Appendices

A  Proof of Theorem 2.1

First, a useful lemma is given.

Lemma A.1. Denote F, = { [, (f(x) =X cu fo(@)) dz_y|f € N, f, € Fo}. Suppose
d € Q x Q — Ris asymmetric po&twe—deﬁmte kernel on Q = [0,1]? and ® is a product

kernel. Then,
fu € «Fu - {fv +gu‘gu €N<1>u7U C uafv € Jrv}a

where ®, =[], ¢;-

Proof. Initially consider a finite element. The proof proceeds by induction. For u = (), we

have that if f € N, then

Jo= /f dm-/Zﬁy :Uydx—Zﬁy/ (z,y)dz .= a € R.

This shows fy € Fy = {f(-) = ala € R}.
Let f, € F, for any |u| < k. Note that [, dz_, =1 for any u, since Q = [0,1]%. Thus,

for |u'| =k +1,
fu/(x):/(; < va >d$ ’_/ f dx /_va

—Zﬂy/ D, y)de_y — 3 i)
yeX —u’ vCu/

->a [Tt ude — 3 o)
yeX —u! j=1 vCu’

=> 5,11 qu(xj,yj)/ 1T it v)de—w = fule)
yeX jeu’ —u! jetu’ vCu’

= Zgy H bi(Ti, yi) — Z fo(@)
yeX jeu’ vCu!



where (3, = f, fou/ [Ligw ¢i(x5,y5)dz .. Hence, since - ¢ Bybuw (-, ys) € N, and f, €
F, for any |v| < k, we have fu € Fu = {f = fo + guwlgw € No,,v C W, f, € F,}.
Therefore, by induction, f, € F, = {fo + gulgu € Na,,v C u, f, € F,} is true for any
uCD.

Since any element of an RKHS is bounded (Aronszajn, 1950), we may use the dominated
convergence theorem (Bartle, 1995) to interchange the integral and the limit of the finite

sums to extend to an arbitrary element. O]

By Lemma A.1, we have f(x) = 3 cp fu(®), where fu(z) € Fu = {fo + gulgu €
Na,,v Cu, f, € F,}. Thus, by the fact that ¢\ + ¢& € Ny, for g5, ¢{? € N, f(z) can
be represented as f(z) = ,cp fu(z), where f, € Na,.

B Algorithm for Estimation

1. Let A denote the set of active groups and C the set of candidate groups. Start with
A=0and C = {(u,r)|u ={1},...,{d},r = 1}. Set an initial penalty Ay.x and a

small increment A.

2. Set up an overlapping group lasso algorithm which minimizes the penalized likelihood

function
n Ny (s)
531 PR 3l o TER) NP I EAE) 3y 3p B2
i=1 (u,r)eC k=1 (u,r)eC vCu s<r k=1

Denote the input-output function as /3y = grplasso(\,C, BHA). The inputs include
a penalty value A\, the candidate set C and the estimated coefficient with penalty value
A+ A, and the output B,\ is the corresponding estimated coefficient by the algorithm.
Start with A = A\, and BAHA =0.

3. Do 3y = grplasso(\,C, B,\+A) and obtain the set of active groups A’ C C based on
Br. Set A=A—A. If A\ A0, then A<+ A" and C + CUC’, where C' contains the

new candidate groups necessary to satisfy strong effects heredity given the updated A.

4. Repeat step 3 until some convergence criterion is met.



Confidence Interval Algorithm

. Let ¢* denote the basis function evaluations at a particular predictive location
z*. Extend ¢* to a basis of R and denote it as A = (¢*,c2,...,¢,). Compute
(Zi,Q)T = Ay, fori=1,...,n and (ﬁl,ﬁ(Tfl)) = AT B, where B3 is the estimated

coefficient with penalty A.

. Compute the estimated decorrelated score function

. 1 oA s
S(0,79-1)) = Y > (i — i yQi)(Zi — 07 Q)

where

+ A |wlly,
2

1N - - .
0= in ||— i(Z; —w" Qs
W = arg min nZQ( w' Q)

and 62 is a consistent estimator of 2. For example, 0? can be estimated by

0 = =30 (i — BTp;)%, where s the the number of non-zero elements in fy.

Another estimator is the cross-validation based variance estimator. Define the K

cross-validation folds as {Dy, ..., Dk} and compute
1K
A2 C_ (RERNT, N2
S SR s
k=1 iEDk

where Bf\_k) is the overlapping group lasso estimate at A over the data after the k"
fold is omitted. This estimator has been used for the variance estimation in lasso

regression problems. See Fan et al. (2012).

. Compute the interval
[Ca/Q/b7 Cl—a/Q/b]a

Whereca/z——SOU —i-\/»CI) (a/2), cla/g——SOn(l —i—[@ —«a/2),
b= Mz S, Zi(Z; — wTQZ) By some algebraic manipulation, one can show that this

interval is same as the one in Corollary 5.1.



D Confidence Interval Algorithm Modification for Large n

1. In Algorithm C, replace Q; by Q.; and p by p., where the nuisance ¢;;, 7 = 1,...,p,

only contain basis functions in the candidate groups at the selected A, say C,.
2. Replace w by »
4. = (z 00T+ ) (z @z) on
i=1 i=1
with a small positive 1, where I,,_; is a (p. — 1) X (ps — 1) identity matrix.
3. For the deterministic case (4),

(i) Define K cross-validation folds as { D, ..., Dk } and partition the original samples

{z;,y;}, via the k folds.

(ii) Regard 62 in Algorithm C as an unknown parameter. Let 4% (z*,6?) and
[(=F) (z*,62) be the upper and lower limits at a predictive location z* by Algorithm

C over the data after the k' fold is omitted, respectively.

(iii) Replace 62 by

62 = arg min ,
&2

(% Z Z ﬂ{yi € [Z(m(%,ﬁ),ﬁ“(@,&ﬂ]}) _ (1 _ a)

k=1 i€Dy,

where 1{A} is an indicator function of the set A.

E Proof of Theorem 4.1
E.1 Notation and Reformulation

First, we introduce some additional notation. For a matrix M = [Mj], let | M ||max =
max; i [Mjxl, |[Mlly = 32, [Mjel, and [[M]),, = max; 3, [Mjx|. For v = (vi,...,v,)" € RP,
and 1 < ¢ < oo, define |jv]|, = (020, [vi|9)Y%. Define |[v|o = |{i : v; # 0}|. For
S C{1,..,p}, let vg = {v; : j € S} and S be the complement of S. Given a,d € R, we use
aVband a A b to denote the maximum and minimum of a and b.

For convenience, we restate the loss function as follows. Consider groups Ji, ..., J,

)

where J; C {1,...,p}, and ", J; = {1,..., p}. Notice that we do not require J; (J;, = 0.



Define C, = {j : k € J;} and ¢, = |Cy|. Thus, C} is the set of indices of the groups variable
k belongs to and ¢, is the number of groups that variable k belongs to. We can also treat
¢k as replicates of index k. For notational simplicity, in the proof we write Bn and 3 as

B and (*, respectively. We also write ¢, (X;) as ¢; for simplicity. Define the vector of

variable k coefficients over all groups in which it appears Bka (Brjpys - - - ,Bkjk%)T, where
jm denotes the index of variable k within the {*" group in which it appears, and the vector of
all coefficients 87 = ((8iz,)" - -, (Bye,)")"- Let By, = (Brj)kes;» Where B; is the coefficient

of the k' variable and k is in j' group. Let d; = |J;|. Consider the following optimization

problem

1 n p Cl Pn
oo = i 20 3 (X o Jo 2 VI, (2
k=1 m=1 7j=1

where ), is a positive number. We define the overlapping group lasso estimator as

(Zﬁlmv-- Z mpk> : (E.3)

in which we stress A, since it will influence the solution of (E.2). Notice that by this

definition, the least squares term becomes % Yo (v — gpiTBA)‘”)Z, which is the same as in

original group lasso case. We use % instead of % for brevity of the Karush-Kuhn-Tucker

(KKT) conditions, which are as following.

Proposition E.1. Let ¢ be the matrix with rows ¢!, i = 1,...,n. Let ¢; denote the j™"

column of ¢, for j = 1,...,p. Necessary and sufficient conditions for BZ to be a solution to
(E.2) are
1 ~ )\n \% dké)\n . . 5
—— ] (y— o) + 2= =0, Vj € Jywith B £0
n 185 112

| — —1/1 W — B2 < Aa/di, Vi € Jp with ) = 0.

The following lemma Liu and Zhang (2009) states that at most n groups can be nonzero.

Lemma E.1. Suppose A\, > 0, a solution BZ”\” exists such that the number of nonzero

groups |S(6%*")| < n, the number of data points, where S(8) = {J; : B, # 0}.
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Proof. The proof of Lemma 1 in Liu and Zhang (2009) is also valid here. O]

By Lemma E.1, for brevity, sometimes we say 3 with |S (BZA”)| < n, which is derived
by combining (E.2) and (E.3), is the soléltion of (E.2). We will also write ||y —¢/3]|3 instead of
D i (yi =Dkt (foizl 5kjkm> @ki) . Let ¢ = max;{cy, ...,c,} and d = max;{dy, ..., d,, },
the maximum number of groups a variable appears in and maximum group size, respectively.
Let s be the number of nonzero elements in $* and p be the dimension of *. Notice that s

and p (as well as ¢ and d) can depend n.

E.2 Proof of Theorem 4.1

Our proof follows a similar line to Meinshausen and Yu (2009), but extends their results to
the overlapping group lasso. We only need to show the stochastic case. The deterministic
case is true because the proof is still valid by taking e = 0. A sketch of the proof is as follows.
We first define the coefficients obtained from the de-noised model as a de-noised estimator.
Then, by showing the difference between the de-noised estimator and true coefficients, and
the difference between de-noised estimator and the estimator obtained via overlapping group
lasso are both small, we obtain [y convergence. All the proofs of the lemmas in this section
are in Appendix H.

Before we state and prove the main result, we introduce a definition which is useful in

the proof.

Definition E.1. Denote y(§) = ¢8*+£(e+0) as a de-noised model with level £ (0 < & < 1),

we define
. 1 &
BM = argmin o [[y(€) — 9Bl + A D V116 I (E.4)
j=1

to be the de-noised estimator at noise level &, where ¢ is defined similarly as in (E.3).

In order to characterize the eigenvalues of a matrix under sparsity, we introduce the

following definition, which can be found in Meinshausen and Yu (2009).

Definition E.2. The m-sparse minimum and maximum eigenvalue of a matrix C' = %nggp
. T T
are Pmin(m) = minggjy<m % and Pmax(m) = maxg.|go<m % Also, denote ¢ =

Gmax((s¢ + n)d) where s, ¢, and d,, are defined as in section E.1.
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Now we introduce an assumption concerning ¢min () and ¢nax. Detailed discussion has

been shown in Meinshausen and Yu (2009).

Assumption E.1. There exist constants 0 < Kpin < Kmax < 00 such that

lim inf,, o0 Gmin(séd max{logn,}) = Kmin and imsup,, ... Omax < FAmax-

For continuity, we repeat Theorem 4.1 here.
Theorem 4.1. Under Assumption E.1, if \, < o 1"%, d?> = o(logn), and ||y(-) —
©()T*||c = Op(\n), for the (overlapping) group lasso estimator constructed in (E.2) and
(E.3), with probability tending to 1 for n — oo,

157 — 572 < M,

Let g = BA’\”’O. The [5-consistency can be obtained by bounding the bias and variance

terms, i.e.
187 = 815 < 2018 = B3 + 2[5 — 5713,

Remark E.1. The condition [|y(-) — ¢(-)78*||cc = O,(A\,) implies B; = O,()\,). In the
proof of Theorem 4.1, the condition B; = O,()\,,) is sufficient.

Let T = {t: 8; # 0,3 is a component of 3%*} represent the set of indices for all the
groups with possibly nonzero coefficient vectors. Let s, = |T'|. Thus, s,, < s¢. The solution
B can, for each value of \,, be written as g’ = B* + 4, where v is defined as the

solution of the following optimization problem:

argmin - f(7, 77)

st Y BL=85 i=1,..p (E.5)
k=1

¢
VA .

§ rYzJZk = Tis L= 17"'7p7

k=1



where

F77) =" Ay + 03 VAl + M Y V(I + BNl = 1157 112),
teTe teT
where A = %(pTgo. This optimization problem is obtained by plugging 8* + v into (E.4).
Notice the arg min problem is with respect to 7 instead of (vy,~%).
Next, we state a lemma which bounds the ly-norm of 4*». Its proof is provided in

Appendix H.1.

Lemma E.2. Under Assumption E.1, with a positive constant C, the l;-norm of y*»

is bounded for sufficiently large values of n by [[y*[ls < 2= nés"d / ( sin (1 — 1jggn) -
2/{maxd2)
logn :

Now, we bound the variance term. For every subset M C {1, ..., p} with |M]| < n, denote

6M € RIMI the restricted least square estimator of the noise ¢,

M = (ph00) 0l (e + B), (E.6)

where B = (B4, .., B,)T and € = (€1, .., €,)". Now we state lemmas, which bound the ly-norm
of this estimator, and are also useful for the following parts of this development. First
we define sub-exponential variables, sub-exponential norms, sub-Gaussian variables, and

sub-Gaussian norms.

Definition E.3. (sub-exponential variable and sub-exponential norm) A random variable
X is called sub-exponential if there exists some positive constant K; such that P(|X| >
t) < exp(l —t/K;) for all t > 0. The sub-exponential norm of X is defined as || Xy, =
sup,- 4" (EIX [

Definition E.4. (sub-Gaussian variable and sub-Gaussian norm) A random variable X is
called sub-Gaussian if there exists some positive constant K, such that P(|X| > ¢) <
exp(l — t*/K>) for all t > 0. The sub-Gaussian norm of X is defined as || X|y, =
S,y 4~V (E| X[



Lemma E.3. Let m,, be a sequence with m,, = o(n) and m,, — oo for n — oo

n, log p

M2  2Mn 08P

b2, e < O D

Proof. See Appendix H.2. O
Now define A, ¢ to be
BB 1 N
Ay e = {k : )\n\/?ﬁjk = —z/JJT(Y(ﬁ) — @f), with j € Jk},
1Brll2 ™

which represents the set of active groups for the de-noised problem.

Lemma E.4. If, for a fixed value of \,, the number of active variables of the de-noised

estimators B’\"’f is for every 0 < £ < 1 bounded by m/, then

1679 = Bl < mace 10V

Proof. See Appendix H.3. m
The next lemma provides an asymptotic upper bound on the number of selected variables.
Lemma E.5. For A\, > 4/ lo%, the maximal number of selected variables, supy<e< ZkeAm dy,

is bounded, with probability tending to 1 for n — oo, by

sup Z dy < Cys,de.
O<€<1 keAy 3

Proof. See Appendix H.4. n
Now combining Lemmas E.3, E.4, and E.5, we have

) sdé® log p
2 T ng2. (sde?)

min

|30 —




Combining this and Lemma E.2, gives

. de®log p N e2sd Kmi 4d Dhimaxd? ) >
An 9 < 8. S > n min 1— . max
||/6 6”2 n Iznin(sdég) + n2 2 ( logn) logn

< 03552 logp+0623cflogp Hmin(l_ 4d ) i d@? \ 2
n n 2 logn logn

_2 7
< c sdlogp,

n

which completes the proof of Theorem 4.1.

F Proof of Corollary 4.1

Since [* satisfies (3),

/Q (@) (y() — o) %) dz = 0.

Therefore, the oracle risk of B can be bounded by

[0 = et 8 — [ (4(0) ol 5"

- / (2u(z) — o(@)7F — (@) 8) (o) (8" — B))dz
- / (2(2) — 20(2)78" + (@) 8" — (@) B) (@) (5" — B))da

N

— [ (@8 = o B (5"~ )
= [ = A pta)o@) (5" = B
<C|8* = Bl3,
where the last inequality is because of Assumption E.1. Because ||y(-) — ()7 8*||c = Op(An),
we have [, (y(x) — @(x)"5*)*dz = O,(A2), which completes the proof.
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G Proof of Theorem 5.1

In this section we will prove Theorem 5.1. A sketch of proof is as follows, following the
overall approach in Ning and Liu (2017). First, we introduce a decorrelated score function,
and prove the decorrelated function converges weakly to a normal distribution under [5-
consistency, which is stated in Theorem G.1. The result is then applied to the overlapping
group lasso model with known variance of error. Then by showing the difference between
the decorrelated score function with known variance and decorrelated score function with

estimated variance is small, we finish the proof of Theorem 5.1.

G.1 Hypothesis Test based on Decorrelated Function and /,-Consistency

In this section, we will introduce a decorrelated score function, and prove several results
similar to Ning and Liu (2017) but with ly-consistency instead of [;. Suppose we are given
n independently identically distributed Uy, ..., U,, which come from the same probability
distribution following from a high dimensional statistical model P = {Ps : § € Q}, where
is a p dimensional unknown parameter and €2 is the parameter space. Let the true value of
[ be [*, which is sparse in the sense that the number of non-zero elements of 3 is much
smaller than n, order logn. We consider the case in which we are interested in only one
parameter. Suppose 3 = (81, 3_1), where 3; € R and 5_; € RP~!. Let 8; and 3*, be the
true value of 8; and [_q, respectively. For simplicity, we assume the null hypothesis is
Hy : B7 = 0, which can be generalized to the case 37 = 51 in a straight forward manner.

Suppose the negative log-likelihood function is

n

U(B1, B-1) = % Z(— log f(Ui; B1, 8-1)),
i=1
where f is the p.d.f. corresponding to the model P, which it will be assumed has at least
two continuous derivatives with respect to S. The information matrix for 5 is defined as
I =E3(V?((5)), and the partial information matrix is Ig, 5, = Igg — Iﬂlﬁ_llg_,llg,lfﬁ_lﬁn
where Ip,s,, 1,8, Ip_,5_,, and Iz ,p, are the corresponding partitions of I. Let [* =
Ey. (V20(5")).

In this paper, we are considering testing parameters for high dimensional models and,
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as mentioned in Ning and Liu (2017), the traditional score function does not have a simple
limiting distribution in the high dimensional setting. Thus, we use a decorrelated score

function as mentioned in Ning and Liu (2017) defined as

S(B1, 1) = vﬁlg(ﬁbﬁ—l) - wTvﬁ_lg(ﬁl, B-1),

where w = I[g_llﬁ_llﬁilﬁl. Notice that Eg(S(8)Vs_,£(5)) = 0. Suppose we are given the

estimator 3 = (Bl, 3_1) and tuning parameter \. We estimate w by solving
W = argmin |[w]|1, s.t. |V2 5 0(B) —w'V3 4 L(B)]2 <N (G.7)

We use this method to estimate w because since w has dimension d which is much greater
than n, we need some sparsity of w, which is useful in the rest part of this paper. Thus, we can
obtain estimated decorrelated score function S(fy, f_1) = \ERAT B_y)— W'V 0, By).

Along the same lines as Ning and Liu (2017), we need the following assumptions.
Assumption G.1 states that the estimators B and w converge to zero. However, we assume

lo-consistency here, which is weaker than the condition in Ning and Liu (2017).

Assumption G.1. Assume that

Tim Py (11 — B2 ll2 S m(n)) = 1 and lim P (i — v}y S ma(n) = 1,

where w* = ];:115_115_161’ and 7;(n) and n2(n) converges to 0, as n — oo.

Assumption G.2 states that the derivative of log-likelihood function is near zero at the

true parameters.

Assumption G.2. Assume that

V5,10, 82))lle S m3(n)) = 1,

o Pl

for some n3(n) — 0, as n — oo.

Assumption G.3 states that the Hessian matrix is relative smooth, so that we can use \’

to control n4(n).
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Assumption G.3. Assume that for _,, =vf*; + (1 — V)31 with v € [0, 1],

lim Pg( sup ||V?315_ll(0,ﬁ,1,,,) — wTV%_lﬁ_ll(O,ﬁ,Ly)Hg Smu(n)) =1,

for some ny(n) — 0, as n — co.

Assumption G.4 is the central limit theorem for a linear combination of the score

functions.

Assumption G.4. For v* = (1, —w*T)7 it holds that

“T'\71(0. B* is
Vv TVI(0, 5% ) 9 N0, 1),
VT I

where I* = Eg.(V?1(0, 8*,)). Furthermore, assume that C’" < I35, <00, where I§ |, =

15,8, — w*TIE_lﬁl’ and C’ > 0 is a constant.
Assumption G.5 states that we can estimate the information matrix relatively accurately.

Assumption G.5. Assume

lim P (I V(B) = Il S 15(n)) = 1

for some n5(n) — 0, as n — oo.

Now under Assumptions G.1 to G.5, we can prove a version of Theorem 3.5 in Ning and

Liu (2017) which applies to the (potentially) overlapping group lasso.

Theorem G.1. Under Assumptions G.1 to G.5, with probability tending to one,
n'?15(0, B-1) = S(0, 85)| S n*(ma(n)ms(n) +m(n)na(n)). (G.8)
If n'/? (na(n)n3(n) + m(n)na(n)) = o(1), we have

n'28(0, B0 52 =5 N (0, 1), (G.9)
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Proof. See Theorem 3.5 in Ning and Liu (2017). The only difference is under l5-consistency,

L] < 1V3,5.,100, B-0) = @7 V55 10, B-) 2]l 51 = B4 ll2 S i (m)ma(n).

O

Corollary G.1. Assume that Assumptions G.1 to G.5 hold. It also holds that ||w*||1m5(n) =
o(1), m(n)ll 15, 5_, s = 0(1), and n'/2(na(n)ns(n) + m(n)na(n)) = o(1). Under Hy : 5} =0,

we have for any t € R,

lim |Pg-(U, <t) — ®(t)] =0, (G.10)

n—o0

where U = nl/ZS(Ov B*”@il\ﬁ/il

Proof. See the proof of Corollary 3.7 in Ning and Liu (2017). O

G.2 Linear model and the corresponding decorrelated score function

Now we apply the consequences of the general results to the linear model as described in the
previous section. In this section we first assume that the variance of noise is known. Consider
the linear regression, y; = 7@ + B i1+ B; + €, where o1 €R, ¢; 1 € R B, € R,
and the error ¢; satisfies E(e;) = 0, E(e]) = 0 > 0 for i = 1,...,n. Let ¢; = (¢a, 9] ;)"
denote the collection of all covariates for subject i. We first assume o2 is known.

Consider the overlapping group lasso estimator (E.3), the decorrelated score function is

n

1
o? (yi — Bipir — 52%,71)(%’1 - wT%,fl)a
i=1

S(B1, B-1) = —

where w = Eg(p;—1¢] _1) 'Eg(@irgi—1). Since the distribution of the design matrix does
not depend on f, we can replace Eg(-) by E(-) for notation simplicity. Under the null

hypothesis, Hy : 87 = 0, the decorrelated score function can be estimated by

n

S(0,8.1) = —— (i — BTr0i1) (@i — 0 1),
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where

<\
2

. . IEN T

w = argmin ||w||;, s.t. HE ; wi—1(pin —w @i 1)
The (partial) information matrices are
I* = 0 E(pi—10, 1), and I} 5 = o *(E(¢}) — E(enw] )E(gi-19] 1) "E(pi—10i)),

which can be estimated by

R . LY o1y
[=—; Y iy, and Igs =0 2{; Y h -t (ﬁ ) 9013190“) }’
=1 =1 i=1

respectively. Thus, the score test statistic is U, = n1/2§(0, B—l)fg_ll\éi
The following theorem states the asymptotic distribution U,, under null hypothesis.

Theorem G.2. Assume that

L. Auin(E(p;07)) = 2kmin for some constant sy, > 0, and imsup, .. Gmax < Kmaxs

where ¢p., is defined in Definition E.2.

2. Let S = supp(f8*) and S" = supp(w*) satisfy |S| = s and |S’| = §’. Let ¢ be the
maximal number of replicates, d be the maximal number of group size. Assume

n~Y2(s Vv s*)logp = o(1), d®> = o(logn) and lfgi =o(1).

3. €, wTp; _1, and ;; are all sub-Gaussian with ||¢|v, < C, [[w*T; _1]|v, < C, and
) J 2 5 2

lvijllw, < C, where C' is a positive constant.

4. Xx«/loﬂ and)\xa,/bﬂ.
n n
1

5. B; S/ 2L

Then under Hj : 57 = 0 for each t € R,

lim |Pg-(U, <t) — ®(t)] = 0.

n—0o0
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Proof. Before the proof, we need the following lemmas in Ning and Liu (2017), which is
used to ensure the assumptions of Theorem G.1 and Corollary G.1 hold. The proofs of
Lemmas G.1, G.3, and G.4 can be found in Ning and Liu (2017). In the proof of Lemma

G.4, one need to notice that ¢! B can be bounded by assumption.

Lemma G.1. Under the conditions of Theorem G.2, with probability at least 1 — p~!,

H% Yor (i1 — UA)T%,ASOZ_JHOO <C 10%’ for some C' > 0.

Lemma G.2. Under the conditions of Theorem G.2, with probability at least 1 — p~1,

csdlogp &sdlogp

1B-B*3< Cy , and (B — B H,(B — 5*) < Clhimax

where H, =n"'>"" il and the constant C; > 0.
Proof. The first inequality is by Theorem 4.1. The second inequality is trivial. ]

Lemma G.3. Under the conditions of Theorem G.2, with probability at least 1 — p~!,

1
Il — w*||; < scffls',/%,
dist,

Lemma G.4. Under the conditions of Theorem G.2, it holds that 7* — N(0, 1), and

where C' > 0 is a constant.

sup [Py (T* < 2) — @(a)| < Cn 2,
z€R

where T = nl/zS(O,ﬁil)/Igll‘/gil and C' is a positive constant not depending on 5*.

Now we can check that the assumptions of Theorem G.1 and Corollary G.1 hold, which
finishes the proof of Theorem G.2. O

Next we introduce some lemmas which give properties of sub-exponential variables and
norms, as well as sub-Gaussian variables and norms, which will be used in the proof of

Theorem 5.1.
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Lemma G.5. (Bernstein Inequality) Let X, ..., X,, be independent mean 0 sub-exponential

random variables and let K = max; || X;||w,. Then for any ¢t > 0,

P L >t) <2 C mi £t
B* E Z X 2€Xp min ﬁ’K ni,

where C' > 0 is a constant.

>
i=1

Lemma G.6. Under the conditions of Theorem G.2 with probability at least 1 — p~!,

H% Yo i€l < C lo%, for some C' > 0.

The proofs of Lemmas G.5 and G.6 can be found in Ning and Liu (2017). Now, we can
begin the proof of Theorem 5.1.

Proof. The proof is similar to Ning and Liu (2017) with a few changes. It is enough to show

for any € > 0,

lim sup Ps-(|U, — U,| =€) = 0. (G.11)
n—oo 5*€Q0
Notice that |U, — U,| = |U,||1 — Z|. For a sequence of positive constants ¢, — 0 to be

U, >t-') = 0. It remains to show

chosen later, we can show that lim,, . SUPg+cq, Pa« (

that

lim sup P (|1 2> tn> = 0. (G.12)
g

n—oo ﬁ* €Qo

Notice that

n

A A Al
(BZ + Ei)Q — 0'*2> -+ ATHLPA — ZAT— Z(Ez —+ BZ)(pZ

n <
=1

n

1 \ T irl
— (— ;(Bz + 61’)2 — 0 2) + ATH(’DA — QATE ZEZQOZ — QATE ;Blﬁpl
>

=1

Il
A/~
S

A . 1 n 1 n 1 n 1 n
2 *2 T T 2 T
€ —0 ) + A HLPA —2A E izgl €;0; + E izgl Bz + E izgl eiBi —2A E izgl B7,907,

(G.13)

=1

where A = 3 — *. Since ||¢?||y, < 2C2, by Lemma G.5, |2 377 €2 — 072 < /%52 for

i=1"1 n
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some constant C, with probability tending to one. By Lemma G.2, we have ATH, A <
Cmmaxm%, for some constant C', with probability tending to one. By Lemma E.5 and

Lemma G.2, we have

IAIL < Crsde®||Ally

< Cysdety | Z2o8p
n )

for some constant Cy > 0. By Lemma G.6, we have

n

% Z €ipi

=1

1
< Oy /18P
n

o0

By Lemma G.5, [+ 3" | ¢;B;| < /1/n. By the assumptions of Theorem G.2, 3" | B? <

%8P Thus,
n

n

% Z CiPi

=1

- -1
< Cysd*V E%dy,

n

< ||A||1

AT% Z €ipi

‘ n
i=1

o)

for some constant Cy > 0. By assumption B; < y/*52,
n

U, R
AT— Byl <A
4703 B < AL

1 n
ﬁ ;Bz‘%‘ N

. 8|
< Cssd 2sd222.
n

for some constant C5 > 0. Thus, by (G.13), we have

| |
67— 02 < Cor )BT\ (@2 1082
n n

for some constant C, with probability tending to one. Thus,

* * 1 _ 1
1= S =671+ 216”0 S 167 = 07| S 4 = v (@5 =F,
o g n

n
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with probability tending to one, because 0*? > C? and 6% = 0** + op(1). Thus, if we choose
tn 2 4/ 2BV (e2sd)3/? %82 | then (G.12) holds and (G.11) holds. Then by Theorem G.2, the
result holds. O

H Proofs of Lemmas

H.1 Proof of Lemma E.2

Proof. For simplicity, we use A instead of \,, v instead of *, and 7Z instead of v%*
in Appendix H. In this proof we will use 7; instead of v, for brevity. Let vZ(T) be
the vector with elements »7 (T') = 7/ Itsrzoy. Similarly, 47 (T¢) = 4/ Isr—oy. Thus,
7% = 4Z4(T) + v#(T¢). Notice {B; # 0} = {i € J;, for some t € T}. Since f(0,0) = 0,
and (E.5) is a minimizing problem, we have f(v,7?) < 0. Since v7Cy > 0 for any
v, and [|37]la — |7 + B1la <[22 for any ¢ € T, combining f(y,7?) < 0, we have

Siere VAV 2 < Xper VAl ||2- Also, we have

> Vil < 2l (D2 < Vsudlly o (H.14)
teT

teT

The first inequality is true because of Cauchy’s inequality, and the second inequality is true
because d = max{d,, ...,d,} and s, = |T|.
For any fjml and f‘jm2, if they are both not zero, by KKT conditions, we have

1 A ]1m im A ]Zm m
——Y (Y —pB) + — i — e =0, and ——Wy oB) + —— i e ),
n 1850, MI2 18.5,,,, 2
which indicates
)\\/ Jimy Uzm _ )\\/ Jimeo ijmQ
B e B, T
Since A > 0, we have ’\ i)\jim > 0. Notice if f; or )‘ is ZEro, 'i)\jiml Z’\]m 0 still

holds. Together with the constraints of optimization problem, we have fyijim %’jimQ > 0,
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which indicates ||yZ |2 < ||7]|2- Thus, together with (H.14), we have
Z Vdin? ll2 < 2V spd|[77]l2 < 2V sad]7])- (H.15)

Since f(v,7%) < 0, and ignoring the non-negative term Ay, ;. v/di|[7#|]2, it follows that

ny" Oy < AV sud ||V 7[l2 < AV sud|7]]2- (H.16)

Next, we bound the term ny”Cy from below. Pplugging the result into (H.16) will yield
the desired upper bound on the ly-norm of 7. Let ||7Z |2 > ||'yZ lo>---=> ||'yi yll2 be the

ordered block entries of . Let {u,} be a sequence of positive integers, such that 1 < u,, < p,

2}. Define analogously as
before v (U), v#(U*), v(U), and v(U°). Thus, v"Cy = (v(U) ++(U))" C(4(U) +7(U°) =
la + b||3, where a = py(U)//n and b = @y(U¢)/y/n. Thus,

and define the set of u,-largest groups as U = {k : ||[7Z|l2 > ]|7(un)

YV'Oy=a"a+2b7a+0b"b > (lall2 — ||b|]2)2. (H.17)

Assume [ = Y 7" ||7Z]|l2. Then for every t = 1,...,py, H”)/(Zt)”g < 1/t since ”y(Zt) is the ¢t
largest group with respect to || - ||2. Thus,

Pn Pn 2 Pn Pn 2
. 1 1
PP = S k< (SRB) X < (X VAR o o
t=un+1 t=1 t=un+1 t=1 n

where the last inequality is because

Z 2\/ —ds—

t=un+1

and \/d; > 1

Together with (H.15), we have ||77(U°)[|3 < 4s,d|[7”[3-=. Since 7(U) has at most
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> tev Ay non-zero coefficients, and ), d; < u,d,

ol > o 3 ) IH@IE > i (X ) @)1

teU teU
4s,d
:¢min(zdt)<uwzu§— V2 (U9)|12) a)mln(zdt) (1-= >u 2)3
teU teU
- 4s,d
> Grain (Und)(1 — —22) |77 2. (H.19)

n

The first inequality is true because of the definition of ¢uin(-), and the equality is true
because vZ = yZ(U) +~v#(U¢). From Lemma E.1, y(U¢) has at most n non-zero groups,

which indicates

4¢max3ncp

n

1813 < Gmax () [ Y (U3 < bumaxl V(U3 < dbmaxlv* (U] < Iy 115 (H.20)

The first inequality is true because the definition of ¢nax(+), the third inequality is true is
because of Cauchy’s inequality, and the last inequality is true because of (H.15) and (H.18).
Thus, plugging (H.19) and (H.20) into (H.17), and combining with the facts >, ,; di < du,

and ¢max = Omin(uy,), under Assumption E.1, for sufficient large n, we have

- 4sncz 4¢maxan2
lalls — 18] > (\/ Smin(nd)(1 — 20Ty \/ —) s
Uy, Uy,
- 4s,d 2K max Snd-
> min n 1_ - -
(\/¢ (1)1 — 222 \/ =2 )

Let u, = s,logn, under Assumption E.1, for large n, we have

Komi 4d 2K
_ b 2 min 1_ _ max
Jalla - ol (\/ g A R,

Together with (H.16), we have

M/ spd Komin Ad 2K a2 2
|2 =" Cy 2 (\/ (1— ) — \/ ) RS

n 2 logn logn
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Since by Cauchy’s inequality, we have ||vZ||2 > ||v||2/¢. Thus,

2es,d ~ 4d 2 2\°
Il < A¢cspd /fmm(l _4d - Fmaxd |
n? 2 logn logn

which completes the proof. O]

H.2 Proof of Lemma E.3
Proof. From (E.6), for every M with |M| < m,,

1

TL2 ¢I2nin (mn>

2

6M]|2 < NOPCRENn
H HQ ~ n2¢3nin(mn)

lea(e+ B3 < (lenrells + lonBl13) (H.21)

By Lemma G.6, with probability at least 1 —d !, || Y0, pi€illoo < C1v/nlogp. Thus,

n
T 2 < — Z . 2 < — 2 1
e lonellz < M| 2 pi€ills, < m,Cinlogp,

where the first inequality is true because ||©1,€]|2 < |M|||pLell%, and | M| < m,.

By assumptions of Theorem 4.1,

n
2, IR B < mall 3 B < maCintog

Thus,

T |
max  [|0M]2 < CQ—mzn ogip ;
M:|M|<rmn, NG (M)

which finishes the proof. m

H.3 Proof of Lemma E.4

Proof. Before the proof, we state a lemma.

Lemma H.1. For z € R? suppose #; = argmin, f;(z) and &y = argmin, fo(z) where
fi(z) = 22T AT Az + bTx with A € R™*7 which is full rank and b € R?. Also, fo(z) =
fi(x) + Tz with ¢ € R%. Let A%, b? and ¢Z be defined in the same way as before. Let
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a1(y?) = 317975+ (07) " y” +h(y?) and ga2(y”) = 31A7Y7 |15+ (%) y” +(?) " y” +h(y?),
where h(y) is a convex function with respect to y and everywhere sub-differentiable, and

define §7 = argmin? g(y?) and § = argmin/ g1 (y?). Then we have
192 = Gl < A[[22 — 242

Proof. Our proof is similar to Liu and Zhang (2009), with the only difference that || A% (g7 —
GENE + ()@ = 95) = I — 3)I3 + ¢ (51 — ). O

Let M(&) = Axe. Let 0 =& < ... <&y41 =1 be the points of discontinuity of M (). At
these locations, variables either join the active set or are dropped from the active set. Fix
some j with 1 < j < J. Denote by M; be the set of active groups M () for any & € (&5, &41).

Assuming

VE € (&, &) [|BM — B2 < CE—€))10™ (H.22)

is true, where #Mi is the restricted OLS estimator of noise. Then

<

1B = B2 < YN8 = By
j=1

J

<C max [0M]2) (&1 - &)

J=1

=C max [0M|s.
M:|M|<m

By replacing &1, &, 7 and g, with €025, &M ¢ and $*% in Lemma H.1, respectively,
we obtain (H.22). Hence, we complete the proof. ]
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H.4 Proof of Lemma E.5

Proof. Our proof is similar to Meinshausen and Yu (2009). The only thing need to be
noticed is that for (38) in Meinshausen and Yu (2009), we have

(1A, T8 = B2 + 15, )T (e + B)ll2)* < 2(11(#5, )T (8 = B3+ (¥4, ) (e + B)I3)

< 2e(|lh, 28 = B3 + 14, (e + B)I3).

]

I Stochastic Function

In this section, a stochastic function is considered. In particular, this example demonstrates
tuning parameter selection. We consider the following function, which was used in Gramacy

and Lee (2009),
f(xy, 29, 23,14, 5, ) = €XP {sin([0.9 X (xq + 0.48)]10)} + Tox3 + x4 + €, (1.23)

where € ~ N(0,0.05%) and z; € [0,1],4 = 1,...,6. The function is nonlinear in xy, x5 and
x3, and linear in x4. In x1, it oscillates more quickly as it reaches the upper bound of the
interval [0, 1]. x5 and x¢ are irrelevant variables.

Here, we consider 5 replicates at each unique training location, n = 5m, as indicated in
Wang and Haaland (2018), along with n.s = 10,000 unique predictive locations randomly
generated from a uniform distribution on [0, 1]¢. Since the choice of tuning parameter X
in (2) can be particularly crucial in stochastic function emulation, we consider AIC, BIC
and 10-fold CV as selection criteria. For the implementation of 10-fold CV, 10 CPUs are
requested for parallel computing. Table 1 shows the performance of traditional Gaussian
process, local Gaussian process, and MRFA with these three selection criterion based on
designs of increasing size n. It can be seen that, similar to the results in the previous
subsections, traditional Gaussian process is only feasible at n = 1,000, while MRFA is
feasible and accurate for large problems. Even when traditional Gaussian process is feasible,
MRFA is much faster in terms of fitting and prediction, and more accurate with any tuning

parameter selection method. Local Gaussian process fitting is feasible for large problems,
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but less accurate than MRFA and traditional Gaussian process. Among the three criteria,

it can be seen that AIC, BIC and CV have relatively small differences in terms of prediction

accuracy. Computationally, the tuning parameters can be chosen within 2 seconds using

AIC or BIC, while the computational costs of CV can be considerable.

This example also illustrates the flexibility of the proposed method. From (I1.23), the

function appears not to satisfy the strong effect heredity conditions, because the main effects

of x5 and x3 are not present. On the other hand, the function can be easily re-expressed in

a form that does satisfy strong effect heredity. For example,

f(Il, ce

,xg) = —1+exp {sin([0.9 X (z1 + 0.48)]')} + @3 + 25+ (x2 — 1) (23 — 1) + 74 + €,

which satisfies the strong effect heredity assumption because main effect functions of xo

and x3 appear in the function in addition to the interaction function (zg — 1)(z3 — 1).

n Fitting Prediction Selection RMSE
Time (sec.) Time (sec.) Time (sec.)  (x1071)
mlegp 1,000 2524 88 1.64
1,000 - 394 7.30
10,000 - 439 6.07
LaGP 100,000 i 457 470
1,000,000 - 433 3.85
AIC 1 1.36
1,000 96 8 BIC 1 1.36
CV 92 1.32
AIC 1 0.18
10,000 443 23 BIC 1 0.19
MRFA CV 423 0.26
AIC 1 0.14
100,000 2999 34 BIC 1 0.14
CcvV 2213 0.14
AIC 1 0.01
1,000,000 61504 103 BIC 1 0.01
CV 55849 0.05

Table 1: The 6-dimensional stochastic function example with niest = 10,000 random predictive

locations.
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J Other Functions

In this section, we present three more example functions in comparison with 1aGP and
mlegp, the 3-dimensional bending function (Plumlee and Apley, 2017), the 6-dimensional
OTL circuit function (Ben-Ari and Steinberg, 2007), and the 10-dimensional wing weight
function (Forrester et al., 2008). The details of these examples and their input ranges are
given in Appendix K.

The comparison results are shown in Table 2. Similar to the results in the previous
subsections, the results indicate the MRFA outperforms the traditional Gaussian process in
terms of prediction accuracy, except for the wing function at n = 1,000 where the traditional
Gaussian process fitting has better accuracy. The reason might be that the underlying
wing weight function contains high-order interaction functions making it not particularly
well-suited to low-order representation. See (K.24) in Appendix K. Nevertheless, even when
the traditional Gaussian process fitting is feasible (at n = 1,000), the MRFA is much faster
than traditional Gaussian process fitting. Local Gaussian process fitting is feasible for large
problems and has better accuracy in the low-dimensional example (see Table 2(a)), but it is

less accurate in the other two examples and in some cases slower than the MRFA.

K Description of Functions in Section J
e The amount of deflection of a bending function is given by

4
109683’

where the 3 inputs are L, b, and h.

e The midpoint voltage of a transformerless OTL circuit function is given by

(Vi1 + 0.74) B(Res + 9) 11.35R; 0.74R;B(Re + 9)

Vin = )

where Vi1 = 12Ry2/(Ry + Rpz), and the 6 inputs are Ry, Ruo, Ry, Re1, Re2, and B.

e The wing weight function models a light aircraft wing, where the wing’s weight is
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d— n Fitting Prediction RMSE
N time (sec.) time (sec.)  (x107?)
mlegp 1,000 1807 140 5.64
1,000 - 310 0.66
10,000 ; 312 0.21
1aGP 100,000 - 311 0.08
1,000,000 - 316 0.04
1,000 49 g 2.16
10,000 293 14 0.46
MREFA 100,000 3311 25 0.20
1,000,000 113279 159 0.14*

(a) Performance of the 3-dimensional bending function. *Note that due to memory limits, in the

cases Royae = 3 and Dy, = 3 are considered instead.

d—6 n Fitting Prediction RMSE
N time (sec.) time (sec.)  (x107%)
nlegp 1,000 3976 173 13.70
1,000 - 314 102.71
10,000 - 301 27.01
1aGP 100,000 - 323 11.43
1,000,000 - 328 4.80
1,000 294 19 7.81
10,000 798 17 2.05
MREFA 100,000 6688 82 1.42
1,000,000 122075 133 1.18%*

(b) Performance of the 6-dimensional OTL circuit function. *Note that due to memory limits, in
the cases Ryape = 3 and Dpqp = 3 are considered instead.

d—10 n Fitting Prediction RMSE
N time (sec.) time (sec.)  (x1071)
mlegp 1,000 2022 228 1.56
1,000 - 327 19.74
10,000 - 325 10.72
1aGP 100,000 - 329 5.04
1,000,000 - 347 2.22
1,000 1319 28 7.7
10,000 1633 21 1.52
MREFA 100,000 12289 84 1.39
1,000,000 168854 148 1.18%

(c) Performance of the 10-dimensional wing weight function. *Note that due to memory limits, in
the cases Ryae = 1 and Dp,qp = 3 are considered instead.

Table 2: Performance of the bending, OTL circuit, and wing weight functions with niest = 10, 000
random predictive locations.
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given by

W = 0.036.S%7587)70.0035 A oo 0.006 20.04 100, \ (NWg )" 4 Sy W
- v v cos?(A) ¢ cos(A) =7ty vy
(K.24)

where the 10 inputs are Sy, Wy, A, A, q, R, t., N,, Wg,, and W,,.

The input ranges are given in Table 3.

Bending OTL circuit Wing weight
L €1[10,20] Ry € [50,150] Sw € [150,200]
b €[1,2] Ry, € [25,70] Wy € [220,300]
h €10.1,0.2] Ry €]0.5,3] A €16,10]
R, €11.2,2.5] A € ]-10,10]
R, €1[0.25,1.2] q € [16,45]
g €[50, 300] R €10.5,1]
t. €0.08,0.18]
N, €[2.5,6]
Wa, € [1700,2500]
W, €10.025,0.08]

Table 3: Input ranges of the OTL circuit function, the piston simulation function, and the wing
weight function.
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