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Appendix

Appendix A-F gather complements and additional examples to Sections 3-5. Our set-

ting and notation are as follows. All the examples are based on a simulated point cloud

{x1, . . . , xN} ⊂ R2 as described in Section 2.1, with x1, . . . , xN being IID points where

N is a fixed positive integer. As in Section 1.1.1, our setting corresponds to applications

typically considered in TDA where the aim is to obtain topological information about a

compact set C ⊂ R2 which is unobserved and where possibly noise appears: For speci-

ficity, we let xi = yi + εi, i = 1, . . . , N, where y1, . . . , yN are IID points with support

C, the noise ε1, . . . , εN are IID and independent of y1, . . . , yN, and εi follows the restric-

tion to the square [−10σ, 10σ]2 of a bivariate zero-mean normal distribution with IID

coordinates and standard deviation σ ≥ 0 (if σ = 0 there is no noise). We denote this

distribution for εi by N2(σ) (the restriction to [−10σ, 10σ]2 is only imposed for techni-

cal reasons and is not of practical importance). We let Ct be the union of closed discs

of radii t and centred at x1, . . . , xN, and we study how the topological features of Ct

changes as t ≥ 0 grows. For this we use the Delaunay-complex mentioned in Remark 1,

Section 1.1.1. Finally, we denote by C((a, b), r) the circle with center (a, b) and radius r.

A Transforming confidence regions for persistence diagrams

used for separating topological signal from noise

As noted in Section 3, there exists several constructions and results on confidence sets for

persistence diagrams when the aim is to separate topological signal from noise, see Fasy

et al. (2014), Chazal et al. (2014), and the references therein. We avoid presenting the tech-

nical description of these constructions and results, which depend on different choices

of complexes (or more precisely so-called filtrations). For specificity, in this appendix we

just consider the Delaunay-complex and discuss the transformation of such a confidence

region into one for an accumulate persistence function.

2



We use the following notation. As in the aforementioned references, consider the per-

sistence diagram PDk for an unobserved compact manifold C ⊂ R2 and obtained as in

Section 1.1.1 by considering the persistence as t ≥ 0 grows of k-dimensional topological

features of the set consisting of all points in R2 within distance t from C. Note that PDk

is considered as being non-random and unknown; of course in our simulation study

presented in Example 5 below we only pretend that PDk is unknown. Let P̂Dk,N be the

random persistence diagram obtained as in Section 1.1.1 from IID points x1, . . . , xN with

support C. LetN = {(b, d) : b ≤ d, l ≤ 2cN} be the set of points at distance
√

2cN of the

diagonal in the persistence diagram. Let S(b, d) = {(x, y) : |x− b| ≤ cN, |y− d| ≤ cN}
be the square with center (b, d), sides parallel to the b- and d-axes, and of side length

2cN. Finally, let α ∈ (0, 1).

Fasy et al. (2014) and Chazal et al. (2014) suggested various ways of constructing a bound

cN > 0 so that an asymptotic conservative confidence region for PDk with respect to the

bottleneck distance W∞: Briefly, for ε > 0, we have W∞(PD(1)
k , PD(2)

k ) ≤ ε if for any

(b(1)i , d(1)i , c(1)i ) ∈ PD(1)
k , the multiplicity c(1)i is equal to the sum of those multiplicities

c(2)j with (b(2)j , d(2)j , c(2)j ) ∈ PD(2)
k and (b(2)j , d(2)j ) ∈ S(b(1)i , d(1)i ). More simply, if all mul-

tiplicities of PD(1)
k and PD(2)

k are one, then W∞(PD(1)
k , PD(2)

k ) ≤ ε whenever PD(2)
k has

exactly one point (b(2)j , d(2)j ) in each square S(b(1)i , d(1)i ), with (b(1)i , d(1)i , c(1)i ) a point of

PD(1)
k . Then the asymptotic conservative 100(1− α)%-confidence region for PDk with

respect to W∞ is given by

lim inf
N→∞

P
(

W∞(PDk, P̂Dk,N) ≤ cN

)
≥ 1− α. (11)

If all multiplicities of PDk and P̂Dk,N are one, this confidence region consists of those

persistence diagrams PDk which have exactly one point (bj, dj) in each square S(bi, di),

with (bi, di, 1) ∈ P̂Dk,N, and have an arbitrary number of birth-death pairs in the set N .

Fasy et al. (2014) considered the birth-death pairs of P̂Dk,N falling in N as noise and the

remaining pairs as representing a significant topological feature of C.

Using (11) an asymptotic conservative 100(1− α)%-confidence region for the APFk cor-

responding to PDk is immediately obtained. This region will be bounded by two func-

tions Âmin
k,N and Âmax

k,N specified by P̂Dk,N and cN. Due to the accumulating nature of APFk,
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the span between the bounds is an increasing function of the meanage. When using the

Delaunay-complex, Chazal et al. (2014) showed that the span decreases as N increases;

this is illustrated in Example 5 below.

Example 5 (simulation study). Let C = C((−1.5, 0), 1) ∪ C((1.5, 0), 0.8) and suppose

each point xi is uniformly distributed on C. Figure 8 shows C and an example of a sim-

ulated point cloud with N = 300 points. We use the bootstrap method implemented in

the R-package TDA and presented in Chazal et al. (2014) to compute the 95%-confidence

region for PD1 when N = 300, see the top-left panel of Figure 9, where the two squares

above the diagonal correspond to the two loops in C and the other squares correspond

to topological noise. Thereby 95%-confidence regions for RRPD1 (top-right panel) and

APF1 (bottom-left panel) are obtained. The confidence region for APF1 decreases as N

increases as demonstrated in the bottom panels where N is increased from 300 to 500. As

noticed in Section 1.3.1, we must be careful when using results based on the bottleneck

metric, because small values of the bottleneck metric does not correspond to closeness

of the two corresponding APFs: Although close persistence diagram with respect to the

bottleneck distance imply that the two corresponding APFs are close with respect to the

Lq-norm (1 ≤ q ≤ ∞), the converse is not true. Hence, it is possible that an APF is in the

confidence region plotted in Figure 9 but that the corresponding persistence diagram is

very different from the truth.

Figure 8: The set C in Example 5 (left panel) and a simulated point cloud of N = 300

independent and uniformly distributed points on C (right panel).
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Figure 9: 95%-confidence regions obtained by the bootstrap method for PD1 (top-left

panel) and its corresponding RRPD1 (top-right panel) when C and x1, . . . , x300 are as

in Figure 8. The bottom-left panel shows the corresponding 95%-confidence region for

APF1. The bottom-right panel shows the 95%-confidence region for APF1 when a larger

point cloud with 300 points is used.

B Additional example related to Section 4.1 "Functional

boxplot"

The functional boxplot described in Section 4.1 can be used as an exploratory tool for the

curves given by a sample of APFks. It provides a representation of the most central curve

and the variation around this. It can also be used for outliers detection as illustrated in

the following example.

Example 6 (simulation study). We consider a sample of 65 independent APFks, where

the joint distribution of the first 50 APFks is exchangeable, whereas the last 15 play the

role of outliers. We suppose each APFk corresponds to a point process of 100 IID points,
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P1 −  Circle r=1

P2 −  Gaussian mixture 

P3 −  Two circles 

P4 −  Circle r=0.7

Figure 10: Simulated realizations of the four types of point processes, each consisting of

100 IID points with distribution either P1 (black dots), P2 (blue crosses), P3 (red trian-

gles), or P4 (rotated green crosses).

where each point xi follows one of the following distributions P1, . . . , P4.

• P1 (unit circle): xi is a uniform point on C((0, 0), 1) perturbed by N2 (0.1)-noise.

• P2 (Gaussian mixture): Let yi follow N2 (0.2), then xi = yi with probability 0.5, and

xi = yi + (1.5, 0.5) otherwise.

• P3 (two circles): xi is a uniform point on C((−1,−1), 1) ∪ C((1, 1), 0.5) perturbed

by N2 ((0, 0), 0.1)-noise.

• P4 (circle of radius 0.7): xi is a uniform point on C((0, 0), 0.7) perturbed by N2 (0.1)-

noise.

We let the first 50 point processes be obtained from P1 (the distribution for non-outliers),

the next 5 from P2, the following 5 from P3, and the final 5 from P4. Figure 10 shows a

simulated realization of each of the four types of point processes.

Figure 11 shows the functional boxplots when considering APF0 (left panel) and APF1

(right panel). The curves detected as outliers and corresponding to the distributions

P2, P3, and P4 are plotted in red, blue, and green, respectively. In both panels the outliers

detected by the 1.5 criterion agree with the true outliers.
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In the left panel, each curve has an accumulation of small jumps between m = 0 and

m ≈ 0.1, corresponding to the moments where the points associated to each circle are

connected by the growing discs in the sequence {Ct}t≥0. The curves corresponding to

realizations of P3 have a jump at m ≈ 0.38 which corresponds to the moment where

the points associated to the two circles used when defining P3 are connected by the

growing discs in the sequence {Ct}t≥0. The points following the distribution P4 are

generally closer to each other than the ones following the distribution P1 as the radius

of the underlying circle is smaller. This corresponds to more but smaller jumps in APF0

for small meanages, and hence the curves of APF0 are lower when they correspond to

realizations of P1 than to realizations of P4; and as expected, for large meanages, the

curves of APF0 are larger when they correspond to realizations of P1 than to realizations

of P4. Note that if we redefine P4 so that the N2 (0.1)-noise is replaced by N2 (0.07)-noise,

then the curves would be the same up to rescaling.

In the right panel, we observe clear jumps in all APF1s obtained from P1, P3, and P4.

These jumps correspond to the first time that the loops of the circles in P1, P3, and P4 are

covered by the union of growing discs in the sequence {Ct}t≥0. Once again, if we have

used N2 (0.07)-noise in place of N2 (0.1)-noise in the definition of P4, the curves would

be the same up to rescaling.

If we repeat everything but with the distribution P4 redefined so that C((0, 0), 0.7) is

replaced by C((0, 0), 0.8), then the support of P4 is closer to that of P1 and it becomes

harder in the case of APF0 to detect the outliers with distribution P4 (we omit the corre-

sponding plot we have produced); thus further simulations for determining a stronger

criterion would be needed.
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Figure 11: Functional boxplots of 65 APFs based on the topological features of dimen-

sion 0 (left panel) and 1 (right panel). In each panel, 50, 5, 5, and 5 APFs are obtained

from the Delaunay-complex of 100 IID points from the distribution P1, P2, P3, and P4,

respectively. The APFs detected as outliers are plotted in red, blue, and green in the case

of P2, P3, and P4, respectively.

C Additional example related to Section 4.2 "Confidence

region for the mean function"

This appendix provides yet an example to illustrate the bootstrap method in Section 4.2

for obtaining a confidence region for the mean function of a sample of IID APFks.

Example 7 (simulation study). Consider 50 IID copies of a point process consisting

of 100 independent and uniformly distributed points on the union of three circles with

radius 0.25 and centred at (−1,−1), (0, 1), and (1,−1), respectively (these circles were

also considered in the example of Section 1.1.1). A simulated realization of the point

process is shown in the left panel of Figure 12, and the next two panels show simulated

confidence regions for APF0 and APF1, respectively, when the bootstrap procedure with

B = 1000 is used. In the middle panel, between m = 0 and m = 0.2, there is an accu-

mulation of small jumps corresponding to the moment when each circle is covered by

the union of growing discs from the sequence {Ct}t≥0; we interpret these small jumps

as topological noise. The jump at m ≈ 0.25 corresponds to the moment when the circles
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Figure 12: A simulation of 100 independent and uniformly distributed points on the

union of three circles (dashed lines) with the same radius r = 0.5 and centred at

(−1,−1), (0, 1), and (1,−1) (left panel). The 95%-confidence regions for the mean APF0

(middle panel) and the mean APF1 (right panel) are based on 50 IID simulations.

centred at (−1,−1) and (1,−1) are connected by the growing discs, and the jump at

m ≈ 0.3 to when all three circles are connected by the growing discs. In the right panel,

at m ≈ 0.3 there is an accumulation of small jumps corresponding to the moment when

the three circles are connected by the growing discs and they form a loop at m = 0.25

in Figure 1. The disappearance of this loop at m = 0.69 in Figure 1 corresponds to the

jump at m ≈ 0.7 in Figure 12.

D Additional example to Section 5 "Two samples of accu-

mulated persistence functions"

Section 5 considered two samples of independent RRPDks D1, . . . , Dr1 and E1, . . . , Er2 ,

where each Di (i = 1, . . . , r1) has distribution PD and each Ej has distribution PE (j =

1, . . . , r2). Then we studied a bootstrap two-sample test to asses the null hypothesis H0:

PD = PE, e.g. in connection to the brain artery trees. An additional example showing

the performance of the test is presented below.

9



Circle r=1

Circle r=0.95

Figure 13: A simulation of 100 independent and uniformly distributed points on the

circle centred at (0, 0) with radius 1 and perturbed by N2 ((0, 0), 0.2)-noise (red dots),

together with 100 independent and uniformly distributed points on the circle centred at

(0, 0) with radius 0.95 and perturbed by N2 ((0, 0), 0.2)-noise (blue crosses).

Example 8 (simulation study). Let PD be the distribution of a RRPDk obtained from

100 independent and uniformly distributed points on C((0, 0), 1) perturbed by N2 (0.2)-

noise, and define PE in a similar way but with a circle of radius 0.95. A simulated

realization of each point process is shown in Figure 13; it seems difficult to recognize

that the underlying circles are different. Let us consider the two-sample test statistics

(6) and (10) with I = [0, 3], r1 = r2 = 50, and α = 0.05. Over 500 simulations of the

two samples of RRPDk we obtain the following percentage of rejection: For Mr1,r2 , 5.2%

if k = 0, and 24.2% if k = 1. For KSr1,r2 much better results are observed, namely 73.8%

if k = 0, and 93.8% if k = 1, where this high percentage is mainly caused by the largest

lifetime of a loop.
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E Further methods for two or more samples of accumu-

lated persistence functions

E.1 Clustering

Suppose A1, . . . , Ar are APFks which we want to label into K < r groups by using

a method of clustering. Such methods are studied many places in the literature for

functional data, see the survey in Jacques and Preda (2014). In particular, Chazal et al.

(2009), Chen et al. (2015), and Robins and Turner (2016) consider clustering in connection

to RRPDks. Whereas the RRPDks are two-dimensional functions, it becomes easy to use

clustering for the one-dimensional APFks as illustrated in Example 9 below.

For simplicity we just consider the standard technique known as the K-means clustering

algorithm (Hartigan and Wong (1979)). For more complicated applications than consid-

ered in Example 9 the EM-algorithm may be needed for the K-means clustering algo-

rithm. As noticed by a referee, to avoid the use of the EM-algorithm we can modify (9)

or (10) and thereby construct a distance/similarity matrix for different APFs which is

used to perform hierarchical clustering. However, for Example 9 the results using hier-

archical clustering (omitted here) were not better than with the K-means algorithm.

Assume that A1, . . . , Ar are pairwise different and square-integrable functions on [0, T],

where T is a user-specified parameter. For example, if RRPDk ∈ Dk,T,nmax (see Sec-

tion 4.2), then APFk ∈ L2([0, T]). The K-means clustering algorithm works as follows.

• Chose uniformly at random a subset of K functions from {A1, . . . , Ar}; call these

functions centres and label them by 1, . . . , K.

• Assign each non-selected APFk the label i if it is closer to the centre of label i than

to any other centre with respect to the L2-distance on L2([0, T]).

• In each group, reassign the centre by the mean curve of the group (this may not be
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an APFk of the sample).

• Iterate these steps until the assignment of centres does not change.

The algorithm is known to be convergent, however, it may have several drawbacks as

discussed in Hartigan and Wong (1979) and Bottou and Bengio (1995).

Example 9 (simulation study). Consider K = 3 groups, each consisting of 50 APF0s

and associated to point processes consisting of 100 IID points, where each point xi fol-

lows one of the following distributions P1, P2, and P3 for groups 1, 2, and 3, respectively.

• P1 (unit circle): xi is a uniform point on C((0, 0), 1) perturbed by N2 (0.1)-noise.

• P2 (two circles): xi is a uniform point on C((−1,−1), 0.5) ∪ C((1, 1), 0.5) perturbed

by N2 (0.1)-noise.

• P3 (circle of radius 0.8): xi is a uniform point on C((0, 0), 0.8) perturbed by N2 (0.1)-

noise.

We started by simulating a realization of each of the 3× 50 = 150 point processes. The

left panel of Figure 14 shows one realization of each type of point process; it seems

difficult to distinguish the underlying circles for groups 1 and 3, but the three APF0s

associated to these three point clouds are in fact assigned to their right groups. The

right panel of Figure 14 shows the result of the K-means clustering algorithm. Here we

have used the R-function “kmeans” for the K-means algorithm and it took only a few

seconds when evaluating each Ai(m) at 2500 equidistant values of m between 0 and

T = 0.5. As expected we see more overlap between the curves of the APF0s assigned to

groups 1 and 3.

We next repeated 500 times the simulation of the 150 point processes. A clear distinction

between the groups was obtained by the K-means algorithm applied for connected com-

ponents: The percentage of wrongly assigned APF0s among the 500× 3× 50 = 75000
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APF0s had an average of 4.5% and a standard deviation of 1.6%. The assignment error

was in fact mostly caused by incorrect labelling of APF0s associated to P1 or P3. This is

to be expected as the underlying circles used in the definitions of P1 and P3 are rather

close, whereas the underlying set in the definition of P2 is different with two connected

components as represented by the jump at m ≈ 0.4 in the middle panel of Figure 14.

Even better results are obtained when considering loops instead of connected compo-

nents: The percentage of wrongly assigned APF1s among the 75000 APF1s had an aver-

age of 1.6% and a standard deviation of 1.0%. This was mainly due to the sets underly-

ing P1, P2, and P3 which have distinctive loops that results in clear distinct jumps in the

APF1s as seen in the right panel of Figure 14.
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Figure 14: Left panel: Simulated example of the three point processes, each consisting of

100 IID points drawn from the distribution P1 (black dots), P2 (red triangles), or P3 (blue

crosses). Middle panel: The 150 APF0s obtained from the simulation of the 150 point

processes associated to P1, P2, or P3, where the colouring in black, red, or blue specifies

whether the K-means algorithm assigns an APF0 to the group associated to P1, P2, or P3.

Right panel: As the middle panel but for the 150 APF1s.

E.2 Supervised classification

Suppose we want to assign an APFk to a training set of K different groups G1, . . . ,GK,

where Gi is a sample of ri independent APFks Ai
1, . . . , Ai

ri
. For this purpose supervised

classification methods for functional data may be adapted.

13



We just consider a particular method by López-Pintado et al. (2010): Suppose α ∈ [0, 1]

and we believe that at least 100(1− α)% of the APFks in each group are IID, whereas

the remaining APFks in each group follow a different distribution and are considered as

outliers (see Section 4.1). For a user-specified parameter T > 0 and i = 1, . . . , K, define

the 100α%-trimmed mean A α
i with respect to Gi as the mean function on [0, T] of the

100(1− α)% APFks in Gi with the largest MBDri , see (5). Assuming ∪K
i=1Gi ⊂ L2([0, T]),

an APFk A ∈ L2([0, T]) is assigned to Gi if

i = argmin
j∈{1,...,K}

‖A α
j − A‖, (12)

where ‖ · ‖ denotes the L2-distance. Here, the trimmed mean is used for robustness and

allows a control over the curves we may like to omit because of outliers, but e.g. the

median could have been used instead.

Example 10 (simulation study). Consider the following distributions P1, . . . , P4 for a

point xi.

• P1 (unit circle): xi is a uniform point on C((0, 0), 1) which is perturbed by N2 (0.1)-

noise.

• P′1 (two circles, radii 1 and 0.5): xi is a uniform point on C((0, 0), 1)∪C((1.5, 1.5), 0.5)

and perturbed by N2 (0.1)-noise.

• P2 (circle of radius 0.8): xi is a uniform point on C((0, 0), 0.8) which is perturbed

by N2 (0.1)-noise.

• P′2 (two circles, radii 0.8 and 0.5): xi is a uniform point on C((0, 0), 0.8)∪C((1.5, 1.5), 0.5)

and perturbed by N2 (0.1)-noise.

For k = 0, 1 we consider the following simulation study: K = 2 and r1 = r2 = 50; G1

consists of 45 APFks associated to simulations of point processes consisting of 100 IID

points with distribution P1 (the non-outliers) and 5 APFks obtained in the same way but

from P′1 (the outliers); G2 is specified in the same way as G1 but replacing P1 and P′1 with
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Figure 15: Top panels: The 20%-trimmed mean functions with respect to G1 and G2

when considering APF0s (left) and APF1s (right) obtained from the Delaunay-complex

and based on 100 IID points following the distribution P1 (solid curve) or P2 (dotted

curve). Bottom panels: Examples of point clouds with associated APF0s assigned to the

wrong group, together with the circles of radius 0.8 and 1.

P2 and P′2, respectively; and we have correctly specified that α = 0.2. Then we simulated

100 APFks associated to P1 and 100 APFks associated to P2, i.e. they are all non-outliers.

Finally, we used (12) to assign each of these 200 APFks to either G1 or G2.

The top panels in Figure 15 show the 20%-trimmed means A 0.2
1 and A 0.2

2 when k = 0

(left) and k = 1 (right). The difference between the 20%-trimmed means is clearest when

k = 1 and so we expect that the assignment error is lower in that case. In fact wrong

assignments happened mainly when the support of P1 or P2 was not well covered by

the point cloud as illustrated in the bottom panels.

15



Repeating this simulation study 500 times, the percentage of APF0s wrongly assigned

among the 500 repetitions had a mean of 6.7% and a standard deviation of 1.7%, whereas

for the APF1s the mean was 0.24% and the standard deviation was 0.43%. To investigate

how the results depend on the radius of the smallest circle, we repeated everything

but with radius 0.9 in place of 0.8 when defining the distributions P2 and P′2. Then for

the APF0s, the proportion of wrong assignments had a mean of 23.2% and a standard

deviation of 2.9%, and for the APF1s, a mean of 5.7% and a standard deviation of 1.9%.

Similar to Example 9, the error was lowest when k = 1 and this is due to the largest

lifetime of a loop.

F Proof of Theorem 4.1

The proof of Theorem 4.1 follows along similar lines as in Chazal et al. (2013) as soon as

we have verified Lemma F.2 below. Note that the proof of Lemma F.2 is not covered by

the approach in Chazal et al. (2013).

We first need to recall the following definition, where BT denotes the topological space

of bounded real valued Borel functions defined on [0, T] and its topology is induced by

the uniform norm.

Definition F.1. A sequence {Xr}r=1,2,... of random elements in BT converges in distribution

to a random element X in BT if for any bounded continuous function f : BT 7→ R, E f (Xr)

converges to E f (X) as r → ∞.

Lemma F.2. Let the situation be as in Section 4.2. As r → ∞,
√

r
(

Ar − µ
)

converges in dis-

tribution towards a zero-mean Gaussian process on [0, T] with covariance function c(m, m′) =

Cov (A1(m), A1(m′)), m, m′ ∈ [0, T].

Proof. We need some notation and to recall some concepts of empirical process theory.

For D ∈ Dk,nmax
T , denote AD the APFk of D. Let F = { fm : 0 ≤ m ≤ T} be the class of
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functions fm : Dk,nmax
T 7→ [0, ∞) given by fm(D) = AD(m). To see the connection with

empirical process theory, we consider

Gr( fm) =
√

r

(
1
r

r

∑
i=1

fm(Di)− µ(m)

)
as an empirical process. Denote ‖ · ‖ the L2 norm on F with respect to the distribution

of D1, i.e. ‖ fm(·)‖2 = E
{

AD1(m)2}. For u, v ∈ F , the bracket [u, v] is the set of all

functions f ∈ F with u ≤ f ≤ v. For any ε > 0, N[](ε,F , ‖ · ‖) is the smallest integer

J ≥ 1 such that F ⊂ ∪J
j=1[uj, vj] for some functions u1, . . . , uJ and v1, . . . , vJ in F with

‖vj − uj‖ ≤ ε for j = 1, . . . , J. We show below that
∫ 1

0

√
log
(

N[] (ε,F , ‖ · ‖)
)

dε is

finite. Then, by Theorem 19.5 in van der Vaart (2000), F is a so-called Donsker class

which implies the convergence in distribution of Gr( fm) to a Gaussian process as in the

statement of Lemma F.2.

For any sequence −∞ = t1 < . . . < tJ = ∞ with J ≥ 2, for j = 1, . . . , J − 1, and

for D = {(m1, l1, c1), . . . , (mn, ln, cn)} ∈ Dk,nmax
T , let uj(D) = ∑n

i=1 cili1(mi ≤ tj) and

vj(D) = ∑n
i=1 cili1(mi < tj+1) (if n = 0, then D is empty and we set uj(D) = vj(D) = 0).

Then, for any m ∈ [0, T], there exists a j = j(m) such that uj(D) ≤ fm(D) ≤ vj(D), i.e.

fm(D) ∈ [uj, vj]. Consequently, F ⊂ ∪J−1
j=1 [uj, vj].

We prove now that for any ε ∈ (0, 1), the sequence {tj}1≤j≤J can be chosen such that for

j = 1, . . . , J − 1, we have ‖vj − uj‖ ≤ ε. Write D1 = {(M1, L1, C1), . . . , (MN, LN, CN)},
where N is random and should not to be confused with N in Sections 2.1 and A (if

N = 0, then D1 is empty). Let n ∈ {1, . . . , nmax} and conditioned on N = n, let I be

uniformly selected from {1, . . . , n}. Then

E
{(

vj (D1)− uj (D1)
)2 1 (N = n)

}
= n2E

{
1 (N = n)

1
n

n

∑
i=1

CiLi1
(

Mi ∈
(
tj, tj+1

))}2

≤ T2n4
maxE

{
1 (N = n) 1

(
MI ∈

(
tj, tj+1

))}2

≤ T2n4
maxP

(
MI ∈

(
tj, tj+1

)
|N = n

)
,

as n ≤ nmax, Ci ≤ nmax, and Li ≤ T. Further,

E
{(

vj (D1)− uj (D1)
)2 1 (N = 0)

}
= 0.

17



Hence

E
{

vj (D1)− uj (D1)
}2

=
nmax

∑
n=0

E
{(

vj (D1)− uj (D1)
)2 1 (N = n)

}
≤ T2n5

max max
n=1,...,nmax

P
(

MI ∈
(
tj, tj+1

)
|N = n

)
. (13)

Moreover, by Lemma F.3 below, there exists a finite sequence {tn,j}1≤j≤Jn such that

P(MI ∈ (tn,j, tn,j+1)|N = n) ≤ ε2/
(
T2n5

max
)

and Jn ≤ 2+ T2n5
max/ε2. Thus, by choosing

{tj}1≤j≤J =
⋃

n=1,...,nmax

{tn,j}1≤j≤Jn ,

we have J ≤ 2nmax + T2n6
max/ε2 and

max
n=1,...,nmax

P
(

MI ∈
(
tj, tj+1

)
|N = n

)
≤ ε2

T2n5
max

.

Hence by (13), ‖vj− uj‖ ≤ ε, and so by definition, N[] (ε,F , ‖ · ‖) ≤ 2nmax + T2n6
max/ε2.

Therefore∫ 1

0

√
log
(

N[] (ε,F , ‖ · ‖)
)

dε ≤
∫ 1

0

√
log (2nmax + T2n6

max/ε2) dε < ∞.

This completes the proof.

Proof of Theorem 4.1. By the Donsker property established in the proof of Lemma F.2

and Theorem 2.4 in Gine and Zinn (1990),
√

r(Ar− A∗r ) and
√

r
(

Ar − µ
)

converge in dis-

tribution to the same process as r → ∞, so the quantile of supm∈[0,T]
√

r
∣∣Ar(m)− A∗r (m)

∣∣
converges to the quantile of supm∈[0,T]

√
r
∣∣Ar(m)− µ(m)

∣∣. Therefore, q̂B
α provides the

bounds for the asymptotic 100(1− α)%-confidence region stated in Theorem 4.1.

Lemma F.3. Let X be a positive random variable. For any ε ∈ (0, 1), there exists a finite

sequence −∞ = t1 < . . . < tJ = ∞ such that J ≤ 2 + 1/ε and for j = 1, . . . , J − 1,

P
(
X ∈ (tj, tj+1)

)
≤ ε.

Proof. Denote by F the cumulative distribution function of X, by F(t−) the left-sided

limit of F at t ∈ R, and by F−1 the generalised inverse of F, i.e. F−1(y) = inf{x ∈
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R : F(x) ≥ y} for y ∈ R. We verify the lemma with J = 2 + b1/εc, tJ = ∞, and

tj = F−1((j− 1)ε) for j = 1, . . . , J − 1. Then, for j = 1, . . . , J − 2,

P
(
X ∈

(
tj, tj+1

))
= F

(
F−1(jε)−

)
− F

(
F−1 ((j− 1) ε)

)
≤ jε− (j− 1) ε = ε.

Finally,

P
(
X ∈

(
tJ−1, tJ

))
= P(X > F−1((J − 2)ε)) = 1− F

(
F−1((J − 2)ε)

)
≤ 1− b1/εcε < ε.
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