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Comparison with Other Related Models

　　 First, let us discuss the univariate linear ALT model with time-variant autoregressive parame-

ters, as this model can be considered as one of the most general forms of longitudinal models with

SEM framework (Bollen & Curran, 2004). The ALT model is commonly described in SEM frame-

work with intercept (α) and slope (β) factors, but it is possible to express it with mixed-effects model

framework, as follows:

Y jt = β0 j + β1 jXt + ρt,t−1Y j(t−1) + e jt, (1)

β0 j = γ0 + r0 j, (2)

β1 j = γ1 + r1 j, (3)

We used the notations analogous to the standard linear GCM in Equations 1-3 in the manuscript to

enhance the comparability of the models. ρt,t−1 is the time-variant autoregressive parameter, repre-

senting the impact of the prior value of Y j(t−1) on the current value (Y jt). Intercept and slope factors

are represented by β0 j and β1 j, respectively. Basically, in ALT, parameters and variables can be

interpreted in the same way as the standard linear GCM, except that the ALT model considers the

conditional distribution of Y jt given the prior value of Y j(t−1). Also, Y j1 is usually treated as pre-

determined in the ALT model and Y j1 can be expressed simply by an unconditional mean and an



individual deviation from the mean as:

Y j1 = ν1 + e j1. (4)

From these equations, it is clear that the ALT model reduces to the standard linear GCM of Equa-

tions 1-3 in the manuscript when ρt,t−1 = 0. Due to the presence of autoregressive parameters ρt,t−1,

the ALT model is generally recognized as a more flexible model that can be fit to many different

types of longitudinal data.

　　　 However, the above equations of ALT model also make it clear that the model does not

include the random effects which vary across time points but are constant across participants within

the given time points (i.e. rt). Indeed, given the absence of common random effects across par-

ticipants, the ALT model cannot account for the correlations between participants within the same

time points (see covariance structure in Equation 23), which is the critical feature of the proposed

GCM with time-specific errors. In addition, the ALT model accounts for time-specific effects by

the (time-variant) autoregressive parameters ρt,t−1 as well as growth parameters (β0 and β1). This

means that time-specific effects are accounted for as part of the (true) mean structure of the model,

rather than as random errors in covariance structure, making the interpretations of the estimated true

growth conflated and difficult.

　　　 In general, longitudinal models with the SEM framework that we mentioned above have

inherent difficulty in incorporating and accounting for time-specific errors. This is because we can



consider only one random unit (i.e. participants) in SEM parametrization. In other words, in stan-

dard SEM parametrization, we cannot describe the residual covariance between persons, the critical

feature of the current model 1. Thus, the proposed model is critically different from the ALT model

or other related SEM models, with substantially different mean- and covariance structures.

　　　 The same point applies to other longitudinal models, including time-series models (e.g.,

Hamilton, 1994) and continuous-time autoregression models (e.g., Voelkle, Oud, Davidov, & Schmidt,

2012). For example, LC-LSTM (Alessandri, Caprara, & Tisak, 2012) accounts for random events

ζt as prediction error in predicting constructs by multiple basis curves, but unfortunately it fails to

consider covariance between persons within the same time points. The unconditional asset pricing

model of Shanken (1990) and the time-varying effect model (e.g., Shiyko, Lanza, Tan, Li, & Shiff-

man, 2012) do not explicitly incorporate time-specific errors in time-varying intercepts/coefficients.

Time varying VAR models (Primiceri, 2005) consider random walks in time-varying autoregres-

sive coefficients, but do not include time-varying (but subject-invariant) intercepts. From a different

perspective, in the literature of biometrics, Verbeke and Molenberghs (2000) and Davidian and Gilti-

nan (2003) discussed an interesting model which attempted to decompose residuals into particular

realization of observed errors and measurement errors. The observed errors appear similar to time-

specific errors, but these random errors are not constant across participants; thus, these errors are

not equivalent to time-specific errors that we defined in this manuscript. In econometric literature,

time-specific effects are sometimes assumed in the dynamic model (i.e. outcome Yt is regressed on

Y(t−1) and other covariates X(t−1) at previous time point) for panel data to model temporal influence



(e.g., economic conditions) on each firm (or individual). However, in the dynamic model, unlike

GCM each time point (t) is not controlled as a predictor (xt = t − 1). This indicates that this time-

specific effects can implicitly include changes of group means. On the other hand, time-specific

errors assumed in the proposed GCM is caused by extraneous factors that are irrelevant to such

growth/change aspect. Thus, time-specific effects in the dynamic model is not equivalent to time-

specific errors that we defined.

　　　 In summary, although many models in longitudinal data analysis have been proposed in the

literature to account for time specific effects, our model represents a new class of model in longitu-

dinal data analysis, in that our model explicitly incorporates random effects which vary across time

points but are constant across participants within given time points (i.e. time-specific errors). One

important implication is that, as these existing longitudinal models do not take into account time-

specific errors, they should suffer from the inflation of Type-1 error rates as discussed in the current

manuscript, if we apply these models to the data that include time-specific errors. It is not easy to

find an effective solution, especially within the SEM framework, as the residual covariance between

individuals within given time points (Equation 23) is not part of standard SEM parametrization. One

potential strategy is to re-parametrize the model with a mixed-effects model framework as we did

for the ALT model, and explicitly incorporate and estimate time-specific errors using the software

for mixed-effects or cross-classified modelling. This strategy, however, may not be possible as the

model becomes more complicated, and future research is required to address the issue more effec-

tively.



1With a special modelling strategy, it is possible to consider covariance between individuals (Mehta

& Neale, 2005). However, we believe the proposed GCM should provide a more direct and flexible

way to account for possible time-specific errors in longitudinal design.

Standard Errors of Fixed Effects Estimates

　　Without loss of generality we set γ0 = 0 and σ2 = 1, resulting in ∆ = γ1, ρ0 = σ
2
0 and ρt = σ

2
t

from the relations in Equations 12-13 in the manuscript. The Equation 8 in the manuscript can be

expressed in vector notation as:

Y = γ1X + ϵ. (5)

Here, Y is an (T ×N)×1 outcome vector, and its elements are arranged as Y = (Y′1, . . . ,Y′j, . . . ,Y′N)′,

where Y j = (Y j1, . . . , Y jt, . . . , Y jT )′. X is a corresponding (T × N) × 1 vector expressed as X =

1N ⊗ (0, 1, . . . , T − 1)′, where ⊗ indicates a Kronecker product. ϵ is also a corresponding (T ×N)× 1

residual vector consisting of ϵ = e jt + r0 j + rt. From Equations 9-11 in the manuscript, it can be

shown that ϵ is distributed as ϵ ∼ N(0, Σ̃), where

Σ̃ = σ2
e INT + ρ0(IN ⊗ 1T1′T) + ρt(1N1′N ⊗ IT) (6)

Here we assume that σ2
e ≥ 0, ρ0 ≥ 0, and ρt ≥ 0, and that the inverse matrix of Σ̃ (denoted as Σ̃

−1
)



exists. When ρt, ρ0 and σ2
e are known, E(γ̂1) = γ1, because

E(γ̂1) = E((X′Σ̃−1X)−1X′Σ̃−1Y) = (X′Σ̃−1X)−1X′Σ̃−1E(Y) = (X′Σ̃−1X)−1X′Σ̃−1E(Xγ1) = γ1. (7)

This result unchanges regardless of the value of ρt, indicating that expected values of linear slope

estimates are the same between the standard GCM (i.e., Equations 1-3 in the manuscript) and the

GCM assuming time-specific errors (i.e., Equations 5-7 in the manuscript).

　　 Let the diagonal elements of Σ̃
−1

be a, off-diagonal elements that share the same participant be

b, off-diagonal elements that share the same time point be c, and other elements be d. Comparing

the left and right sides of the identity Σ̃Σ̃
−1
= I, the following relations are obtained:

a + (T − 1)bρ0 + (N − 1)ρtc = 1 (8)

b + ρ0a + (T − 2)ρ0b + (N − 1)ρtd = 0 (9)

c + (T − 1)dρ0 + ρta + (N − 2)ρtc = 0 (10)

d + ρ0c + (T − 2)ρ0d + ρtb + (N − 2)ρtd = 0 (11)

Simple calculation of the above simultaneous equations provide the following result (see also Hsiao



(2014) for a different expression of Σ̃
−1

that explicitly denotes determinant):

a = − AA
(ρt + ρ0 − 1)(ρtN − ρt − ρ0 + 1)(ρ0T − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)

(12)

b =
ρ0(ρ0ρtNT − 2ρ0ρtT − ρ2

0T + ρ0T + ρ2
t N2 − 3ρ2

t N − 2ρ0ρtN + 2ρtN + 3ρ2
t + 4ρ0ρt − 4ρt + ρ

2
0 − 2ρ0 + 1)

(ρt + ρ0 − 1)(ρtN − ρt − ρ0 + 1)(ρ0T − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)

(13)

c =
ρt(ρ2

0T 2 + ρ0ρtNT − 2ρ0ρtT − 3ρ2
0T + 2ρ0T − ρ2

t N − 2ρ0ρtN + ρtN + ρ2
t + 4ρ0ρt − 2ρt + 3ρ2

0 − 4ρ0 + 1)
(ρt + ρ0 − 1)(ρtN − ρt − ρ0 + 1)(ρ0T − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)

(14)

d = − ρ0ρt(ρ0T + ρtN − 2ρt − 2ρ0 + 2)
(ρt + ρ0 − 1)(ρtN − ρt − ρ0 + 1)(ρ0T − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1))

. (15)

Here,

AA = ρ2
0ρtNT 2 − 2ρ2

0ρtT 2 − ρ3
0T 2 + ρ2

0T 2 + ρ0ρ
2
t N2T − 4ρ0ρ

2
t NT − 4ρ2

0ρtNT + 3ρ0ρtNT + 4ρ0ρ
2
t T

+8ρ2
0ρtT − 6ρ0ρtT + 3ρ3

0T − 5ρ2
0T + 2ρ0T − ρ3

t N2 − 2ρ0ρ
2
t N2 + ρ2

t N2 + 3ρ3
t N + 8ρ0ρ

2
t N − 5ρ2

t N

+4ρ2
0ρtN − 6ρ0ρtN + 2ρtN − 2ρ3

t − 8ρ0ρ
2
t + 5ρ2

t − 8ρ2
0ρt + 12ρ0ρt − 4ρt − 2ρ3

0 + 5ρ2
0 − 4ρ0 + 1. (16)

Using the generalized least squares estimators, a sample distribution of γ̂1 can be expressed as

γ̂1 ∼ N((X′Σ̃−1X)−1X′Σ̃−1Y, (X′Σ̃−1X)−1), (17)



se(γ̂1) corresponds to a squareroot of se2(γ̂1) = 1/(X′Σ̃−1X). Here, X′Σ̃−1X can be calculated as:

X′Σ̃−1X = Na
T−1∑
t=0

t2 + Nb


T−1∑

t=0

t


2

−
T−1∑
t=0

t2

 + N(N − 1)c
T−1∑
t=0

t2 + N(N − 1)d


T−1∑

t=0

t


2

−
T−1∑
t=0

t2


= Na

T (T − 1)(2T − 1)
6

+ Nb

[T (T − 1)
2

]2
− T (T − 1)(2T − 1)

6

 + N(N − 1)c
T (T − 1)(2T − 1)

6

+N(N − 1)d

[T (T − 1)
2

]2
− T (T − 1)(2T − 1)

6


=

NT (T − 1)
12

[2a(2T − 1) + b(T − 2)(3T − 1) + 2c(N − 1)(2T − 1) + d(N − 1)(T − 2)(3T − 1)].

(18)

From the Equations 12-16, the above equation can be further simplified as

N(T − 1)T (ρ0T 2 + 4ρtNT − 4ρtT − 3ρ0T + 4T − 2ρtN + 2ρt + 2ρ0 − 2)
12(ρtN − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)

(19)

Thus, se(γ̂1) can now be expressed as

se(γ̂1) =

√
12(ρtN − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)

N(T − 1)T (ρ0T 2 + 4ρtNT − 4ρtT − 3ρ0T + 4T − 2ρtN + 2ρt + 2ρ0 − 2)
, (20)

by the functions of ρt, ρ0, N and T .

　　 Let se(γ̂1mis) be a similar standard error of estimate of overall slope mean when we wrongly use

the standard GCM (i.e., Equations 1-3 in the manuscript with assuming σ2
1 = 0) but time-specific

errors actually exist (i.e., ρt > 0). se(γ̂1mis) can be expressed by setting ρt = 0 and substituting



ρ′0 = ρ0/(1 − ρt) into ρ0 in Equation 20 to satisfy the relation σ2 = 1 as:

se(γ̂1mis) =

√
12(1 − ρ′0)(ρ′0T − ρ′0 + 1)

N(T − 1)T (ρ′0T 2 − 3ρ′0T + 4T + 2ρ′0 − 2)

=

√
12(1 − ρt − ρ0)(ρ0T − ρt − ρ0 + 1)

(1 − ρt)N(T − 1)T (ρ0T 2 − 4ρtT − 3ρ0T + 4T + 2ρt + 2ρ0 − 2)
, (21)

From Equations 20-21, the shrinkage factor se(γ̂1mis)
se(γ̂1) is calculated as

√
(1 − ρt − ρ0)(ρ0T − ρt − ρ0 + 1)(ρ0T 2 + 4ρtNT − 4ρtT − 3ρ0T + 4T − 2ρtN + 2ρt + 2ρ0 − 2)

(1 − ρt)(ρtN − ρt − ρ0 + 1)(ρ0T + ρtN − ρt − ρ0 + 1)(ρ0T 2 − 4ρtT − 3ρ0T + 4T + 2ρt + 2ρ0 − 2)
.

(22)

　　 In the quadratic GCM (Equations 16-19 in the manuscript), a matrix expression analogous to

Equation 5 becomes

Y = Xβ + ϵ. (23)

β = (γ1, γ2)′ and X = (X1, X2), where X1 = 1N⊗(0, 1, . . . , T−1)′ and X2 = 1N⊗(02, 12, . . . , (T−1)2)′.

Then precision matrix of regression coefficients P = X′Σ̃−1X can be evaluated by the similar manner

as the linear GCM. Specifically, (1,1), (1,2) and (2,2) elements of P (P11, P12 and P22) can be

evaluated as

P11 = aN
T−1∑
t=0

t2 + bN

T−1∑
t=0

t
T−1∑
t=0

t −
T−1∑
t=0

t2

 + cN(N − 1)
T−1∑
t=0

t2 + dN(N − 1)

T−1∑
t=0

t
T−1∑
t=0

t −
T−1∑
t=0

t2

 (24)

P12 = aN
T−1∑
t=0

t3 + bN

T−1∑
t=0

t
T−1∑
t=0

t2 −
T−1∑
t=0

t3

 + cN(N − 1)
T−1∑
t=0

t3 + dN(N − 1)

T−1∑
t=0

t
T−1∑
t=0

t2 −
T−1∑
t=0

t3

 (25)

P22 = aN
T−1∑
t=0

t4 + bN

T−1∑
t=0

t2
T−1∑
t=0

t2 −
T−1∑
t=0

t4

 + cN(N − 1)
T−1∑
t=0

t4 + dN(N − 1)

T−1∑
t=0

t2
T−1∑
t=0

t2 −
T−1∑
t=0

t4

 (26)



Using the Equations 12-16, standard errors se(γ̂1) and se(γ̂2) can then be evaluated as:

se(γ̂1) =

√
P22

P11P22 − P2
12

=

√
12(ρtN − ρt − ρ0 + 1)(2T − 1)(8ρ0T 3 + 18ρtNT 2 − 18ρtT 2 − 21ρ0T 2 + 18T 2 − 18ρtNT + 18ρtT + 7ρ0T − 18T − 6ρtN + 6ρt + 6ρ0 − 6)

N(T − 2)(T − 1)T (T + 1)(ρ0T 3 + 9ρtNT 2 − 9ρtT 2 − 6ρ0T 2 + 9T 2 − 9ρtNT + 9ρtT + 11ρ0T − 9T + 6ρtN − 6ρt − 6ρ0 + 6)

(27)

se(γ̂2) =

√
P11

P11P22 − P2
12

=

√
180(ρtN − ρt − ρ0 + 1)(ρ0T 2 + 4ρtNT − 4ρtT − 3ρ0T + 4T − 2ρtN + 2ρt + 2ρ0 − 2)

N(T − 2)(T − 1)T (T + 1)(ρ0T 3 + 9ρtNT 2 − 9ρtT 2 − 6ρ0T 2 + 9T 2 − 9ρtNT + 9ρtT + 11ρ0T − 9T + 6ρtN − 6ρt − 6ρ0 + 6)

(28)

Let γ̂1mis and γ̂2mis be parameter estimates of slopes for linear and quadratic changes when we

wrongly use the standard quadratic GCM (i.e., setting rt = 0 for all t in Equation 17 in the manu-

script). Their standard errors se(γ̂1mis) and se(γ̂2mis) can be expressed by setting ρt = 0 and substi-

tuting ρ′0 = ρ0/(1 − ρt) into ρ0 in Equations 27-28 to satisfy the relation σ2 = 1 as:

se(γ̂1mis) =

√
12(1 − ρ0)(2T − 1)(8ρ0T 3 − 21ρ0T 2 + 18T 2 + 7ρ0T − 18T + 6ρ0 − 6)

N(T − 2)(T − 1)T (T + 1)(ρ0T 3 − 6ρ0T 2 + 9T 2 + 11ρ0T − 9T − 6ρ0 + 6)
, (29)

se(γ̂2mis) =

√
180(1 − ρ0)(ρ0T 2 − 3ρ0T + 4T + 2ρ0 − 2)

N(T − 2)(T − 1)T (T + 1)(ρ0T 3 − 6ρ0T 2 + 9T 2 + 11ρ0T − 9T − 6ρ0 + 6)
. (30)

Thus, shrinkage factors se(γ̂1mis)/se(γ̂1) and se(γ̂2mis)/se(γ̂2) can be calculated as:

se(γ̂1mis )
se(γ̂1)

=

√√
(1 − ρt )(ρt N − ρt − ρ0 + 1)(ρ0T3 − 9ρtT2 − 6ρ0T2 + 9T2 + 9ρtT + 11ρ0T − 9T − 6ρt − 6ρ0 + 6)(8ρ0T3 + 18ρt NT2 − 18ρtT2 − 21ρ0T2 + 18T2 − 18ρt NT + 18ρtT + 7ρ0T − 18T − 6ρt N + 6ρt + 6ρ0 − 6)

(1 − ρt − ρ0)(ρ0T3 + 9ρt NT2 − 9ρtT2 − 6ρ0T2 + 9T2 − 9ρt NT + 9ρtT + 11ρ0T − 9T + 6ρt N − 6ρt − 6ρ0 + 6)(8ρ0T3 − 18ρtT2 − 21ρ0T2 + 18T2 + 18ρtT + 7ρ0T − 18T + 6ρt + 6ρ0 − 6)
,

(31)

se(γ̂2mis )
se(γ̂2)

=

√√
(1 − ρt )(ρt N − ρt − ρ0 + 1)(ρ0T2 + 4ρt NT − 4ρtT − 3ρ0T + 4T − 2ρt N + 2ρt + 2ρ0 − 2)(ρ0T3 − 9ρtT2 − 6ρ0T2 + 9T2 + 9ρtT + 11ρ0T − 9T − 6ρt − 6ρ0 + 6)

(1 − ρt − ρ0)(ρ0T2 − 4ρtT − ρ0T + 4T + 2ρt + 2ρ0 − 2)(ρ0T3 + 9ρt NT2 − 9ρtT2 − 6ρ0T2 + 9T2 − 9ρt NT + 9ρtT + 11ρ0T − 9T + 6ρt N − 6ρt − 6ρ0 + 6)
. (32)

Relative Influences of ρ0 and ρt on Standard Error of Linear Slope Effect Estimates

　　 From Equation 20, the first derivations of error variance of fixed linear slope estimate (i.e.,

se2(γ̂1)) with respect to ρ0 and ρt (i.e., ∂se2(γ̂1)
∂ρ0

and ∂se2(γ̂1)
∂ρt

) can be evaluated. The difference of



derivation results ∂se2(γ̂1)
∂ρt

− ∂se2(γ̂1)
∂ρ0

becomes

∂se2(γ̂1)
∂ρt

− ∂se2(γ̂1)
∂ρ0

=
12[(T − 1)(NT 2 − 3T + 2N)ρ2

0 + 2(ρtN − ρt + 1)(T − 1)(NT + 3T − 2N)ρ0 − (ρtN − ρt + 1)2(3T 2 − 4NT − 3T + 2N)]

N(T − 1)T (ρ0T 2 + 4ρtNT − 4ρtT − 3ρ0T + 4T − 2ρtN + 2ρt + 2ρ0 − 2)2

(33)

When T ≥ 1 and N ≥ 1, (T − 1)(NT 2 − 3T + 2N) ≥ 0. So, a function K = f (ρ0) = (T − 1)(NT 2 −

3T + 2N)ρ2
0 + 2(ρtN − ρt + 1)(T − 1)(NT + 3T − 2N)ρ0 − (ρtN − ρt + 1)2(3T 2 − 4NT − 3T + 2N),

which appears in the numerator of the above equation, takes minimum values Kmin as:

Kmin =
3N(ρtN − ρt + 1)2T 2(T + 1)(N − T )

NT 2 − 3T + 2N
. (34)

Therefore, when N ≥ T , the relation Kmin ≥ 0 is satisfied, indicating the result:

∂se2(γ̂1)
∂ρt

≥ ∂se2(γ̂1)
∂ρ0

. (35)

Thus, increasing ρt is always more influential than ρ0 on se2(γ̂1) (or se(γ̂1)).

Notes on Estimation

　　 Time-specific errors explain the random fluctuation of outcomes caused by the time-point of

sampling. In other words, time-specific errors represent time-specific residuals, to which all partic-

ipants are subjected, around the true growth trajectory (see Figure 1). Our simulations showed that

the proposed model can effectively extract the information about time-specific errors from data (see

Table and Figures in Online Supporting Material). To further clarify how the model can separately

estimate the fixed components of the true growth trajectory (e.g., quadratic slope γ2) and random



participant intercepts (σ2
0) from time-specific errors (σ2

t ), we present the mean and covariance struc-

tures of the proposed quadratic GCM (Equations 16-19 in the manuscript). For example, when T = 3

and N = 2 and we only assume random participant intercepts (i.e., setting r1 j = r2 j = 0) , from the

relations Equations 8-11 and Equation 20 in the manuscript, mean µ and covariance structures Σ for

Y=(Y11,Y12,Y13,Y21,Y22,Y23)′ can be expressed as:

µ = (γ0, γ0 + γ1 + γ2, γ0 + 2γ1 + 4γ2, γ0, γ0 + γ1 + γ2, γ0 + 2γ1 + 4γ2)′, (36)

and

Σ =



σ2
t + σ

2
0 + σ

2
e σ2

0 σ2
0 σ2

t 0 0

σ2
0 σ2

t + σ
2
0 + σ

2
e σ2

0 0 σ2
t 0

σ2
0 σ2

0 σ2
t + σ
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　　 Time-specific errorsσ2
t appear only in convariance structureΣ, indicating that the estimations

of quadratic slope γ2 and σ2
t use different sources of information. In Σ, σ2

t appears not only in

diagonal elements (i.e., (1, 1), (2, 2), . . . , (6, 6) elements), but also in block diagonal elements that

share the same time points (i.e., (1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3) elements). This is how random

participant intercepts σ2
0 and time-specific errors σ2

t are separately estimated.



　　 Even when we loosen the model assumption by setting σ2
1 , 0, this basic observation does not

change. In this case mean structure µ∗ remains unchanged (µ∗ = µ), and covariance structure Σ∗

becomes:

Σ∗ =
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　　 These means and covariance structures clarify the sources of information to estimate time-

specific errors and other fixed and random effects. The fact that time-specific errors are represented in

the covariance between participants from the same time points (i.e., (1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)

elements) means that the proposed GCM (with time-specific errors) allows data from different par-

ticipants within each time point to be correlated. In standard GCM, on the other hand, participants

are posited to be independent from each other (after accounting for fixed effects).

Effectiveness of the proposed model

　　　 To demonstrate that the proposed GCMs can effectively address the inflation of Type-1 error

rates, we conducted sets of Monte Carlo simulations that applied a GCM with time-specific errors

to generated data. Specifically, we applied a linear GCM and quadratic GCM with time-specific

errors (i.e., Equations 5-7 and Equations 16-19 in the manuscript with r2 j = 0, respectively), to



the data generated from a linear GCM and quadratic GCM with and without time-specific errors,

respectively. The results are displayed in Figure S3 and S4 in Online Supporting Materials . As

expected, the proposed mixed-effects models with time-specific errors kept closely to the nominal

Type-1 error rates, except for a very slight deviation with a small number of time points (i.e., T = 5)

and a small number of participants (i.e., N = 200). It should be noted that the proposed model with

time-specific errors kept closely to the nominal Type-1 error rates even when σ2
t = 0 (i.e. the model

was overparameterized).

　　　 To further demonstrate the effectiveness of the proposed mixed-effects models, we ran an-

other set of Monte Carlo simulations to examine whether the correct GCMs can effectively recover

true parameters without bias. In this set of simulations, data were generated (replication = 1,000

for each condition) by a quadratic GCM with time-specific errors (i.e., Equations 16-19 in the man-

uscript with r2 j = 0). We assumed the presence of a positive quadratic effect (γ2 = 0.01), and

systematically changed the number of participants (N= 200, 500, and 1,500), the number of time

points (equally spaced, T = 5, 10, and 15), the variance of random participant slope (σ2
1 = 0.01, 0.05

and 0.20), and the variance of time-specific errors (σ2
t = 0, 0.01, 0.03, and 0.05). Random participant

intercept variance was fixed to 0.5 (i.e., σ2
0 = 0.5).

　　　 For each generated dataset, we applied the mixed-effects model with time-specific errors

(i.e., Equations 16-19 in the manuscript with r2 j = 0), and calculated bias and root mean squared



errors (RMSE) for the fixed quadratic effect (γ2) and time-specific errors (σ2
t ) as such:

Bias =
1

1000

S=1000∑
s=1

(b̂s − b),　 RMS E =

√√√
1

1000

S=1000∑
s=1

(b̂s − b)2. (39)

b denotes the parameters expressing fixed and random effects and b̂s is its estimate at the s-th repe-

tition, respectively.

　　　 Table S1 in Online Supporting Materials reports the bias and RMSE for the coefficient of

the quadratic term (γ2) and time-specific errors (ρt). Overall, parameters were accurately estimated

without substantial bias. When there are only a few time points (i.e., T = 5), GCM with time-specific

errors showed slight bias in estimating time-specific errors as well as the fixed quadratic effect. This

could explain the slight deviation of Type-1 error rates (from 5%) with a small number of time points

observed in Figure S4 in Online Supporting Materials. Increasing the number of time points reduced

parameter bias and RMSE of both effects, but increasing the number of participants does not seem

to reduce the bias. Note again that parameters were accurately estimated without substantial bias

and RMSE even when time-specific errors are not present (i.e.,σ2
t = 0), indicating that misspecified

time-specific errors do not influence other parameter estimates. These results suggest that GCM with

time-specific errors can effectively recover true parameters.


