
Appendix A: Model Development  

The following sections detail the development of the model equations presented in the article, 

and provides a dimensional analysis. Source code can be found at: 

https://github.com/margaretgarcia/PerCapWaterUse. For an interactive web version of this model 

see: https://mgarcia.shinyapps.io/demandmodel/. 

 

Price 

Per Griffin (2006, p31) the price elasticity of demand, ε, is given by the following equation, 

where D is the per capita water use and R is the unit price: 

𝜀 =
∆𝐷

𝐷⁄

∆𝑅
𝑅⁄

   (9) 

 

Rearranging this equation, the change in demand is given by the following equation: 

∆𝐷 = 𝜀𝐷
∆𝑅

𝑅
  (10) 

 

Adding subscript t to denote time and subscript a to denote the average per capita water use (i.e. 

no seasonal variation), the equation becomes: 

𝐷𝑎,𝑡+1 − 𝐷𝑎,𝑡 = 𝜀𝐷𝑎,𝑡
(𝑅𝑡−𝑅𝑡−1)

𝑅𝑡
  (11) 

 

Rearranging this equation, the per capita water use at time t+1 is given by the following 

equation: 

𝐷𝑎,𝑡+1 = 𝜀𝐷𝑎,𝑡
(𝑅𝑡−𝑅𝑡−1)

𝑅𝑡
+ 𝐷𝑎,𝑡   (12) 

In other words: 

https://github.com/margaretgarcia/PerCapWaterUse
https://mgarcia.shinyapps.io/demandmodel/


 

𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡 + 1 = (𝑝𝑟𝑖𝑐𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦) ∗ (𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡)
(𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 𝑎𝑡 𝑡−𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 𝑎𝑡 𝑡−1)

𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 𝑎𝑡 𝑡
 

(13) 

To confirm the consistency of the equation the following dimensional analysis is presented: 

[𝑙𝑝𝑐𝑝𝑑] = [−][𝑙𝑝𝑐𝑝𝑑]
[$−$]

[$]
  (14) 

 

Code Change and Population Growth 

The mass balance equation for a conserved solute in a liquid is used as a starting point where Ct 

is concentration, Vt is volume and Cin is inflow concentration, all at time t: 

𝐶𝑡+1𝑉𝑡+1 = 𝐶𝑡𝑉𝑡 + 𝐶𝑖𝑛(𝑉𝑡+1 − 𝑉𝑡)  (15) 

Changes in per capita water demand can be computed analogously. Population (Pt) is analogous 

to volume, per capita water use (Dt) to concentration and average water use for code compliance 

(Dcode) to inflow concentration.  

𝐷𝑡+1𝑃𝑡+1 = 𝐷𝑡𝑃𝑡 + 𝐷𝑐𝑜𝑑𝑒(𝑃𝑡+1 − 𝑃𝑡)  (16) 

Rearranging the equation becomes: 

𝐷𝑡+1 =
𝐷𝑡𝑃𝑡+𝐷𝑐𝑜𝑑𝑒(𝑃𝑡+1−𝑃𝑡)

𝑃𝑡+1
  (17) 

To make the equation consistent with the form of the price equation, the equation is rearranged 

to add the per capita water use at time t term, and subscribe a is added, yielding the final form of 

the equation: 

𝐷𝑎,𝑡+1 = 𝐷𝑎,𝑡 [
𝐷𝑎,𝑡𝑃𝑡+𝐷𝑐𝑜𝑑𝑒(𝑃𝑡+1−𝑃𝑡)

𝐷𝑎,𝑡𝑃𝑡+1
− 1] + 𝐷𝑎,𝑡  (18) 



 

In other words: 

𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡 + 1 = 𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡 

{
[𝑝𝑒𝑟 𝑐𝑎𝑝.𝑢𝑠𝑒 𝑎𝑡 𝑡∗𝑝𝑜𝑝.𝑎𝑡 𝑡−𝑐𝑜𝑑𝑒 𝑝𝑒𝑟 𝑐𝑎𝑝.𝑢𝑠𝑒∗(𝑝𝑜𝑝.𝑎𝑡 𝑡+1−𝑝𝑜𝑝.𝑎𝑡 𝑡]

𝑝𝑒𝑟 𝑐𝑎𝑝.𝑢𝑠𝑒 𝑎𝑡 𝑡∗𝑝𝑜𝑝.𝑎𝑡 𝑡+1
− 1} +  (𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡) 

 (19) 

To confirm the consistency of the equation the following dimensional analysis is presented: 

[𝑙𝑝𝑐𝑝𝑑] = [𝑙𝑝𝑐𝑝𝑑] {
[𝑙𝑝𝑐𝑝𝑑∗𝑝𝑒𝑜𝑝𝑙𝑒−𝑙𝑝𝑐𝑝𝑑∗𝑝𝑒𝑜𝑝𝑙𝑒]

[𝑙𝑝𝑐𝑝𝑑∗𝑝𝑒𝑜𝑝𝑙𝑒]
− [−]} +  𝑙𝑝𝑐𝑝𝑑  (20) 

 

Water Stress Response 

 

As detailed in the text, the water stress response equation builds upon the theoretical model 

introduced by Garcia et al. (2016) and recently applied to model San Francisco Bay area water 

use by Gonzales and Ajami (2017): 

𝑑𝐷

𝑑𝑡
= −𝐷𝑡𝑀𝑡𝛼 (1 −

𝐷𝑚𝑖𝑛

𝐷𝑡
)  (21) 

 

Rearranging this equation to be consistent with the forms of the price and code change equations, 

and adding subscript a, yields: 

𝐷𝑎,𝑡+1 = 𝐷𝑎,𝑡𝑀𝑡𝛼 (
𝐷𝑚𝑖𝑛

𝐷𝑎,𝑡
− 1) + 𝐷𝑎,𝑡  (22) 

 

In other words: 

𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡 + 1 = (𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡) ∗ (𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒) ∗ (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

[
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑒𝑟 𝑐𝑎𝑝.𝑢𝑠𝑒

𝑝𝑒𝑟 𝑐𝑎𝑝.𝑢𝑠𝑒 𝑎𝑡 𝑡
− 1] + 𝑝𝑒𝑟 𝑐𝑎𝑝. 𝑢𝑠𝑒 𝑎𝑡 𝑡  (23) 



 

To confirm the consistency of the equation the following dimensional analysis is presented: 

[𝑙𝑝𝑐𝑝𝑑] = [𝑙𝑝𝑐𝑝𝑑][−][−] {
[𝑙𝑝𝑐𝑝𝑑]

[𝑙𝑝𝑐𝑝𝑑]
− [−]} +  𝑙𝑝𝑐𝑝𝑑  (24) 

 

Seasonal Water Use 

The equations presented above model average annual per capita water use change. To utilize 

these equations at a monthly or smaller time-step the seasonal pattern of water use must be either 

removed from the data or added to the model. Here we choose to model the seasonal patterns so 

that the impact of temperature trends could be explored in the future. 

 

Following Nash and Barsi (1982) analogously, we relate deviations in daily per capita water use 

to monthly variations in temperature. First, we compute monthly deviations in water use, relative 

to the annual average: 

𝑀𝐷𝑡 = 𝐷𝑜𝑏𝑠𝑡 − 
1

12
∑ 𝐷𝑜𝑏𝑠𝑡−𝑖

11
𝑖=0   (26) 

We then perform a linear regression with the monthly deviations, MD, as the dependent variable 

and the product of the average annual per capita use and observed monthly average temperature 

as the independent variable. The product of average annual per capita use and observed monthly 

average temperature is used because the amplitude of the seasonal cycle has decreased as 

consumption has declined due to the reduction in outdoor water usage. (In other words, summer 

water use has decline more than winter water use and this alters the strength of the seasonal 

signal.) The regression results in the following equation where T is observed monthly average 

temperature, β1 is the regression coefficient and β0 is the regression intercept: 

𝑀𝐷𝑡 = 𝛽1𝑇𝑡 ∗
1

12
∑ 𝐷𝑎,𝑡−𝑖

11
𝑖=0  + 𝛽0  (27) 



 

Replacing MD with Ds,t – Da,t and rearranging the equation 

𝐷𝑠,𝑡 = 𝐷𝑎,𝑡 + 𝛽1𝑇𝑡
1

12
∑ 𝐷𝑎,𝑡

𝑡
𝑡−11 + 𝛽0   (28) 

 


