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Abstract
[bookmark: _Hlk510011957][bookmark: _Hlk510012020][bookmark: _Hlk486855992]Pichia pastoris is extensively used to produce various heterologous proteins. Amounts of biopharmaceutical drugs and industrial enzymes have been successfully produced by fed-batch high-cell-density fermentation (HCDF) of this cell factory. High levels of cell mass in defined media can be easily achieved and therefore large quantities of recombinant proteins with enhanced activities and lower costs can be obtained through HCDF technology. A robust HCDF process makes a successful transition to commercial production. Recently, efforts have been made to increase the heterologous protein production and activity by the HCDF of P. pastoris. However, challenges around selecting a suitable HCDF strategy exist. The high-level expression of a specific protein in P. pastoris is still, at least in part, limited by optimizing the methanol feeding strategy. Here, we review the progress in developments and applications of P. pastoris HCDF strategies for enhanced expression of recombinant proteins. We focus on the methanol induction strategies for efficient fed-batch HCDF in bioreactors, mainly focusing on various stat-induction strategies, co-feeding, and the limited induction strategy. These processes control strategies have opened the door for expressing foreign proteins in P. pastoris and are expected to enhance the production of recombinant proteins.
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[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK29][bookmark: OLE_LINK33][bookmark: OLE_LINK36][bookmark: OLE_LINK37][bookmark: OLE_LINK80][bookmark: OLE_LINK84][bookmark: OLE_LINK27][bookmark: OLE_LINK32][bookmark: OLE_LINK44][bookmark: OLE_LINK379][bookmark: OLE_LINK380][bookmark: OLE_LINK47][bookmark: OLE_LINK52][bookmark: OLE_LINK267][bookmark: OLE_LINK268][bookmark: OLE_LINK113][bookmark: OLE_LINK114]Pichia pastoris is one of approximate dozens of yeast species, representing four different genera capable of metabolizing methanol. This methylotrophic budding yeast is also classified as Komagataella pastoris [1]. Several hundred recombinant proteins from viruses, bacteria, fungi, plants, animals, and humans have been expressed by P. pastoris at high levels [2]. Some examples of recent recombinant proteins are detailed in Table S1. Additionally, some eukaryotic membrane proteins have been expressed for structural and functional studies [3]. The key advantage of using P. pastoris as a host system is that it combines the ability to efficiently express heterologous proteins with a unique capacity to grow in minimal medium at high density with low levels of endogenous protein secretion [4, 5]. Fed-batch high-cell-density fermentation (HCDF) of P. pastoris in automatically controlled bioreactors has attracted attention in recent years [6-9]. As shown in Figure 1a, an automatically controlled fermentation system typically consists of a vessel, temperature control, air and oxygen sparge controller, supplement system, gas analyzer, on-line monitoring system, and other components as required. As suggested by “Pichia Fermentation Process Guidelines”, the HCDF process is usually divided into three phases: glycerol batch phase, glycerol fed-batch phase, and methanol induction phase (Figure 1b) [10, 11]. The objective of the glycerol batch phase and glycerol fed-batch phase is to obtain high biomass, and these are often denoted as the growth stage. The pre-induction wet cell weight (WCW) can be as much as 300 g/L or even higher [12-14]. Further optimization of glycerol feeding and pre-induction biomass are often required [15-17]. At the induction phase, methanol is added in a fed-batch mode according to specific methanol feeding strategies. As both the inducer of promoter alcohol oxidase I (AOX1) and carbon source, methanol directly affects cell growth, substrate consumption, and protein expression. In some cases, the glycerol fed-batch phase was replaced by a fed-batch transition stage [18-20], in which glycerol is fed at a growth-limiting rate to further increase the biomass and derepress the AOX1 promoter in preparation for induction. 
Recently, many efforts have been made to increase the heterologous protein production and enzyme activity in P. pastoris [21-24]. Techniques in host strain engineering [25-27], vectors design [27-29], alternative promoters [30-32], substrate monitoring [22, 30], process optimization [28, 33-35], product formation kinetics [32, 36], and post-translational modification have been studied [37, 38]. However, difficulties in obtaining high yields from production in P. pastoris and establishing a robust HCDF process still exist. Since high concentrations of methanol are toxic to the yeast cells, methanol needs to be continuously added to the fermentation culture and maintained at a proper level. In general, P. pastoris itself controls the amount of methanol consumption when appropriate methanol feeding strategy was implemented, which is a response to its own metabolism [39]. It is likely that cell growth, substrate consumption, and product formation would depend on the methanol feeding strategy. Therefore, it is essential to evaluate the various methanol feeding strategies during development of the recombinant protein production. However, challenges around selecting one of the various HCDF strategies always exist. The high-level expression of a specific protein in P. pastoris is still, at least in part, limited by methanol feeding process control. In this review, we specifically focus on the fed-batch HCDF methanol induction strategies, including the stat-induction, co-feeding and limited induction strategies along with applications for enhanced expression of recombinant proteins in P. pastoris.
[bookmark: OLE_LINK402][bookmark: OLE_LINK409][bookmark: OLE_LINK153][bookmark: OLE_LINK155][bookmark: OLE_LINK151][bookmark: OLE_LINK152][bookmark: OLE_LINK165][bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: OLE_LINK258][bookmark: OLE_LINK259]Stat-induction strategies
[bookmark: OLE_LINK271][bookmark: OLE_LINK53][bookmark: OLE_LINK54][bookmark: OLE_LINK272][bookmark: OLE_LINK273][bookmark: OLE_LINK281][bookmark: OLE_LINK291][bookmark: OLE_LINK292]Of the fed-batch HCDF methanol induction strategies, the stat-induction strategies are a group of control strategies in which methanol is added by on/off-line or forward/back controlled supplementation, which is associated with certain control strategies. For example, process conditions, substrate metabolism, or cell growth are often set and kept at constant static (stat) values. Figure 2 shows a simplified methanol metabolic network. Through formaldehyde dissimilation pathway A and formaldehyde assimilation pathway B on the carbon source of methanol, the biomass accumulation and target protein synthesis are realized. The stat-induction strategies mainly include controlling the specific growth rate (μ-stat), the dissolved oxygen (DO-stat), the methanol concentration (methanol-stat), and the biomass (biomass-stat), which will be described further in the next sections. 
[bookmark: _Hlk514144762][bookmark: OLE_LINK200][bookmark: OLE_LINK205][bookmark: OLE_LINK209][bookmark: _Hlk520215488][bookmark: OLE_LINK262][bookmark: OLE_LINK263][bookmark: OLE_LINK265][bookmark: OLE_LINK266][bookmark: _Hlk520283506]μ-stat strategy: By controlling the specific cell growth rate (μ, h−1), the μ-stat strategy is implemented using an open-loop control or the pre-programmed exponential feeding. A feeding rate profile derived from mass balance equations is employed, and μ is theoretically maintained at a constant value. Therefore, the yield of biomass to substrate is expected to be constant with a quasi-exponential accumulation of biomass. Owing to a lack of on-line information of the μ-stat strategy, cell density and fermentation broth volume are supposed to be known at the beginning of pre-programmed methanol feeding. Since methanol utilization is either directly or indirectly associated with cell growth, methanol concentration is supposed to be close to zero, and this strategy is also denoted as methanol limited fed-batch (MLFB) [40]. Using exponential feeding (μ = 0.03 h−1), the final maximum biomass, total enzyme activity, production, and specific production rate of L-glutamate oxidase in a 20-L bioreactor reached 420 g/L (WCW), 248 U/mL, 11 g/L and 0.31 mg/g/h, respectively [41]. The predicted optimum maximum for P. pastoris was 0.071 h−1 [42], however, the optimal μ values for different proteins varied. In another study, after 72 h induction with a μ-stat of 0.02 h−1, enhanced expression of recombinant sterol esterase in a 5-L bioreactor was achieved with the highest enzyme activity and volumetric productivity of 30 U/mL and 403.5 U/L/h, respectively [43]. Using the μ-stat strategy, methanol is automatically supplemented into bioreactors by interfaced workstation (such as Sartorius MFCS, NBS AFS-Biocommand, etc.) or by additional feeding-controlled pumps [41, 44, 45]. The methanol feeding was limited by using constant μ value during the entire induction stage. The main advantage of the μ-stat strategy is that keeping μ constant accelerates process reproducibility and is a reasonable way to systematically study the μ-related effects on recombinant protein expression. However, the methanol concentration in the bioreactor is not controlled, although its concentrations are often monitored on-line or measured off-line. Therefore, the μ-stat strategy carries the risk of undesired methanol accumulation. In addition, DO was not specifically controlled to associate with methanol feeding, and methanol feeding is not determined by DO changes during the μ-stat process, which might cause the occurrence of over methanol accumulation and reactive oxygen species (ROS).
[bookmark: _Hlk520223394][bookmark: OLE_LINK101][bookmark: OLE_LINK102][bookmark: OLE_LINK119][bookmark: OLE_LINK122][bookmark: OLE_LINK148][bookmark: OLE_LINK149]DO-stat strategy: The DO-stat strategy is an indirect feedback mode which automatically controls the substrate feeding rate to efficiently maintain the on-line dissolved oxygen (DO) at a near-constant level. Previous research has indicated that the methanol consumption of the wild-type strain X-33 per WCW was up to a maximum of 1 g/g/L [46, 47]. Using the DO-stat strategy, recombinant fructosyltransferase (FruSG) demonstrated the highest activity (2.3 × 103 U/mL) after induction for 144 h in a 5-L bioreactor, which was 956.1-fold higher than that of native FruSG from Aspergillus niger SG610 [48]. Additionally, many simple manual adjustment methods of methanol induction using DO readings as indicators of the culture condition have been developed. The porcine interferon-α (pIFN-α) concentration reached 1.43 g/L in 5-L bioreactor when using an improved artificial neural network pattern recognition (ANNPR) model with DO-stat, which was 1.5-fold higher than that obtained in a previous study [49]. A modified DO-stat strategy, with automatic on/off programmable peristaltic pumps, was adopted for methanol feeding in a 10-L bioreactor. Oxygen transfer limitations and methanol accumulations were not expected to occur by this fuzzy control. DO was stably controlled under mild aeration condition. Methanol consumption rate could be restricted at a moderate level, and the final porcine circovirus Cap protein reached a peak concentration of 198 mg/L [50]. It should be noted that if DO is not sensitive to the methanol concentration even if the fermentation is already in methanol shortage or exhaustion status, feeding methanol with on-line DO measurement and control will not be valid, and methanol feeding based on some other on-line measurements is required. Furthermore, in the DO-stat strategy, neither methanol concentration nor specific growth rate is constant, which makes it difficult to accurately explore the influence of these parameters on protein expression. Sufficient oxygenation of the aerobic fermentation process is still a challenging task in HCDF, and sustaining continuous DO becomes the limiting factor for P. pastoris cell growth and production. As a result, pure oxygen was supplemented [51-54], however, this increases bioprocessing costs, particularly of large-scale HCDF. More importantly, the toxic effects of pure oxygen on cell growth were notable [55]. By comparison, increasing air pressure instead of supplementing pure oxygen was found to be more practical and economical while improving the activity and production of some proteins in P. pastoris [56, 57]. Properly increased air pressure in HCDF is a prosperous process for commercial-scale production of foreign protein in P. pastoris.
[bookmark: OLE_LINK323][bookmark: OLE_LINK322][bookmark: OLE_LINK321][bookmark: OLE_LINK392][bookmark: OLE_LINK391][bookmark: OLE_LINK390][bookmark: OLE_LINK389][bookmark: OLE_LINK388][bookmark: OLE_LINK355][bookmark: OLE_LINK354][bookmark: OLE_LINK345][bookmark: OLE_LINK344][bookmark: OLE_LINK4][bookmark: OLE_LINK48][bookmark: OLE_LINK49][bookmark: OLE_LINK55]Methanol-stat strategy: Since methanol concentration is neither on/off-line monitored nor forward/back controlled by μ-stat and DO-stat, potential deviations from optimal methanol concentration and even unexpected exhaustion or excessive accumulation may undermine the processes. Methanol-stat feeding strategy was accordingly created, for which the methanol concentration in the bioreactor is maintained constant, and is named methanol non-limited fed-batch strategy (MNLFB). Employing a constant methanol concentration of 0.5% (m/v), a maximum biomass of 110 g/L (dry cell weight, DCW) and glucose isomerase concentration of 1.5 g/L in a 3-L bioreactor were produced by P. pastoris, and the overall cell yield on carbon was determined as 0.21 g/g [58]. Stat-fed by a 15 g/L methanol addition resulted in the highest activity of 960 U/mL of the recombinant Strongylocentrotus purpuratus invertebrate-type lysozyme with a yield of 94.5 mg/L in a 5-L bioreactor [59]. During a methanol-stat process, methanol was automatically added into culture by an extra on-line feeding system. Take the system from Raven Biotech (Vancouver, BC, Canada) for example, the bioreactor was equipped with a methanol probe with a sensor unit, a feeding pump 101U/R, and a recorder REC-112. The pump worked by on/off mode, if the signal of methanol concentration in the culture was lower than the set value, the pump was “on”, and methanol feeding was initiated. The signal of methanol concentration was recorded during the entire induction time. This system of methanol-stat strategy has been widely used for P. pastoris fermentation [60-62]. On the other hand, on/off linear control may cause fluctuating methanol concentration around the set-point, which is inadequate for precise methanol control. In particular, the methanol consumption, cell growth, and production of recombinant protein in P. pastoris are mostly a complicated non-linear bioprocess. It was found that a proportional-integral derivative (PID) controller can, at least partly, resolve the problem [40, 63]. Using PID control, methanol is more accurately added into the bioreactor and maintains the methanol concentration within a narrow range. 
Biomass-stat strategy: The main concept of the biomass-stat strategy is that biomass is defined and the relationship between biomass and methanol feeding rate is immediately quantified. Meanwhile, the constant methanol feeding rate is adjusted to maximize the production of heterologous proteins. For example, to improve the production of a recombinant β-xylosidase/β-glucosidase designated LXYL-P12 by the engineered P. pastoris GS115-3.5K-P12 (intracellular expression) [64], this strategy was developed and applied. Using a combination of biomass-stat strategy (Figure 3), optimized DO of 1% and initial induction cell density of 100 g/L (DCW), the enzyme activity, production, and productivity were further improved under 1000-L scale fed-batch HCDF when methanol was fed at the optimal rate of 0.035 mL/g/h, arriving at (not peak values) 4.5 × 107 U/L and 4.7 × 105 U/g, or 900 mg/L and 9.4 mg/g (at 112 h), respectively. Both the specific activity and volumetric activity surpassed those of the flask fermentation (3.8 × 107 U/L and 3.3 × 105 U/g at 168 h). The average specific production rate was 0.08 mg/g/h, and a higher biomass production was also achieved [57, 65]. It provides a successful paradigm for scaling-up HCDF of P. pastoris to the demonstration scale and will likely apply to production of similar recombinant proteins employing P. pastoris strains as well. The profiles of glycerol feeding, methanol supplement, DO level, temperature, pH, air pressure, agitation, aeration, and biomass during the 1,000-L HCDF process were also autamatically recorded [57]. One of the keys to the biomass-stat strategy is the biomass monitoring. In general, the optical cell density or cell weight was able to be determined by off-line methods [34, 52, 66]. Conversely, on-line monitoring was more practical than off-line methods, particularly for the biomass associated methanol feeding. Yang et al. and Kiviharju et al. have extensively reviewed on-line biomass monitoring techniques [22, 67], such as dielectric spectroscopy, optical probing, infrared spectroscopy, fluorescence spectroscopy, permittivity measurement, software sensors, etc. Furthermore, there is an urgent demand for assessing the cell viability of the culture. Contrary to mammalian cell culture, it is not common practice to measure cell viability of microbial HCDF samples. However, successfully to develop appropriate methods to measure the cell viability of P. pastoris have been made [68-71]. Among these, the method based on flow cytometry were more often used [72-74]. The progress on biomass monitoring has sketched out a blueprint for the application of biomass-stat strategy in scalable HCDF of P. pastoris.
The stat-rate feeding strategy derived from “Pichia Fermentation Process Guidelines” is also widely employed [9, 14, 75, 76]. As shown in Table S1, the production of recombinant Thielavia terrestris galactosidase reached 8.3 g/L, with the cell density, enzyme activity, volumetric productivity, and specific production rate of 522 g/L (WCW), 4.4 U/L, 120 mg/L/h, and 0.23 mg/g/h, respectively [77]. Specific substrate uptake rate (qs), defined as the rate of substrate uptake per unit biomass per unit time, was also introduced as a parameter to design fed-batch strategies for P. pastoris. Using the qs-stat strategy, Spadiut et al. investigated the expression of horseradish peroxidase in P. pastoris [78]. A significantly enhanced production was obtained when the methanol feeding rate was increased stepwise to a constant high qs value. Using similar strategy, high productivity and product purity were obtained in a recombinant P. pastoris Δoch1 strain [79]. 
Co-feeding strategies
[bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK87][bookmark: OLE_LINK91]Multiple substrates, such as glycerol or sorbitol, can be simultaneously supplemented during P. pastoris metabolic process to improve the expression of recombinant proteins, known as co-substrate feeding. Less heat is released when using mixed substrates, which is essential for pilot scale HCDF of P. pastoris [22, 80]. Furthermore, co-feeding may not only decrease the supply burden of huge oxygen consumption (since less oxygen is required for oxidation of mixed substrates) but also generate NADH/ATP via the TCA cycle/oxidative phosphorylation reactions to reduce/relieve the energy supply burden and cellular metabolism damage [22, 81]. Multi-substrate feeding is widely used to improve the product expression for both methanol utilization slow (MutS) and methanol utilization positive (Mut+) strains, although this strategy was initially developed for MutS phenotype because of the relatively slow methanol utilization rate.
[bookmark: OLE_LINK128][bookmark: OLE_LINK129][bookmark: OLE_LINK167][bookmark: OLE_LINK168][bookmark: OLE_LINK210][bookmark: OLE_LINK215][bookmark: OLE_LINK227][bookmark: OLE_LINK228]Glycerol: As a suppressing carbon source for the AOX1 promoter, glycerol should be completely consumed before starting methanol feeding. Otherwise, certain amount of glycerol may suppress the AOX1 promoter and decrease the heterologous protein production during methanol induction phase [82]. However, in some cases, co-substrates of methanol-glycerol dramatically improved the enzyme activities and production. In a 10-L scaled fed-batch bioreactor, the yield achieved 9.58 g/L with an activity of 3.5 × 104 U/mL when glycerol was added as a co-substrate (methanol: glycerol = 4:1, v/v) for recombinant Citrobacter amalonaticus phytase in P. pastoris [83]. Co-feeding of methanol-glycerol (2:1, v/v) significantly improved the expression of Volvariella volvacea Endoglucanase 1, and the cell density, enzyme activity, and production in a 3-L bioreactor were as high as ~400 (optical density at 600 nm, OD600), 650 U/mL, and 4.05 g/L, respectively [84]. The appropriate ratio of methanol to glycerol and total feeding rate are initially determined for both methanol-glycerol transition feeding and whole-process glycerol supplement. Generally, the higher glycerol feeding rate, the higher μ and biomass accumulation could be obtained [85]. However, continuous glycerol feeding may cause decreased specific activity from the accumulation of ethanol, and a high ratio of glycerol would lead to a higher percentage of methanol directly dissimilating to carbon dioxide [86]. Extended glycerol feeding resulted in energy or matter (e.g., amino acids pools) imbalance and therefore broke down recombinant protein in the cells. It was demonstrated that qs for glycerol over 0.054 g/g/h repressed the activity of the promoter AOX1, and subsequently cause damage to cell growth, and then led to protein expression [87]. Over 120 U/mL of β-glucosidase was achieved in a 1000-L bioreactor by using a co-feeding strategy, in which glycerol/methanol was at the ratio of 1:5 and 30 g/L corn steep powder were fed to maintain the methanol concentration of 0.7% (v/v) [88].
[bookmark: OLE_LINK243][bookmark: OLE_LINK244][bookmark: OLE_LINK198][bookmark: OLE_LINK199]Sorbitol: As a non-repressing carbon source, sorbitol is widely used as an alternative to glycerol. The maximum qs of P. pastoris for sorbitol reached 0.197 g/g/h [87]. In the process of methanol-stat feeding with sorbitol, the highest recombinant human growth hormone concentration was up to 1.2 g/L in a 3-L bioreactor, decreased methanol demand of the cells by 2-fold [89]. The production of porcine interferon-α in a 10-L bioreactor reached 2.7 g/L with the enzyme activity and specific production rate of 1.8 × 107 U/mg and 0.28 mg/g/h, respectively [90]. Further results revealed that sorbitol co-feeding not only decreased specific protease production and proteolytic degradation by 1.2-fold [91], but also decreased cell mortality from 23.1% with methanol only to 8.8% with sorbitol and methanol [69]. It was also demonstrated that co-substrates of sorbitol and methanol allowed shortened cultivation time [92], increased biomass without accumulation of toxic by-products of methanol metabolism, and lower heat generation [93]. Furthermore, sorbitol addition during methanol induction lowered the specific oxygen uptake rate by 30% , which led to a 40% improvement of β-galactosidase productivity [94], and allowed cells to adapt to transient oxygen limitation that often occurs in industrial scale fermentation, with reduced effect on the activity of the promoter AOX1 [95]. Benefitting from improved understanding of metabolic response to the envisioned process and those leading to improved expression of recombinant proteins in P. pastoris [96].
[bookmark: OLE_LINK496][bookmark: OLE_LINK497]Ascorbic acid, mannitol, glucose, L-alanine, gluconate, and methylamine hydrochloride have also been employed as co-substrates to enhance the expression of recombinant proteins in P. pastoris [5, 24, 97, 98]. For example in Table S1, addition of 10 mmol ascorbic acid increased P. pastoris biomass and human growth hormone (r-hGH) concentration by 1.7-fold (163 g/L, DCW) and 1.4-fold (980 mg/L) in a 13-L bioreactor, respectively, and further improved the specific production rate of r-hGH (0.20 mg/g/h) [24]. Co-feeding of mannitol not only enhanced recombinant human erythropoietin production and furthermore shortened bioprocessing time [99], but also increased the yield of recombinant glucose oxidase in P. pastoris by 3-fold [100]. Generally, the activity of promoter AOX1 can be strongly repressed by glucose [101, 102]. However, glucose-methanol (3:2, v/v) co-feeding increased the maximum specific productivity of recombinant porcine trypsinogen to 0.70 mg/g/h at 0.07 h−1 (DCW), and the yield of biomass to carbon (1.54 g/g) was 1.4-fold larger than that of methanol alone in a 2-L bioreactor [103]. In addition, when enzymatically released glucose from a soluble glucose polymer by glucosidase was also used as co-substrate, results indicated that glucose can be a feasible partial substitute to improve the expression behavior of recombinant protein in P. pastoris [104]. Furthermore, the impact of co-substrates feeding on recombinant protein expression was studied with MutS phenotype. In a 5-L scale fed-batch HCDF, the highest angiostatin production of 191 mg/L with an overall specific productivity of 0.044 mg/g/h was achieved when lactic acid was used in induction phase even though the accumulated lactic acid reached 6.3 g/L [105], which suggests that lactic acid is a potential non-repressive carbon source for P. pastoris. 
[bookmark: OLE_LINK94]Limited induction strategy
Together with above-mentioned stat-induction and co-feeding strategies, strategies based on limited induction conditions, such as oxygen and temperature are commonly implemented during fed-batch HCDF processes to further improve recombinant protein expression in P. pastoris. 
[bookmark: OLE_LINK521][bookmark: OLE_LINK522]Limited oxygen strategy: In the limited oxygen process, the DO level always drops to 0, methanol concentration is lower than 2 g/L [30, 106-108], and the cell growth rate is limited. These limited HCDF conditions cause relatively greater accumulation of methanol in a bioreactor, which may further activate the promoter AOX1 and therefore enhance the expression of foreign protein in P. pastoris. Employing oxygen-limited conditions with a 30 mmol/L/h of oxygen uptake rate (3-L bioreactor), achieved a relative product titer of recombinant monoclonal antibody 1.72-fold higher than that fermented under the methanol-stat strategy [109]. Due to the limited oxygen uptake rate, the required heat removal rate was decreased, which also increased the feasibility of scaling-up HCDF. Furthermore, improved N-glycan composition and galactosylation were observed. This is useful when expressing human-like proteins in P. pastoris, because the glycosylation in P. pastoris features longer sugar chains and more complex structures that could lead to inactive forms [110]. Oxygen limitation also increased the process stability and product yield [111], although maintenance demands and carbon dioxide production per methanol were increased. During the oxygen-limited process, the enzyme purity was enhanced [112], which facilitates the purity of products and downstream processing. More interestingly, it was found that cultures in hypoxic conditions produced smaller yeast cells with comparable density [113]. This strategy has been used during HCDF processes of P. pastoris [40, 114, 115], but lower specific cell growth rate and longer induction time may occur.
[bookmark: OLE_LINK346][bookmark: OLE_LINK347][bookmark: OLE_LINK334][bookmark: OLE_LINK336]Limited temperature strategy: Production and activity of recombinant proteins from P. pastoris were significantly improved when using limited lower induction temperature [116-118], although real-time PCR analysis revealed that temperature did not significantly influence mRNA levels [119]. Further investigation indicated that the immature form of recombinant protein remained in the endoplasmic reticulum (ER) for a prolonged period at 30 °C, the retention resulting in higher ER stress levels that were accompanied by compromised induction of the unfolded protein response [120]. It is implied that lower temperature led to a higher rate of correctly folded protein, and therefore improved the expression. The AOX1 activity was enhanced when incubated at 22 °C, and the highest activity of recombinant leech hyaluronidase was 3.5-fold higher than that obtained at 30 °C [121]. Further results demonstrated that the lower temperature also improved the stability of recombinant protein and increased cell viability [122, 123]. Furthermore, the β-glucan molar ratio of chitin-glucan complex was considerably reduced because of lowered temperature [124]. In addition, a higher temperature may activate extracellular proteases and reduce the stability of the protein, and degradation product of kinase domain of PINK1 was detected on western blot when the temperature was higher than 25 °C [125]. However, the cooling equipment requirement for lower temperature induction should be considered. 
[bookmark: _GoBack][bookmark: OLE_LINK59][bookmark: OLE_LINK60][bookmark: OLE_LINK124][bookmark: OLE_LINK125]Additionally, limited strategies based on pH, qs, and nitrogen source were also employed. Biomasses weren’t significantly affected by pH within the range of 3 to 5 [93, 126], but higher values may influence cell densities [127, 128]. In general, limited pH conditions enhance the expression of recombinant proteins through a diminution in expression or inactivation of native proteases in P. pastoris cells, and also improve the stability of the proteins [93, 129]. For certain proteins, a higher pH was optimum although pH ≥ 6.5 may cause precipitation of medium and operational problems including nutrients starvation and optical density measurement interference [130]. The strategy of gradually increased qs of methanol in 4 days resulted in the highest productivity of recombinant horseradish peroxidase isoenzyme [131]. Using a nitrogen-limited strategy, the productivity of extracellular recombinant human serum albumin (rHSA) was significantly improved in P. pastoris [132].
Conclusions and future perspectives
As a eukaryotic expression system, P. pastoris has many advantages for expression of numerous recombinant proteins and has gained a reputation in biotechnology as an efficient producer. It is particularly desirable for large-scale heterologous protein productions that form inclusion bodies in E. coli systems or can’t be functionally expressed in mammalian cell and insect cell systems. By implementing suitable fed-batch HCDF strategies, a large number of vaccines, coagulation inhibitors, allergens, antibodies, protease inhibitors, hormones, cytokines, receptors, ligands, and enzymes have been successfully expressed (as summarized in Table S1).
The tightly regulated promoter AOX1 is commonly used for heterologous expression in P. pastoris. However, there are some concerns regarding promoter AOX1 and methanol induction process, such as potential safety and management issues of methanol, methanol-induced cell lysis, oxidative stress from hydrogen peroxide, increased heat evolution and over-oxygen demand at induction phase, etc [133-136]. To avoid the necessity of methanol, a system based on methanol-free promoter AOX1 were developed. Alternative promoters including phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAP) and isocitrate lyase (ICL1) have been proposed [137, 138], however, these promoters have not been used as widely as AOX1, mainly because of their uncontrolled behavior or weak expression ability. Based on principles of repression/derepression, regulation of synthetic promoter AOX1 variants was studied. At high concentrations of glycerol or glucose, all variants were repressed but were derepressed by lower substrate availability. Recently, a methanol-free and promoter AOX1 start-up strain (MF1) was constructed by deleting three transcription repressors (Mig1, Mig2, and Nrg1) and overexpression of one transcription activator (Mit1). A novel “glucose-glycerol-shift” system was developed, in which glucose batch and fed-batch phase were employed to obtain high cell density and followed by a glycerol induction phase. The production of insulin precursor (IP) from MF1 was as high as 2.46 g/L in glycerol-induced cultures, which was 58.6% of the wild-type in methanol-induced cultures [139]. Meanwhile, it was found that the transcription factors of Mxr1 and Prm1 are suitable to strongly activate the promoter AOX1 in P. pastoris without relying on any specifically engineered host strains [34]. Recently, many efforts have been made to design methanol-free promoter AOX1 system in P. pastoris, however, there is still a long way to go, especially for the large-scale industrial purposes.
The aim of this review is to establish various methanol feeding strategy and application in bioreactor-scale HCDF of P. pastoris. By careful control of methanol feeding, considerable improvements have been achieved with respect to production, productivity, and the product quality of products from P. pastoris. On the way to be a standard production system, further studies are still needed to address several difficulties, such as proteolytic degradation, lower expression of membrane proteins, quality control mechanism in ER, comprehension of cell physiology, different glycosylation patterns, AOX1 regulation mechanism, cell viability measurement, gene edit by CRISPR-Cas and molecular toolbox for synthetic biology, etc. As more is learned about this organism, its use as an expression system will become increasingly more efficient and user-friendly. The fed-batch HCDF feeding strategies and their application are likely to make this system more competitive and reproducible to produce products on both laboratory and industrial scales, although it is unreasonable to hope that yeast will be the panacea for all expression woes.
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Figure legends
Figure 1	Scheme for the interdependency of P. pastoris HCDF automation process. (a), Circulatory system of the automatically controlled HCDF process. Fermentation system connected to various online probes collect set point data, which are used by automation models as input signals. Depending on the model algorithm a new setpoint is generated for the better control of bioprocess considering the simulation objective. A better understanding of the P. pastoris HCDF (different objectives in different phases) forms the basic ground for the development of comprehensive and precise automation models. (b), Typical three phases. The HCDF process was divided into three phases, including glycerol batch phase (phase I, green), glycerol fed-batch phase (also known as fed-batch transition stage, phase II, yellow), and methanol induction phase (phase III, red).
Figure 2	Methanol metabolic pathways in P. pastoris
[bookmark: OLE_LINK71][bookmark: OLE_LINK72][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK73][bookmark: OLE_LINK74]Methanol metabolism is initiated with the oxidization by AOX1 to formaldehyde and hydrogen peroxide. A portion of formaldehyde leaves peroxisome and reacts with glutathione to S-(hydroxymethyl)-glutathione (GS-CH2OH) followed by two consecutive reactions which are catalysed by formaldehyde dehydrogenase (FLD) and ormate dehydrogenase (FDH) (dissimilation pathway A). The remaining formaldehyde is assimilated to form cell skeleton and synthesize the targeted protein by a cyclic pathway (assimilation pathway B) that starts with condensation of formaldehyde with the regenerated xylulose 5-phosphate (Xu-5P). DHA: dihydroxyacetone; DHAP: dihydroxyacetone phosphate; F1,6BP: fructose-1,6-bisphosphate; F6P: fructose-6-phosphate; GAP: glyceraldehyde-3-phosphate; GSH: glutathione; NAD/NADH: nicotinamide adenine dinucleotide; TCA: tricarboxylic acid cycle; Xu-5P: xylulose 5-phosphate. ADH: acetaldehyde dehydrogenase; AOX: alcohol oxidase; CAT: catalase; DAK: dihydroxyacetone kinase; DAS: dihydroxyacetone synthase; FBA: fructose-1,6-bisphosphate aldolase; FBP: fructose-1,6-bisphosphatase; FDH: formate dehydrogenase; FGH: S-formylglutathione hydrolase; FLD: formaldehyde dehydrogenase; noxE: NADH oxidase; TKL: transketolase; TPI: triose phosphate isomerase.
Figure 3	Time courses of cell growth, methanol consumption and product formation of recombinant LXYL-P12 in P. pastoris.
Using biomass-stat induction strategy, the dry cell weight (a, filled red diamond), specific growth rate (a, filled blue triangle), methanol concentration (b, filled red cycle), accumulated methanol consumption (b, filled green diamond), biomass yield (b, filled blue diamond), methanol consumption rate(b, filled black triangle), volumetric activity (c, filled red square), biomass activity (c, filled blue cycle), specific volumetric activity (c, open red square), specific biomass activity (c, open blue cycle),volumetric production (d, filled red square), specific production (d, filled blue cycle), specific volumetric activity (d, open red square), and specific production rate (d, open blue cycle) of LXYL-P12 were determined during the HCDF process. 
