping the last columns

of the 10-factor 21-run sDSD in Table 1 of the main text; pDSDb: design constructed by

dropping columns C6, C8, C9 and C10.

pDSDa pDSDb

Factor
assignment

Range
power

Maximum
type-I error rate

Range
power

Maximum
type-I error rate

1, 2, 3, 4 0.27-0.42 0.59 0.28-0.40 0.60

1, 2, 3, 5 0.49-0.98 0.35 0.51-0.98 0.35

1, 2, 3, 6 0.50-0.97 0.38 0.51-0.97 0.35

1, 2, 4, 5 0.49-0.97 0.38 0.49-0.96 0.34

1, 2, 4, 6 0.49-0.98 0.35 0.48-0.96 0.36

1, 2, 5, 6 0.28-0.40 0.58 0.51-0.95 0.36

1, 3, 4, 5 0.52-0.98 0.34 0.49-0.95 0.35

1, 3, 4, 6 0.50-0.97 0.35 0.48-0.95 0.37

1, 3, 5, 6 0.50-0.98 0.32 0.46-0.97 0.37

1, 4, 5, 6 0.51-0.98 0.35 0.50-0.94 0.33

2, 3, 4, 5 0.51-0.98 0.35 0.48-0.97 0.35

2, 3, 4, 6 0.50-0.97 0.35 0.50-0.97 0.35

2, 3, 5, 6 0.50-0.97 0.33 0.27-0.40 0.58

2, 4, 5, 6 0.47-0.97 0.34 0.53-0.96 0.36

3, 4, 5, 6 0.27-0.41 0.60 0.48-0.95 0.35
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The variances for the ordinary least squares (OLS) estimators of the intercept and all

LEs in a pDSD are calculated from the matrix σ2(XT
l Xl )−1, where σ2 denotes the variance

of the residual errors. It is easy to see that the variance for any LE equals σ2(2n−2)−1. For

a sDSD, this variance equals σ2(2m− 2)−1. Thus, the standard error for any LE estimate

obtained from a N -run pDSD relative to the standard error produced by an (2m+ 1)-run

sDSD equals

SEle =

(
2m− 2

2n− 2

)1/2

=

√
m− 1

m+ k − 1
. (S3)

It is easy to see from Equations (S2) and (S3) that the relative D-efficiency increases

and the relative standard error for a LE estimate decreases with the number k. In other

words, the relative D-efficiency increases and the relative standard error for a LE estimate

decreases with the run size of the sDSD used to construct the pDSD.

B.2 Models with linear and quadratic main effects

Just as the D-efficiency for a model with LEs only, the D-efficiency of a pDSD for a model

with LEs and QEs is insensitive to the set of k columns dropped from an n-factor sDSD.

Consider the N × (2m + 1) model matrix Xlq = [1n,Q,L], where 1n is an N × 1 column

vector of ones (the intercept column), Q is the N ×m matrix including the QE contrast

vectors, and L is the N ×m matrix including the LEs’ contrast vectors of the pDSD. The

information matrix is

XT
lqXlq =


N 2(n− 1)11×m 01×m

2(n− 1)1m×1 2(n− 2)Jm×m + 2Im×m 0m×m

0m×1 0m×m 2(n− 1)Im×m

 , (S4)

where Im×m is the identity matrix of order m, Jm×m is the m×m matrix with all its entries

equal to 1 and 0p×q denotes a p × q matrix of zeroes. Note that matrix (S4) is a block

diagonal matrix and can be expressed as

XT
lqXlq =

 A 0(m+1)×m

0m×(m+1) B

 ,
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where

A =

 N 2(n− 1)11×m

2(n− 1)1m×1 2(n− 2)Jm×m + 2Im×m

 , and

B = 2(n− 1)Im×m.

Using Harville (2011, p.p. 187), we have that |XT
lqXlq| = |A||B|. We can calculate the

determinant of A by taking c0 = N , c = 2(n − 1), a = 2(n − 2) and b = 2, and applying

lemma 2iii of Zhou and Xu (2017). The determinant of the information matrix |XT
lqXlq|

then is 22m(n− 1)m [(m− 1)2 + k(m+ 2)]. For an m-factor sDSD, this determinant equals

22m(m− 1)m+2 for the information matrix of a model including the intercept, all QEs and

all LEs. As a result, the D-efficiency of an N -run pDSD relative to that of a (2m+ 1)-run

sDSD for a model including all LEs and all QEs, is:

Dle+qe =

{(
n− 1

m− 1

)m [
(m− 1)2 + k(m+ 2)

(m− 1)2

]} 1
2m+1

=

(
1 +

k

m− 1

) m
2m+1

(
1 +

k(m+ 2)

(m− 1)2

) 1
2m+1

Clearly, this relative efficiency also increases with k and thus with the run size of the pDSD

constructed.

Now, consider the information matrix (S4) for a pDSD. Using Harville (2011, p.p. 89),

the variances for the OLS estimators of the model including the intercept, all LEs and all

QEs in a pDSD can be calculated from

σ2
(
XT

lqXlq

)−1
= σ2

 A−1 0(m+1)×m

0m×(m+1) B−1

 .

Note that sub-matrix σ2A−1 contains the variances for the OLS estimators of the QEs.

Consider the following sub-matrices

W = N,T = 2(n− 2)Jm×m + 2Im×m, and V = UT = 2(n− 1)11×m,

that partition matrix A into four parts. Using Harville (2011, p.p. 99) and Lemma 2i of

Zhou and Xu (2017), it is straightforward to show that the variance of the OLS estimator
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for any QE, denoted as β̂ii, in a model including the intercept, all LEs and all QEs based

on a pDSD is

Var(β̂ii) = σ2 (m− 1)2 +m(k − 1) + k + 4

2 [(m− 1)2 + k(m+ 2)]
,

For an m-factor sDSD, Var(β̂ii) = σ2(m2−3m+ 5)/(2(m−1)2). The standard error of any

QE estimate obtained from a N -run pDSD relative to the one produced by a (2m+ 1)-run

sDSD is therefore

SEqe =

{[
(m− 1)2

(m− 1)2 + k(m+ 2)

] [
m2 − 3m+ 5 + k(m+ 1)

m2 − 3m+ 5

]}1/2

=
m− 1√

(m− 1)2 + k(m+ 2)

√
1 +

k(m+ 1)

m2 − 3m+ 5
.

For any given number of factors m, this relative standard error decreases with k and

thus with the run size of the pDSD. The relative standard error approaches

(m− 1)
√

(m+ 1)/[(m2 − 3m+ 5)(m+ 2)]

for large values of k. The relative standard errors for the LE estimates are not affected

by the inclusion of QEs in the model. Therefore, they can still be calculated using Equa-

tion (S3). This is because the LEs’ contrast vectors are orthogonal to those of the QEs

whenever a sDSD or a pDSD is used.

B.3 Correlations between specific second-order effects’ contrast

vectors

Regardless of which k columns are dropped from an (m + k)-factor sDSD, the correlation

between the contrast vectors of any two QEs βii and βjj equals

rii,jj =
1

3
− 2

N − 3
,

This correlation increases with the run size and approaches 1/3 for large values of N or k.

So, the QEs’ contrast vectors of m-factor pDSDs exhibit larger correlations when they are

based on larger sDSDs and involve more runs.

The correlation between the contrast vector of any QE βii and the contrast vector of

a TFI βij is always zero. The correlation between the contrast vector of a QE βii and the
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contrast vector of a TFI βjk is non-zero, and equals

rii,jk = ±

√
4N

3(N − 3)(N − 5)
.

The expressions for rii,jj and rii,jk are obtained by substituting m + k for m in the corre-

sponding expressions given in Jones and Nachtsheim (2011).

If m + k is a multiple of 4, the three correlations rii,jk, rjj,ik and rkk,ij corresponding

to any triplet of factors i, j and k are all positive, or one correlation is positive, while

the other two are negative. If m + k is not a multiple of 4, two of the three correlations

are positive and one is negative, or all three correlations rii,jk, rjj,ik and rkk,ij are negative

(Schoen et al., 2018). The correlations tend to zero as the run size N or k increases. So,

when using an m-factor pDSD, the correlations between the contrast vectors for the QE

of one factor and the interaction between two other factors are closer to zero than when

using an m-factor sDSD. In other words, the aliasing is smaller.

Finally, the correlation between the contrast vector of a TFI βij and the contrast vector

of another TFI βik, involving the same factor i, is non-zero too. To show this, consider

a TFI contrast vector xij formed by the element-wise multiplications of the LE contrast

vectors i and j and a TFI contrast vector xik formed by the element-wise multiplication

of the LE contrast vectors i and k in the pDSD. Denote the elements in xij and xik as

xs,ij and xs,ik, respectively; s = 1, . . . , N . Note that the average of these elements, denoted

as x̄s,ij, equals zero and that their sum of squares equals 2(m + k) − 4 = 2n − 4. The

correlation between the contrast vectors corresponding to βij and βik then is

rij,ik =

∑
[xs,ij − x̄ij] [xs,ik − x̄ik]√∑

[xs,ij − x̄ij]2
∑

[xs,ik − x̄ik]2
=

∑
xs,ijxs,ik√∑

(xs,ij)
2∑ (xs,ik)

2
=

∑
xs,ijxs,ik

2n− 4
,

where all sums run from s = 1, . . . , N . Note that
∑
xs,ijxs,ik =

∑
xs,iixs,jk in the above

expression, where xs,ii is the s-th element of the QE contrast vector xii. It is easy to show

that
∑
xs,iixs,jk = ±2. If we substitute

∑
xs,ijxs,ik = ±2 and 2n+1 by N in the expression

above and simplify, we obtain the following expression for the correlation:

rij,ik = ± 2

N − 5
.

The correlations rij,ik, rji,jk and rki,kj exhibit the same patterns as the correlations rii,jk,

rjj,ik and rkk,ij. They also decrease with the run size. So, they are closer to zero for an
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m-factor pDSD than for an m-factor sDSD, which means that a pDSD reduces the aliasing

between two interaction effects βij and βik.

B.4 Power calculations

In Sections 3.1.1 and 3.1.2 of the main text, powers for t tests of the hypotheses L1, Lme,

Qme, Ime, Q3 and I3 are discussed. The statistical power provided by the pDSD to test

these hypotheses is computed as Power = 1 − Prob(−tν,α/2 < Tν,λ < tν,α/2), where Tν,λ

is a random variable following a non-central t-distribution with ν degrees of freedom and

non-centrality parameter λ, and −tν,α/2 and tν,α/2 are the critical values based on a central

t-distribution with ν degrees of freedom for a significance level equal to α. For all the

hypothesis tests ν = N − p, where p is the number of parameters included in the model.

The non-centrality parameter of the t distribution is given by

λ =
βi/σ√
Var(β̂i)

,

where the OLS estimate β̂i is computed for a given model. Showing that the power calcu-

lations are independent of the set of k columns to drop from the (m + k)-factor sDSD is

equivalent to showing that the value of Var(β̂i), and thus of λ, is the same for any subset.

We show below that λ only depends on the values of m and k.

B.4.1 Power for L1.

Since the all LE contrast vectors are orthogonal to the intercept, it is easy to see that the

variance for the OLS estimator of any LE is σ2(2(m + k)− 2)−1. Since only the intercept

and a LE are included in the model, ν = N − 2 = 2(m+ k)− 1, and the expression for the

power calculations follows.

B.4.2 Power for Lme.

Using the model matrix Xl and the calculations in Section B.1, it is easy to show that

the variance for the OLS estimator is the same as for L1. Since the number of parame-

ters already in the model is one plus the number of factors, the expression for the power

calculations follows.
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B.4.3 Power for Qme.

Consider the N × (m + 2) matrix, Xqm, including the intercept column, one QE contrast

vector and all LE contrast vectors of the pDSD. For whatever QE contrast vector is chosen,

the information matrix is

XT
qmXqm =


N 2(n− 1) 01×m

2(n− 1) 2(n− 1) 01×m

0m×1 0m×1 2(n− 1)Im×m

 ,

where n = m+ k. Note that this matrix is a block diagonal matrix with blocks

A =

 N 2(n− 1)

2(n− 1) 2(n− 1)

 , and B = 2(n− 1)Im×m,

Using Harville (2011, p.p. 89), we can easily calculate the inverse of the information

matrix:

(
XT

qmXqm

)−1
=

 A−1 02×m

0m×2 B−1

 =


1/3 −1/3 01×m

−1/3 (2n+ 1)/(6n− 6) 01×m

0m×1 0m×1 (2n− 2)−1Im×m

 .

Therefore, the variance for the OLS estimator of any QE is σ2(2n+ 1)/(6n− 6). Given

that the number of parameters already included in the model is m + 1, the expression for

the power follows.

B.4.4 Power for Ime.

Consider the N × (m + 2) matrix, Xim, including the intercept column, a single TFI

contrast vector and all LE contrast vectors for the pDSD. Regardless of the TFI chosen,

the information matrix is

XT
imXim =


2n+ 1 0 01×m

0 2n− 4 01×m

0m×1 0m×1 2(n− 1)Im×m

 ,

which is a diagonal matrix. Then the variance for the OLS estimate of the TFI is σ2(2n−

4)−1. Given that the number of parameters already included in the model is m + 1, the

expression for the power follows.
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B.4.5 Power for Q2 and I2.

Consider the N × 6 matrix, Xq2, including the intercept column, the two QE contrast vec-

tors, the two LE contrast vectors and the TFI contrast vector of any two-factor projection

of the pDSD. It is easy to see that the information matrix for any two-factor projection is

XT
q2Xq2 =



N 2n− 2 2n− 2 0 0 0

2n− 2 2n− 2 2n− 4 0 0 0

2n− 2 2n− 4 2n− 2 0 0 0

0 0 0 2n− 2 0 0

0 0 0 0 2n− 2 0

0 0 0 0 0 2n− 4


.

Using Harville (2011, p.p. 89, 99), it is easy to show that the inverse of this information

matrix equals

(
XT

q2Xq2

)−1
=



2n−3
4n−7

1−n
4n−7

1−n
4n−7

0 0 0

1−n
4n−7

3(n−1)
2(4n−7)

−(n−4)
2(4n−7)

0 0 0

1−n
4n−7

−(n−4)
2(4n−7)

3(n−1)
2(4n−7)

0 0 0

0 0 0 (2n− 2)−1 0 0

0 0 0 0 (2n− 2)−1 0

0 0 0 0 0 (2n− 4)−1


.

So the variances for the OLS estimates of the TFI and of any QE equal σ2(2n − 4)−1

and σ2(3n − 3)/(8n − 14), respectively. Since the number of parameters already included

in the model is N − 6, the power expressions for I2 and Q2 follow.

B.4.6 Power for Q3 and I3.

Schoen et al. (2018) considered pDSDs in three factors. They made a distinction between

DSDs with n ≡ 0 (mod 4) and those with n ≡ 2 (mod 4), where n = (N − 1)/2 = m + k

and they showed that for a given N all three-factor pDSDs are isomorphic or statistically

equivalent.

Consider now the second order model matrix of a three-factor projection of a DSD, Xq3.

This is an N × 10 model matrix including the intercept column, three QE contrast vectors,
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three LE contrast vectors and three TFI contrast vectors. When (N − 1) ≡ 0 (mod 8), the

information matrix for one of the isomorphic DSDs is

XT
q30

Xq30
=



2n+ 1 2n− 2 2n− 2 2n− 2 0 0 0 0 0 0

2n− 2 2n− 2 2n− 4 2n− 4 0 0 0 0 0 −2

2n− 2 2n− 4 2n− 2 2n− 4 0 0 0 0 2 0

2n− 2 2n− 4 2n− 4 2n− 2 0 0 0 −2 0 0

0 0 0 0 2n− 2 0 0 0 0 0

0 0 0 0 0 2n− 2 0 0 0 0

0 0 0 0 0 0 2n− 2 0 0 0

0 0 0 −2 0 0 0 2n− 4 −2 2

0 0 2 0 0 0 0 −2 2n− 4 −2

0 −2 0 0 0 0 0 2 −2 2n− 4



.

Alternatively, when (N − 1) ≡ 4 (mod 8), the information matrix for one of the iso-

morphic DSDs is

XT
q32

Xq32
=



2n+ 1 2n− 2 2n− 2 2n− 2 0 0 0 0 0 0

2n− 2 2n− 2 2n− 4 2n− 4 0 0 0 0 0 −2

2n− 2 2n− 4 2n− 2 2n− 4 0 0 0 0 −2 0

2n− 2 2n− 4 2n− 4 2n− 2 0 0 0 −2 0 0

0 0 0 0 2n− 2 0 0 0 0 0

0 0 0 0 0 2n− 2 0 0 0 0

0 0 0 0 0 0 2n− 2 0 0 0

0 0 0 −2 0 0 0 2n− 4 −2 −2

0 0 −2 0 0 0 0 −2 2n− 4 −2

0 −2 0 0 0 0 0 −2 −2 2n− 4



.

We calculated the inverses of the information matrices using Mathematica. For both

information matrices, the output of Mathematica (not included here) showed that the

variance of the OLS estimates for any QE is the same. The output also showed that

the variances of the OLS estimates of the three TFIs are equal. The variances in case

(N − 1) ≡ 0 (mod 8) differ from the corresponding variances when (N − 1) ≡ 4 (mod 8).

For n ≡ 0 (mod 4), the variances for a QE estimate, β̂ii, and a TFI estimate, β̂ij, are:

Var(β̂ii) =
4n3 − 21n2 + 24n+ 2

10n3 − 66n2 + 102n+ 8

Var(β̂ij) =
5n2 − 19n+ 14

10n3 − 66n2 + 102n+ 8
.
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For n ≡ 2 (mod 4), the variances for a QE estimate, β̂ii, and a TFI estimate, β̂ij, are:

Var(β̂ii) =
4n3 − 29n2 + 54n− 26

10n3 − 86n2 + 218n− 172

Var(β̂ij) =
5n2 − 29n+ 36

10n3 − 86n2 + 218n− 172
.

Since the number of parameters already included in the model is N − 10, the power

expressions for I3 and Q3 follow for the two cases.

C Table with detailed results

Table S3 shows the best and worst sets of columns to drop from sDSDs for m + k ∈

{6, 8, . . . , 20, 24} and k ≤ 8. The table includes (i) the average absolute correlations, (ii)

the maximum absolute correlations, and (iii) the sum of all squared correlations between

contrast vectors for pairs of TFI contrast vectors. Each set of columns is labeled as i.criteria,

where i can be “b” for best option or “w” for worst option. The criteria can include

the letters “a”, “m”, or “s” corresponding to the average absolute correlation, maximum

absolute correlation, and sum of squared correlations criteria, respectively. For instance,

a set of columns labeled “b.ams” thus is best in terms of all three criteria, while a design

labeled “w.a” is worst in terms of the average absolute correlation criterion.

When dropping one, two and three columns from sDSDs with 6-14 and 18-24 factors,

we did not find differences in the resulting pDSDs. This was also the case when dropping

four columns from the 6-factor sDSD and when dropping one column from the 16-factor

sDSD. For this reason, all these cases are not shown in Table S3.

Table S3 shows that the best sets of columns are optimal in terms of all criteria for all

combinations of numbers of factors in the sDSD and numbers of dropped columns, except

when dropping five, six and eight columns from the 16-factor sDSD, and when dropping

seven columns from the 20-factor sDSD. For these cases, there is one set that is best in

terms of the average absolute correlation, and another one that is best in terms of both

the maximum absolute correlation and the sum of squared correlations.

Finally, Table S3 shows that, for eight combinations of numbers of factors in the sDSD

and numbers of dropped columns, dropping the last columns is the best option in terms
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of at least one criterion. However, for 14 combinations, dropping the last columns is the

worst option in terms of at least two criteria.

Table S3: Sets of k columns to drop from an n-factor sDSD. b: best option; w: worst

option; a: average correlation; m: maximum correlation; s: sum of squared correlations.

Last columns are shown in boldface.

m Factors in

design
n k Option

Subset of columns

to drop

Average

correlation

Maximum

correlation

Sum of

Squared

Correlations

4 8 4 b.ams 5 6 7 8 0.133333 0.167 0.3333

w.ams 4 5 7 8 0.266667 0.667 1.6667

6 10 4 b.ams 6 8 9 10 0.207143 0.750 6.7500

w.ams 7 8 9 10 0.221429 0.750 8.2500

5 5 b.ams 4 6 7 9 10 0.166667 0.250 1.4063

w.ams 6 7 8 9 10 0.200000 0.750 2.9063

4 6 b.ams 4 6 7 8 9 10 0.150000 0.250 0.3750

w.ams 5 6 7 8 9 10 0.250000 0.750 1.8750

8 12 4 b.ams 7 8 10 12 0.190476 0.400 23.7600

w.ams 9 10 11 12 0.193651 0.400 24.2400

7 5 b.ams 7 8 10 11 12 0.181429 0.400 12.0900

w.ams 8 9 10 11 12 0.192857 0.400 13.0500

6 6 b.ams 5 7 8 10 11 12 0.160000 0.400 4.9200

w.ams 7 8 9 10 11 12 0.182857 0.400 5.8800

5 7 b.ams 5 7 8 9 10 11 12 0.146667 0.400 1.7400

w.ams 6 7 8 9 10 11 12 0.200000 0.400 2.7000

4 8 b.ams 4 5 6 7 8 10 11 12 0.080000 0.100 0.1200

w.ams 5 6 7 8 9 10 11 12 0.160000 0.400 0.6000

10 14 4 b.ams 11 12 13 14 0.193939 0.500 58.0000

w.ams 9 12 13 14 0.194949 0.500 58.6667

9 5 b.ams 10 11 12 13 14 0.185714 0.500 34.2500

w.ams 9 11 12 13 14 0.188889 0.500 35.5833

Continued on next page
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Table S3 (continued)

m Factors in

design
n k Option

Subset of columns

to drop

Average

correlation

Maximum

correlation

Sum of

Squared

Correlations

8 6 b.ams 9 10 11 12 13 14 0.177249 0.500 19.0000

w.ams 7 9 10 11 12 14 0.185185 0.500 21.0000

7 7 b.ams 6 7 8 10 12 13 14 0.158333 0.500 8.3125

w.ams 6 8 9 11 12 13 14 0.182143 0.500 11.6458

6 8 b.ams 6 7 8 10 11 12 13 14 0.147619 0.500 3.6667

w.ams 6 7 8 9 11 12 13 14 0.176190 0.500 5.6667

14 16 2 b.ams 8 16 0.133333 0.857 231.8571

w.ams 8 15 0.135845 0.857 231.8571

13 3 b.ams 14 15 16 0.131725 0.857 166.0102

w.ams 8 14 15 0.134580 0.857 166.0102

12 4 b.ams 13 14 15 16 0.127473 0.857 115.0408

w.ams 12 14 15 16 0.128671 0.857 117.2449

11 5 b.ms 8 13 14 15 16 0.124242 0.857 75.9949

b.a 12 13 14 15 16 0.123088 0.857 78.4439

w.a 7 8 12 13 14 0.133 0.857 77.464

w.ms 12 13 14 15 16 0.123088 0.857 78.4439

10 6 b.ms 7 8 11 12 13 15 0.124675 0.857 47.3878

w.ams 6 7 8 14 15 16 0.124675 0.857 53.2653

b.a 8 11 13 14 15 16 0.118615 0.857 48.6122

9 7 b.ams 7 8 11 12 13 15 16 0.110204 0.857 27.7347

w.ms 10 11 12 13 14 15 16 0.123810 0.857 39.0000

w.a 6 7 8 9 10 11 13 0.140136 0.857 34.5918

8 8 b.ms 4 6 7 8 11 12 13 15 0.117914 0.857 14.5714

w.ams 9 10 11 12 13 14 15 16 0.158730 0.857 35.1429

b.a 7 8 11 12 13 14 15 16 0.104308 0.857 15.5510

14 18 4 b.ams 15 16 17 18 0.181593 0.375 201.1875

w.ams 14 16 17 18 0.181777 0.375 201.5625

Continued on next page
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Table S3 (continued)

m Factors in

design
n k Option

Subset of columns

to drop

Average

correlation

Maximum

correlation

Sum of

Squared

Correlations

13 5 b.ams 12 15 16 17 18 0.178072 0.375 143.3672

w.ams 13 15 16 17 18 0.178821 0.375 144.4922

12 6 b.ams 9 12 13 14 15 18 0.172902 0.375 97.7813

w.ams 9 13 15 16 17 18 0.176049 0.375 101.1563

11 7 b.ams 9 12 13 14 15 17 18 0.168813 0.375 65.4023

w.ams 9 10 13 15 16 17 18 0.172348 0.375 68.0273

10 8 b.ams 9 10 12 13 14 15 17 18 0.162121 0.375 40.8750

w.ams 8 10 11 12 14 15 16 18 0.168939 0.375 44.2500

16 20 4 b.ams 14 17 18 20 0.172923 0.444 322.2222

w.ams 14 18 19 20 0.173109 0.444 322.8148

15 5 b.ams 14 16 17 19 20 0.170543 0.444 241.6944

w.ams 12 16 17 19 20 0.171032 0.444 242.8796

14 6 b.ams 11 13 15 18 19 20 0.167359 0.444 176.5556

w.ams 12 16 17 18 19 20 0.168661 0.444 178.6296

13 7 b.ms 11 13 15 17 18 19 20 0.164835 0.444 126.3519

w.ams 12 15 16 17 18 19 20 0.166167 0.444 128.1296

b.a 11 13 15 16 18 19 20 0.164391 0.444 126.3519

12 8 b.ams 10 12 13 14 17 18 19 20 0.159751 0.444 86.9259

w.ams 9 12 13 14 15 16 17 20 0.164413 0.444 90.0370

20 24 4 b.ams 20 22 23 24 0.134792 0.364 693.3471

w.ams 21 22 23 24 0.134852 0.364 693.7438

19 5 b.ams 17 20 22 23 24 0.133680 0.364 554.6343

w.ams 20 21 22 23 24 0.133831 0.364 555.6260

18 6 b.ams 16 17 20 22 23 24 0.132283 0.364 437.0579

w.ams 19 20 21 22 23 24 0.132845 0.364 440.0331

17 7 b.ams 15 17 19 20 22 23 24 0.130838 0.364 340.0165

w.ams 18 19 20 21 22 23 24 0.131788 0.364 343.3884

Continued on next page
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Table S3 (continued)

m Factors in

design
n k Option

Subset of columns

to drop

Average

correlation

Maximum

correlation

Sum of

Squared

Correlations

16 8 b.ams 15 16 17 19 20 22 23 24 0.128953 0.364 258.9421

w.ms 13 18 19 20 21 22 23 24 0.130940 0.364 264.4959

w.a 11 12 14 16 20 21 23 24 0.131092 0.364 263.7025
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