
Appendices

A Proof of Theorem 2.1

First, a useful lemma is given.

Lemma A.1. Denote Fu = {
∫

Ω−u

(
f(x)−

∑
v⊂u fv(x)

)
dx−u|f ∈ NΦ, fv ∈ Fv}. Suppose

Φ ∈ Ω× Ω→ R is a symmetric positive-definite kernel on Ω = [0, 1]d and Φ is a product

kernel. Then,

fu ∈ Fu = {fv + gu|gu ∈ NΦu , v ⊂ u, fv ∈ Fv},

where Φu =
∏

j∈u φj.

Proof. Initially consider a finite element. The proof proceeds by induction. For u = ∅, we

have that if f ∈ NΦ, then

f∅ =

∫
Ω

f(x)dx =

∫
Ω

∑
y∈X

βyΦ(x, y)dx =
∑
y∈X

βy

∫
Ω

Φ(x, y)dx := α ∈ R.

This shows f∅ ∈ F∅ = {f(·) = α|α ∈ R}.

Let fu ∈ Fu for any |u| ≤ k. Note that
∫

Ω−u
dx−u = 1 for any u, since Ω = [0, 1]d. Thus,

for |u′| = k + 1,

fu′(x) =

∫
Ω−u′

(
f(x)−

∑
v⊂u′

fv(x)

)
dx−u′ =

∫
Ω−u′

f(x)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy

∫
Ω−u′

Φ(x, y)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy

∫
Ω−u′

d∏
j=1

φ(xj, yj)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy
∏
j∈u′

φj(xj, yj)

∫
Ω−u′

∏
j /∈u′

φj(xj, yj)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

β̃y
∏
j∈u′

φi(xi, yi)−
∑
v⊂u′

fv(x),
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where β̃y = βy
∫

Ω−u′

∏
j /∈u′ φj(xj, yj)dx−u′ . Hence, since

∑
y∈X β̃yφu′(·, yi) ∈ NΦu′

and fv ∈

Fv for any |v| ≤ k, we have fu′ ∈ Fu′ = {f = fv + gu′ |gu′ ∈ NΦu′
, v ⊂ u′, fv ∈ Fv}.

Therefore, by induction, fu ∈ Fu = {fv + gu|gu ∈ NΦu , v ⊂ u, fv ∈ Fv} is true for any

u ⊆ D.

Since any element of an RKHS is bounded (Aronszajn, 1950), we may use the dominated

convergence theorem (Bartle, 1995) to interchange the integral and the limit of the finite

sums to extend to an arbitrary element.

By Lemma A.1, we have f(x) =
∑

u⊆D fu(x), where fu(x) ∈ Fu = {fv + gu|gu ∈

NΦu , v ⊂ u, fv ∈ Fv}. Thus, by the fact that g
(1)
u + g

(2)
u ∈ NΦu for g

(1)
u , g

(2)
u ∈ NΦu , f(x) can

be represented as f(x) =
∑

u⊆D fu(x), where fu ∈ NΦu .

B Algorithm for Estimation

1. Let A denote the set of active groups and C the set of candidate groups. Start with

A = ∅ and C = {(u, r)|u = {1}, . . . , {d}, r = 1}. Set an initial penalty λmax and a

small increment ∆.

2. Set up an overlapping group lasso algorithm which minimizes the penalized likelihood

function

1

n

n∑
i=1

yi − ∑
(u,r)∈C

nu(r)∑
k=1

βrku ϕ
rk
u (xiu)

2

+ λ
∑

(u,r)∈C

√√√√Nu(r)
∑
v⊆u

∑
s≤r

nv(s)∑
k=1

(βskv )2.

Denote the input-output function as β̂λ = grplasso(λ, C, β̂λ+∆). The inputs include

a penalty value λ, the candidate set C and the estimated coefficient with penalty value

λ+ ∆, and the output β̂λ is the corresponding estimated coefficient by the algorithm.

Start with λ = λmax and β̂λ+∆ = 0.

3. Do β̂λ = grplasso(λ, C, β̂λ+∆) and obtain the set of active groups A′ ⊆ C based on

β̂λ. Set λ = λ−∆. If A′ \A 6= ∅, then A ← A′ and C ← C ∪C ′, where C ′ contains the

new candidate groups necessary to satisfy strong effects heredity given the updated A.

4. Repeat step 3 until some convergence criterion is met.
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C Confidence Interval Algorithm

1. Let ϕ∗ denote the basis function evaluations at a particular predictive location

x∗. Extend ϕ∗ to a basis of Rp and denote it as A = (ϕ∗, c2, . . . , cp). Compute

(Z̃i, Q̃i)
T = A−1ϕi for i = 1, . . . , n and (η̂1, η̂

T
(−1)) = AT β̂λ, where β̂λ is the estimated

coefficient with penalty λ.

2. Compute the estimated decorrelated score function

Ŝ(0, η̂(−1)) = − 1

nσ̂2

n∑
i=1

(yi − η̂T(−1)Q̃i)(Z̃i − ŵT Q̃i),

where

ŵ = arg min

∥∥∥∥ 1

n

n∑
i=1

Q̃i(Z̃i − wT Q̃i)

∥∥∥∥
2

+ λ′′‖w‖1,

and σ̂2 is a consistent estimator of σ2. For example, σ2 can be estimated by

σ̂2 = 1
n−s
∑n

i=1(yi − β̂Tλ ϕi)
2, where s the the number of non-zero elements in β̂λ.

Another estimator is the cross-validation based variance estimator. Define the K

cross-validation folds as {D1, . . . , DK} and compute

σ̂2 = min
λ

1

n

K∑
k=1

∑
i∈Dk

(yi − (β̂
(−k)
λ )Tϕi)

2,

where β̂
(−k)
λ is the overlapping group lasso estimate at λ over the data after the kth

fold is omitted. This estimator has been used for the variance estimation in lasso

regression problems. See Fan et al. (2012).

3. Compute the interval

[cα/2/b, c1−α/2/b],

where cα/2 = −Ŝ(0, η̂(−1)) +
√

b
n
Φ−1(α/2), c1−α/2 = −Ŝ(0, η̂(−1)) +

√
b
n
Φ−1(1− α/2),

b = 1
nσ̂2

∑n
i=1 Z̃i(Z̃i− ŵT Q̃i). By some algebraic manipulation, one can show that this

interval is same as the one in Corollary 5.1.
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D Confidence Interval Algorithm Modification for Large n

1. In Algorithm C, replace Q̃i by Q̃∗i and p by p∗, where the nuisance ϕij, j = 1, . . . , p∗

only contain basis functions in the candidate groups at the selected λ, say Cλ.

2. Replace ŵ by

ŵ∗ =

(
n∑
i=1

Q̃∗iQ̃
T
∗i + ηIp∗−1

)−1( n∑
i=1

Q̃∗iZ̃i

)
(D.1)

with a small positive η, where Ip∗−1 is a (p∗ − 1)× (p∗ − 1) identity matrix.

3. For the deterministic case (4),

(i) DefineK cross-validation folds as {D1, . . . , DK} and partition the original samples

{xi, yi}ni=1 via the k folds.

(ii) Regard σ̂2 in Algorithm C as an unknown parameter. Let û(−k)(x∗, σ̂2) and

l̂(−k)(x∗, σ̂2) be the upper and lower limits at a predictive location x∗ by Algorithm

C over the data after the kth fold is omitted, respectively.

(iii) Replace σ̂2 by

σ̂2
∗ = arg min

σ̂2

∣∣∣∣∣
(

1

n

K∑
k=1

∑
i∈Dk

1{yi ∈ [l̂(−k)(xi, σ̂
2), û(−k)(xi, σ̂

2)]}

)
− (1− α)

∣∣∣∣∣ ,
where 1{A} is an indicator function of the set A.

E Proof of Theorem 4.1

E.1 Notation and Reformulation

First, we introduce some additional notation. For a matrix M = [Mjk], let ‖M‖max =

maxj,k |Mjk|, ‖M‖1 =
∑

j,k |Mjk|, and ‖M‖l∞ = maxj
∑

k |Mjk|. For v = (v1, ..., vp)
T ∈ Rp,

and 1 6 q < ∞, define ‖v‖q = (
∑p

i=1 |vi|q)1/q. Define ‖v‖0 = |{i : vi 6= 0}|. For

S ⊆ {1, ..., p}, let vS = {vj : j ∈ S} and S̄ be the complement of S. Given a, d ∈ R, we use

a ∨ b and a ∧ b to denote the maximum and minimum of a and b.

For convenience, we restate the loss function as follows. Consider groups J1, ..., Jpn ,

where Jj ⊆ {1, ..., p}, and
⋃pn
j=1 Jj = {1, ..., p}. Notice that we do not require Jj1

⋂
Jj2 = ∅.
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Define Ck = {j : k ∈ Jj} and ck = |Ck|. Thus, Ck is the set of indices of the groups variable

k belongs to and ck is the number of groups that variable k belongs to. We can also treat

ck as replicates of index k. For notational simplicity, in the proof we write β̂n and β∗n as

β̂ and β∗, respectively. We also write ϕn(Xi) as ϕi for simplicity. Define the vector of

variable k coefficients over all groups in which it appears βZkCk = (βkjk1 , . . . , βkjkck )T , where

jkl denotes the index of variable k within the lth group in which it appears, and the vector of

all coefficients βZ = ((βZ1C1
)T , . . . , (βZpCp)

T )T . Let βJj = (βkj)
T
k∈Jj , where βkj is the coefficient

of the kth variable and k is in jth group. Let dj = |Jj|. Consider the following optimization

problem

β̂Z,λn = arg min
βZ

{
1

2n

n∑
i=1

(yi −
p∑

k=1

( ck∑
m=1

βkjkm

)
ϕki)

2 + λn

pn∑
j=1

√
dj‖βJj‖2

}
, (E.2)

where λn is a positive number. We define the overlapping group lasso estimator as

β̂λn =

( c1∑
k=1

β̂λn1j1k
, ...,

cp∑
k=1

β̂λnpjpk

)T
, (E.3)

in which we stress λn since it will influence the solution of (E.2). Notice that by this

definition, the least squares term becomes 1
2n

∑n
i=1(yi − ϕTi β̂λn)2, which is the same as in

original group lasso case. We use 1
2n

instead of 1
n

for brevity of the Karush-Kuhn-Tucker

(KKT) conditions, which are as following.

Proposition E.1. Let ϕ be the matrix with rows ϕTi , i = 1, . . . , n. Let ψj denote the jth

column of ϕ, for j = 1, . . . , p. Necessary and sufficient conditions for β̂Z to be a solution to

(E.2) are

− 1

n
ψTj (y − ϕβ̂λn) +

λn
√
dkβ̂

λn
jk

‖β̂λnJk ‖2

= 0, ∀j ∈ Jk with β̂λnJk 6= 0

‖ − 1

n
ψTj (y − ϕβ̂λn)‖2 6 λn

√
dk, ∀j ∈ Jk with β̂λnJk = 0.

The following lemma Liu and Zhang (2009) states that at most n groups can be nonzero.

Lemma E.1. Suppose λn > 0, a solution β̂Z,λn exists such that the number of nonzero

groups |S(β̂Z,λn)| 6 n, the number of data points, where S(β) = {Jj : β̂Jj 6= 0}.
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Proof. The proof of Lemma 1 in Liu and Zhang (2009) is also valid here.

By Lemma E.1, for brevity, sometimes we say β̂λn with |S(β̂Z,λn)| 6 n, which is derived

by combining (E.2) and (E.3), is the solution of (E.2). We will also write ‖y−ϕβ‖2
2 instead of∑n

i=1

(
yi−

∑p
k=1

(∑ck
m=1 βkjkm

)
ϕki

)2

. Let c̄ = maxj{c1, ..., cp} and d̄ = maxj{d1, ..., dpn},

the maximum number of groups a variable appears in and maximum group size, respectively.

Let s be the number of nonzero elements in β∗ and p be the dimension of β∗. Notice that s

and p (as well as c̄ and d̄) can depend n.

E.2 Proof of Theorem 4.1

Our proof follows a similar line to Meinshausen and Yu (2009), but extends their results to

the overlapping group lasso. We only need to show the stochastic case. The deterministic

case is true because the proof is still valid by taking ε = 0. A sketch of the proof is as follows.

We first define the coefficients obtained from the de-noised model as a de-noised estimator.

Then, by showing the difference between the de-noised estimator and true coefficients, and

the difference between de-noised estimator and the estimator obtained via overlapping group

lasso are both small, we obtain l2 convergence. All the proofs of the lemmas in this section

are in Appendix H.

Before we state and prove the main result, we introduce a definition which is useful in

the proof.

Definition E.1. Denote y(ξ) = ϕβ∗+ξ(ε+δ) as a de-noised model with level ξ (0 6 ξ 6 1),

we define

β̂λ,ξ = arg min
β

1

2n
‖y(ξ)− ϕβ‖2

2 + λn

pn∑
j=1

√
dj‖βJj‖2 (E.4)

to be the de-noised estimator at noise level ξ, where β̂λ,ξ is defined similarly as in (E.3).

In order to characterize the eigenvalues of a matrix under sparsity, we introduce the

following definition, which can be found in Meinshausen and Yu (2009).

Definition E.2. The m-sparse minimum and maximum eigenvalue of a matrix C = 1
n
ϕTϕ

are φmin(m) = minβ:‖β‖06m
βTCβ
βT β

and φmax(m) = maxβ:‖β‖06m
βTCβ
βT β

. Also, denote φmax =

φmax((sc̄+ n)d̄) where s, c̄, and d̄n are defined as in section E.1.
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Now we introduce an assumption concerning φmin(·) and φmax. Detailed discussion has

been shown in Meinshausen and Yu (2009).

Assumption E.1. There exist constants 0 < κmin 6 κmax <∞ such that

lim infn→∞ φmin(sc̄d̄max{log n, c̄}) > κmin and lim supn→∞ φmax 6 κmax.

For continuity, we repeat Theorem 4.1 here.

Theorem 4.1. Under Assumption E.1, if λn � σ
√

log p
n

, d̄2 = o(log n), and ‖y(·) −

ϕ(·)Tβ∗‖∞ = Op(λn), for the (overlapping) group lasso estimator constructed in (E.2) and

(E.3), with probability tending to 1 for n→∞,

‖β̂λn − β∗‖2
2 .

c̄2sd̄ log p

n
.

Let βλn = β̂λn,0. The l2-consistency can be obtained by bounding the bias and variance

terms, i.e.

‖β̂λn − β∗‖2
2 6 2‖β̂λn − βλn‖2

2 + 2‖βλn − β∗‖2
2.

Remark E.1. The condition ‖y(·) − ϕ(·)Tβ∗‖∞ = Op(λn) implies Bi = Op(λn). In the

proof of Theorem 4.1, the condition Bi = Op(λn) is sufficient.

Let T = {t : β∗i 6= 0, β∗it is a component of βZ∗} represent the set of indices for all the

groups with possibly nonzero coefficient vectors. Let sn = |T |. Thus, sn 6 sc̄. The solution

βλn can, for each value of λn, be written as βλn = β∗ + γλn , where γλn is defined as the

solution of the following optimization problem:

arg min
γ

f(γ, γZ)

s.t.

ci∑
k=1

βZik = β∗i , i = 1, ..., p; (E.5)

ci∑
k=1

γZijik = γi, i = 1, ..., p,
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where

f(γ, γZ) = nγTAγ + λn
∑
t∈T c

√
dt‖γZt ‖2 + λn

∑
t∈T

√
dt(‖γZt + βZt ‖2 − ‖βZt ‖2),

where A = 1
n
ϕTϕ. This optimization problem is obtained by plugging β∗ + γλn into (E.4).

Notice the arg min problem is with respect to γ instead of (γ, γZ).

Next, we state a lemma which bounds the l2-norm of γλn . Its proof is provided in

Appendix H.1.

Lemma E.2. Under Assumption E.1, with a positive constant C, the l2-norm of γλn

is bounded for sufficiently large values of n by ‖γλn‖2 6 λn
√
c̄snd̄

n

/(√
κmin

2
(1− 4d̄

logn
) −√

2κmaxd̄2

logn

)
.

Now, we bound the variance term. For every subset M ⊂ {1, ..., p} with |M | 6 n, denote

θ̂M ∈ R|M | the restricted least square estimator of the noise ε,

θ̂M = (ϕTMϕM)−1ϕTM(ε+B), (E.6)

where B = (B1, .., Bn)T and ε = (ε1, .., εn)T . Now we state lemmas, which bound the l2-norm

of this estimator, and are also useful for the following parts of this development. First

we define sub-exponential variables, sub-exponential norms, sub-Gaussian variables, and

sub-Gaussian norms.

Definition E.3. (sub-exponential variable and sub-exponential norm) A random variable

X is called sub-exponential if there exists some positive constant K1 such that P(|X| >

t) 6 exp(1 − t/K1) for all t > 0. The sub-exponential norm of X is defined as ‖X‖ψ1 =

supq>1 q
−1(E|X|q)1/q.

Definition E.4. (sub-Gaussian variable and sub-Gaussian norm) A random variable X is

called sub-Gaussian if there exists some positive constant K2 such that P(|X| > t) 6

exp(1 − t2/K2) for all t > 0. The sub-Gaussian norm of X is defined as ‖X‖ψ2 =

supq>1 q
−1/2(E|X|q)1/q.
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Lemma E.3. Let m̄n be a sequence with m̄n = o(n) and m̄n →∞ for n→∞

max
M :|M |6m̄n

‖θM‖2
2 6 C2 m̄n log p

nφ2
min(d̄)

.

Proof. See Appendix H.2.

Now define Aλn,ξ to be

Aλn,ξ =

{
k : λn

√
dkβ̂jk

‖β̂Jk‖2

=
1

n
ψTj (Y (ξ)− ϕβ̂), with j ∈ Jk

}
,

which represents the set of active groups for the de-noised problem.

Lemma E.4. If, for a fixed value of λn, the number of active variables of the de-noised

estimators β̂λn,ξ is for every 0 6 ξ 6 1 bounded by m′, then

‖β̂λn,0 − β̂λn‖2
2 6 C max

M :|M |6m′
‖θM‖2

2.

Proof. See Appendix H.3.

The next lemma provides an asymptotic upper bound on the number of selected variables.

Lemma E.5. For λn >
√

log p
n

, the maximal number of selected variables, sup06ξ61

∑
k∈Aλ,ξ dk,

is bounded, with probability tending to 1 for n→∞, by

sup
06ξ61

∑
k∈Aλ,ξ

dk 6 C1snd̄c̄.

Proof. See Appendix H.4.

Now combining Lemmas E.3, E.4, and E.5, we have

‖β̂λn,0 − β̂λn‖2
2 6 C

sd̄c̄2 log p

nφ2
min(sd̄c̄2)

.
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Combining this and Lemma E.2, gives

‖β̂λn − β‖2
2 6 C

sd̄c̄2 log p

nφ2
min(sd̄c̄2)

+
λ2
nc̄

2sd̄

n2

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

6 C
sd̄c̄2 log p

n
+ C

c̄2sd̄ log p

n

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

.
c̄2sd̄ log p

n
,

which completes the proof of Theorem 4.1.

F Proof of Corollary 4.1

Since β∗ satisfies (3), ∫
Ω

ϕ(x)(y(x)− ϕ(x)Tβ∗)dx = 0.

Therefore, the oracle risk of β̂ can be bounded by∫
Ω

(y(x)− ϕ(x)T β̂)2dx−
∫

Ω

(y(x)− ϕ(x)Tβ∗)2dx

=

∫
Ω

(2y(x)− ϕ(x)T β̂ − ϕ(x)Tβ∗)(ϕ(x)T (β∗ − β̂))dx

=

∫
Ω

(2y(x)− 2ϕ(x)Tβ∗ + ϕ(x)Tβ∗ − ϕ(x)T β̂)(ϕ(x)T (β∗ − β̂))dx

=

∫
Ω

(ϕ(x)Tβ∗ − ϕ(x)T β̂)(ϕ(x)T (β∗ − β̂))dx

=

∫
Ω

(β∗ − β̂)Tϕ(x)ϕ(x)T (β∗ − β̂)dx

6C‖β∗ − β̂‖2
2,

where the last inequality is because of Assumption E.1. Because ‖y(·)−ϕ(·)Tβ∗‖∞ = Op(λn),

we have
∫

Ω
(y(x)− ϕ(x)Tβ∗)2dx = Op(λ

2
n), which completes the proof.
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G Proof of Theorem 5.1

In this section we will prove Theorem 5.1. A sketch of proof is as follows, following the

overall approach in Ning and Liu (2017). First, we introduce a decorrelated score function,

and prove the decorrelated function converges weakly to a normal distribution under l2-

consistency, which is stated in Theorem G.1. The result is then applied to the overlapping

group lasso model with known variance of error. Then by showing the difference between

the decorrelated score function with known variance and decorrelated score function with

estimated variance is small, we finish the proof of Theorem 5.1.

G.1 Hypothesis Test based on Decorrelated Function and l2-Consistency

In this section, we will introduce a decorrelated score function, and prove several results

similar to Ning and Liu (2017) but with l2-consistency instead of l1. Suppose we are given

n independently identically distributed U1, ..., Un, which come from the same probability

distribution following from a high dimensional statistical model P = {Pβ : β ∈ Ω}, where β

is a p dimensional unknown parameter and Ω is the parameter space. Let the true value of

β be β∗, which is sparse in the sense that the number of non-zero elements of β is much

smaller than n, order log n. We consider the case in which we are interested in only one

parameter. Suppose β = (β1, β−1), where β1 ∈ R and β−1 ∈ Rp−1. Let β∗1 and β∗−1 be the

true value of β1 and β−1, respectively. For simplicity, we assume the null hypothesis is

H0 : β∗1 = 0, which can be generalized to the case β∗1 = β1,0 in a straight forward manner.

Suppose the negative log-likelihood function is

`(β1, β−1) =
1

n

n∑
i=1

(− log f(Ui; β1, β−1)),

where f is the p.d.f. corresponding to the model Pβ, which it will be assumed has at least

two continuous derivatives with respect to β. The information matrix for β is defined as

I = Eβ(∇2`(β)), and the partial information matrix is Iβ1|β−1 = Iβ1β1 − Iβ1β−1I
−1
β−1β−1

Iβ−1β1 ,

where Iβ1β1 , Iβ1β−1 , Iβ−1β−1 , and Iβ−1β1 are the corresponding partitions of I. Let I∗ =

Eβ∗(∇2`(β∗)).

In this paper, we are considering testing parameters for high dimensional models and,
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as mentioned in Ning and Liu (2017), the traditional score function does not have a simple

limiting distribution in the high dimensional setting. Thus, we use a decorrelated score

function as mentioned in Ning and Liu (2017) defined as

S(β1, β−1) = ∇β1`(β1, β−1)− wT∇β−1`(β1, β−1),

where w = I−1
β−1β−1

Iβ−1β1 . Notice that Eβ(S(β)∇β−1`(β)) = 0. Suppose we are given the

estimator β̂ = (β̂1, β̂−1) and tuning parameter λ′. We estimate ŵ by solving

ŵ = arg min ‖w‖1, s.t. ‖∇2
β1β−1

`(β̂)− wT∇2
β−1β−1

`(β̂)‖2 6 λ′. (G.7)

We use this method to estimate w because since w has dimension d which is much greater

than n, we need some sparsity of w, which is useful in the rest part of this paper. Thus, we can

obtain estimated decorrelated score function Ŝ(β1, β̂−1) = ∇β1`(β1, β̂−1)− ŵT∇β−1`(β1, β̂−1).

Along the same lines as Ning and Liu (2017), we need the following assumptions.

Assumption G.1 states that the estimators β̂ and ŵ converge to zero. However, we assume

l2-consistency here, which is weaker than the condition in Ning and Liu (2017).

Assumption G.1. Assume that

lim
n→∞

Pβ∗(‖β̂−1 − β∗−1‖2 . η1(n)) = 1 and lim
n→∞

Pβ∗(‖ŵ − w∗‖1 . η2(n)) = 1,

where w∗ = I∗−1
β−1β−1

I∗β−1β1
, and η1(n) and η2(n) converges to 0, as n→∞.

Assumption G.2 states that the derivative of log-likelihood function is near zero at the

true parameters.

Assumption G.2. Assume that

lim
n→∞

Pβ∗(‖∇β−1l(0, β
∗
−1)‖∞ . η3(n)) = 1,

for some η3(n)→ 0, as n→∞.

Assumption G.3 states that the Hessian matrix is relative smooth, so that we can use λ′

to control η4(n).

12



Assumption G.3. Assume that for β−1,ν = νβ∗−1 + (1− ν)β̂−1 with ν ∈ [0, 1],

lim
n→∞

Pβ∗( sup
ν∈[0,1]

‖∇2
β1β−1

l(0, β−1,ν)− ŵT∇2
β−1β−1

l(0, β−1,ν)‖2 . η4(n)) = 1,

for some η4(n)→ 0, as n→∞.

Assumption G.4 is the central limit theorem for a linear combination of the score

functions.

Assumption G.4. For v∗ = (1,−w∗T )T , it holds that

√
nv∗T∇l(0, β∗−1)√

vT I∗v

dist.−→ N(0, 1),

where I∗ = Eβ∗(∇2l(0, β∗−1)). Furthermore, assume that C ′ 6 I∗β1|β−1
<∞, where I∗β1|β−1

=

I∗β1β1 − w
∗T I∗β−1β1

, and C ′ > 0 is a constant.

Assumption G.5 states that we can estimate the information matrix relatively accurately.

Assumption G.5. Assume

lim
n→∞

Pβ∗(‖∇2l(β̂)− I∗‖max . η5(n)) = 1

for some η5(n)→ 0, as n→∞.

Now under Assumptions G.1 to G.5, we can prove a version of Theorem 3.5 in Ning and

Liu (2017) which applies to the (potentially) overlapping group lasso.

Theorem G.1. Under Assumptions G.1 to G.5, with probability tending to one,

n1/2|Ŝ(0, β̂−1)− S(0, β∗−1)| . n1/2(η2(n)η3(n) + η1(n)η4(n)). (G.8)

If n1/2(η2(n)η3(n) + η1(n)η4(n)) = o(1), we have

n1/2Ŝ(0, β̂−1)I
∗−1/2
β1|β−1

dist.−→ N(0, 1). (G.9)
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Proof. See Theorem 3.5 in Ning and Liu (2017). The only difference is under l2-consistency,

|I1| 6 ‖∇2
β1β−1

l(0, β̃−1)− ŵT∇2
β−1β−1

l(0, β̃−1)‖2‖β̂−1 − β∗−1‖2 . η1(n)η4(n).

Corollary G.1. Assume that Assumptions G.1 to G.5 hold. It also holds that ‖w∗‖1η5(n) =

o(1), η2(n)‖I∗β1β−1
‖∞ = o(1), and n1/2(η2(n)η3(n) + η1(n)η4(n)) = o(1). Under H0 : β∗1 = 0,

we have for any t ∈ R,

lim
n→∞

|Pβ∗(Ûn 6 t)− Φ(t)| = 0, (G.10)

where Û = n1/2Ŝ(0, β̂−1)Î
−1/2
β1|β−1

.

Proof. See the proof of Corollary 3.7 in Ning and Liu (2017).

G.2 Linear model and the corresponding decorrelated score function

Now we apply the consequences of the general results to the linear model as described in the

previous section. In this section we first assume that the variance of noise is known. Consider

the linear regression, yi = β∗1ϕi1 + β∗T−1ϕi,−1 +Bi + εi, where ϕi1 ∈ R, ϕi,−1 ∈ Rp−1, Bi ∈ R,

and the error εi satisfies E(εi) = 0, E(ε2i ) = σ2 > 0 for i = 1, ..., n. Let ϕi = (ϕi1, ϕ
T
i,−1)

T

denote the collection of all covariates for subject i. We first assume σ2 is known.

Consider the overlapping group lasso estimator (E.3), the decorrelated score function is

S(β1, β−1) = − 1

nσ2

n∑
i=1

(yi − β1ϕi1 − βT−1ϕi,−1)(ϕi1 − wTϕi,−1),

where w = Eβ(ϕi,−1ϕ
T
i,−1)−1Eβ(ϕi1ϕi,−1). Since the distribution of the design matrix does

not depend on β, we can replace Eβ(·) by E(·) for notation simplicity. Under the null

hypothesis, H0 : β∗1 = 0, the decorrelated score function can be estimated by

Ŝ(0, β̂−1) = − 1

nσ2

n∑
i=1

(yi − β̂T−1ϕi,−1)(ϕi1 − ŵTϕi,−1),
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where

ŵ = arg min ‖w‖1, s.t.

∥∥∥∥ 1

n

n∑
i=1

ϕi,−1(ϕi1 − wTϕi,−1)

∥∥∥∥
2

6 λ′.

The (partial) information matrices are

I∗ = σ−2E(ϕi,−1ϕ
T
i,−1), and I∗β1|β−1

= σ−2(E(ϕ2
i1)− E(ϕi1ϕ

T
i,−1)E(ϕi,−1ϕ

T
i,−1)−1E(ϕi,−1ϕi1)),

which can be estimated by

Î =
1

nσ2

n∑
i=1

ϕi,−1ϕ
T
i,−1, and Îβ1|β−1 = σ−2

{
1

n

n∑
i=1

ϕ2
i1 − ŵT

(
1

n

n∑
i=1

ϕi,−1ϕi1

)}
,

respectively. Thus, the score test statistic is Ûn = n1/2Ŝ(0, β̂−1)Î
−1/2
β1|β−1

.

The following theorem states the asymptotic distribution Ûn under null hypothesis.

Theorem G.2. Assume that

1. λmin(E(ϕiϕ
T
i )) > 2κmin for some constant κmin > 0, and lim supn→∞ φmax 6 κmax,

where φmax is defined in Definition E.2.

2. Let S = supp(β∗) and S ′ = supp(w∗) satisfy |S| = s and |S ′| = s′. Let c̄ be the

maximal number of replicates, d̄ be the maximal number of group size. Assume

n−1/2(s ∨ s∗) log p = o(1), d̄2 = o(log n) and c̄2d̄
log p

= o(1).

3. εi, w
∗Tϕi,−1, and ϕij are all sub-Gaussian with ‖εi‖Ψ2 6 C, ‖w∗Tϕi,−1‖Ψ2 6 C, and

‖ϕij‖Ψ2 6 C, where C is a positive constant.

4. λ′ �
√

log p
n

and λ � σ
√

log p
n

.

5. Bi .
√

log p
n

.

Then under H0 : β∗1 = 0 for each t ∈ R,

lim
n→∞

|Pβ∗(Ûn 6 t)− Φ(t)| = 0.

15



Proof. Before the proof, we need the following lemmas in Ning and Liu (2017), which is

used to ensure the assumptions of Theorem G.1 and Corollary G.1 hold. The proofs of

Lemmas G.1, G.3, and G.4 can be found in Ning and Liu (2017). In the proof of Lemma

G.4, one need to notice that ϕTB can be bounded by assumption.

Lemma G.1. Under the conditions of Theorem G.2, with probability at least 1 − p−1,

‖ 1
n

∑n
i=1(ϕi1ϕi,−1 − ŵTϕi,−1ϕ

T
i,−1)‖∞ 6 C

√
log p
n

, for some C > 0.

Lemma G.2. Under the conditions of Theorem G.2, with probability at least 1− p−1,

‖β̂ − β∗‖2
2 6 C1

c̄2sd̄ log p

n
, and (β̂ − β∗)THϕ(β̂ − β∗) 6 C1κmax

c̄2sd̄ log p

n
,

where Hϕ = n−1
∑n

i=1 ϕiϕ
T
i and the constant C1 > 0.

Proof. The first inequality is by Theorem 4.1. The second inequality is trivial.

Lemma G.3. Under the conditions of Theorem G.2, with probability at least 1− p−1,

‖ŵ − w∗‖1 6 8Cκ−1s′
√

log p

n
,

where C > 0 is a constant.

Lemma G.4. Under the conditions of Theorem G.2, it holds that T ∗
dist.−→ N(0, 1), and

sup
x∈R
|Pβ∗(T ∗ 6 x)− Φ(x)| 6 Cn−1/2,

where T ∗ = n1/2S(0, β∗−1)/I
∗1/2
β1|β−1

and C is a positive constant not depending on β∗.

Now we can check that the assumptions of Theorem G.1 and Corollary G.1 hold, which

finishes the proof of Theorem G.2.

Next we introduce some lemmas which give properties of sub-exponential variables and

norms, as well as sub-Gaussian variables and norms, which will be used in the proof of

Theorem 5.1.
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Lemma G.5. (Bernstein Inequality) Let X1, ..., Xn be independent mean 0 sub-exponential

random variables and let K = maxi ‖Xi‖Ψ1 . Then for any t > 0,

Pβ∗
(

1

n

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ > t

)
6 2 exp

[
− C min

(
t2

K2
,
t

K

)
n

]
,

where C > 0 is a constant.

Lemma G.6. Under the conditions of Theorem G.2 with probability at least 1 − p−1,

‖ 1
n

∑n
i=1 ϕiεi‖∞ 6 C

√
log p
n

, for some C > 0.

The proofs of Lemmas G.5 and G.6 can be found in Ning and Liu (2017). Now, we can

begin the proof of Theorem 5.1.

Proof. The proof is similar to Ning and Liu (2017) with a few changes. It is enough to show

for any ε > 0,

lim
n→∞

sup
β∗∈Ω0

Pβ∗(|Ũn − Ûn| > ε) = 0. (G.11)

Notice that |Ũn − Ûn| = |Ûn||1 − σ∗

σ̂
|. For a sequence of positive constants tn → 0 to be

chosen later, we can show that limn→∞ supβ∗∈Ω0
Pβ∗(|Ûn| > t−1

n ) = 0. It remains to show

that

lim
n→∞

sup
β∗∈Ω0

Pβ∗
(
|1− σ∗

σ̂
| > tn

)
= 0. (G.12)

Notice that

σ̂2 − σ∗2 =

(
1

n

n∑
i=1

(Bi + εi)
2 − σ∗2

)
+ ∆̂THϕ∆̂− 2∆̂T 1

n

n∑
i=1

(εi +Bi)ϕi

=

(
1

n

n∑
i=1

(Bi + εi)
2 − σ∗2

)
+ ∆̂THϕ∆̂− 2∆̂T 1

n

n∑
i=1

εiϕi − 2∆̂T 1

n

n∑
i=1

Biϕi

=

(
1

n

n∑
i=1

ε2i − σ∗2
)

+ ∆̂THϕ∆̂− 2∆̂T 1

n

n∑
i=1

εiϕi +
1

n

n∑
i=1

B2
i +

1

n

n∑
i=1

εiBi − 2∆̂T 1

n

n∑
i=1

Biϕi.

(G.13)

where ∆̂ = β̂ − β∗. Since ‖ε2i ‖ψ1 6 2C2, by Lemma G.5, | 1
n

∑n
i=1 ε

2
i − σ∗2| 6 C

√
logn
n

, for
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some constant C, with probability tending to one. By Lemma G.2, we have ∆THϕ∆ 6

C1κmax
c̄2sd̄ log p

n
, for some constant C1, with probability tending to one. By Lemma E.5 and

Lemma G.2, we have

‖∆̂‖1 6 C1sd̄c̄
2‖∆̂‖2

6 C2sd̄c̄
2

√
c̄2sd̄ log p

n
,

for some constant C2 > 0. By Lemma G.6, we have

∥∥∥∥ 1

n

n∑
i=1

εiϕi

∥∥∥∥
∞

6 C3

√
log p

n
.

By Lemma G.5, | 1
n

∑n
i=1 εiBi| .

√
1/n. By the assumptions of Theorem G.2, 1

n

∑n
i=1B

2
i .

log p
n

. Thus,

∣∣∣∣∆̂T 1

n

n∑
i=1

εiϕi

∣∣∣∣ 6 ‖∆̂‖1

∥∥∥∥ 1

n

n∑
i=1

εiϕi

∥∥∥∥
∞

6 C4sd̄c̄
2
√
c̄2sd̄

log p

n
,

for some constant C4 > 0. By assumption Bi .
√

log p
n

,

∣∣∣∣∆̂T 1

n

n∑
i=1

Biϕi

∣∣∣∣ 6 ‖∆̂‖1

∥∥∥∥ 1

n

n∑
i=1

Biϕi

∥∥∥∥
∞

6 C5sd̄c̄
2
√
c̄2sd̄

log p

n
,

for some constant C5 > 0. Thus, by (G.13), we have

|σ̂2 − σ∗2| 6 C0

√
log n

n
∨ (c̄2sd̄)3/2 log p

n
,

for some constant C0, with probability tending to one. Thus,

|1− σ∗

σ̂
| = σ̂−2|1 +

σ∗

σ̂
||σ̂2 − σ∗2| . |σ̂2 − σ∗2| .

√
log n

n
∨ (c̄2sd̄)3/2 log p

n
,
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with probability tending to one, because σ∗2 > C2 and σ̂2 = σ∗2 + oP(1). Thus, if we choose

tn &
√

logn
n
∨ (c̄2sd̄)3/2 log p

n
, then (G.12) holds and (G.11) holds. Then by Theorem G.2, the

result holds.

H Proofs of Lemmas

H.1 Proof of Lemma E.2

Proof. For simplicity, we use λ instead of λn, γ instead of γλ, and γZ instead of γZ,λ

in Appendix H. In this proof we will use γt instead of γJt for brevity. Let γZ(T ) be

the vector with elements γZijik(T ) = γZijikI{β∗i 6=0}. Similarly, γZijik(T
c) = γZijikI{β∗i =0}. Thus,

γZ = γZ(T ) + γZ(T c). Notice {β∗i 6= 0} = {i ∈ Jt, for some t ∈ T}. Since f(0, 0) = 0,

and (E.5) is a minimizing problem, we have f(γ, γZ) 6 0. Since γTCγ > 0 for any

γ, and ‖βZt ‖2 − ‖γZt + βZt ‖2 6 ‖γZt ‖2 for any t ∈ T , combining f(γ, γZ) 6 0, we have∑
t∈T c
√
dt‖γZt ‖2 6

∑
t∈T
√
dt‖γZt ‖2. Also, we have

∑
t∈T

√
dt‖γZt ‖2 6

√∑
t∈T

dt‖γZ(T )‖2 6
√
snd̄‖γZ‖2. (H.14)

The first inequality is true because of Cauchy’s inequality, and the second inequality is true

because d̄ = max{d1, ..., dn} and sn = |T |.

For any βλijim1
and βλijim2

, if they are both not zero, by KKT conditions, we have

− 1

n
ψTi (y − ϕβ) +

λ
√
djim1

βλijim1

‖βJjim1
‖2

= 0, and − 1

n
ψTi (y − ϕβ) +

λ
√
djim2

βλijim2

‖βJjim2
‖2

= 0,

which indicates

λ
√
djim1

βλijim1

‖βJjim1
‖2

=
λ
√
djim2

βλijim2

‖βJjim2
‖2

.

Since λ > 0, we have βλijim1
βλijim2

> 0. Notice if βλijim1
or βλijim2

is zero, βλijim1
βλijim2

> 0 still

holds. Together with the constraints of optimization problem, we have γλijim1
γλijim2

> 0,
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which indicates ‖γZ‖2 6 ‖γ‖2. Thus, together with (H.14), we have

pn∑
t=1

√
dt‖γZt ‖2 6 2

√
snd̄‖γZ‖2 6 2

√
snd̄‖γ‖2. (H.15)

Since f(γ, γZ) 6 0, and ignoring the non-negative term λ
∑

t∈T c
√
dt‖γZt ‖2, it follows that

nγTCγ 6 λ
√
snd̄‖γZ‖2 6 λ

√
snd̄‖γ‖2. (H.16)

Next, we bound the term nγTCγ from below. Pplugging the result into (H.16) will yield

the desired upper bound on the l2-norm of γ. Let ‖γZ(1)‖2 > ‖γZ(2)‖2 > · · · > ‖γZ(pn)‖2 be the

ordered block entries of γ. Let {un} be a sequence of positive integers, such that 1 6 un 6 pn

and define the set of un-largest groups as U = {k : ‖γZk ‖2 > ‖γZ(un)‖2}. Define analogously as

before γZ(U), γZ(U c), γ(U), and γ(U c). Thus, γTCγ = (γ(U) + γ(U c))TC(γ(U) + γ(U c) =

‖a+ b‖2
2, where a = ϕγ(U)/

√
n and b = ϕγ(U c)/

√
n. Thus,

γTCγ = aTa+ 2bTa+ bT b > (‖a‖2 − ‖b‖2)2. (H.17)

Assume l =
∑pn

t=1 ‖γZt ‖2. Then for every t = 1, ..., pn, ‖γZ(t)‖2 6 l/t, since γZ(t) is the tth

largest group with respect to ‖ · ‖2. Thus,

‖γZ(U c)‖2
2 =

pn∑
t=un+1

‖γZ(t)‖2 6

( pn∑
t=1

‖γZt ‖2
2

)2 pn∑
t=un+1

1

t2
6

( pn∑
t=1

√
dt‖γZt ‖2

)2
1

un
, (H.18)

where the last inequality is because

pn∑
t=un+1

1

t2
6
∫ ∞
s=un

1

s2
ds =

1

un
,

and
√
dt > 1.

Together with (H.15), we have ‖γZ(U c)‖2
2 6 4snd̄‖γZ‖2

2
1
un

. Since γ(U) has at most
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∑
t∈U dt non-zero coefficients, and

∑
t∈U dt 6 und̄,

‖a‖2
2 > φmin

(∑
t∈U

dt

)
‖γ(U)‖2

2 > φmin

(∑
t∈U

dt

)
‖γZ(U)‖2

2

= φmin

(∑
t∈U

dt

)
(‖γZ‖2

2 − ‖γZ(U c)‖2
2) > φmin

(∑
t∈U

dt

)
(1− 4snd̄

un
)‖γZ‖2

2

> φmin(und̄)(1− 4snd̄

un
)‖γZ‖2

2. (H.19)

The first inequality is true because of the definition of φmin(·), and the equality is true

because γZ = γZ(U) + γZ(U c). From Lemma E.1, γ(U c) has at most n non-zero groups,

which indicates

‖b‖2
2 6 φmax(nd̄)‖γ(U c)‖2

2 6 φmax‖γ(U c)‖2
2 6 d̄φmax‖γZ(U c)‖2

2 6
4φmaxsnd̄

2

un
‖γZ‖2

2. (H.20)

The first inequality is true because the definition of φmax(·), the third inequality is true is

because of Cauchy’s inequality, and the last inequality is true because of (H.15) and (H.18).

Thus, plugging (H.19) and (H.20) into (H.17), and combining with the facts
∑

t∈U dt 6 d̄un

and φmax > φmin(un), under Assumption E.1, for sufficient large n, we have

‖a‖2 − ‖b‖2 >

(√
φmin(und̄)(1− 4snd̄

un
)−

√
4φmaxsnd̄2

un

)
‖γZ‖2

>

(√
φmin(und̄)(1− 4snd̄

un
)−

√
2κmaxsnd̄2

un

)
‖γZ‖2

Let un = sn log n, under Assumption E.1, for large n, we have

‖a‖2 − ‖b‖2 >

(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)
‖γZ‖2.

Together with (H.16), we have

λ
√
snd̄

n
‖γZ‖2 > γTCγ >

(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

‖γZ‖2
2.
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Since by Cauchy’s inequality, we have ‖γZ‖2
2 > ‖γ‖2

2/c̄. Thus,

‖γ‖2
2 6

λ2c̄snd̄

n2

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

,

which completes the proof.

H.2 Proof of Lemma E.3

Proof. From (E.6), for every M with |M | 6 m̄n,

‖θM‖2
2 6

1

n2φ2
min(m̄n)

‖ϕTM(ε+B)‖2
2 6

2

n2φ2
min(m̄n)

(‖ϕTMε‖2
2 + ‖ϕTMB‖2

2) (H.21)

By Lemma G.6, with probability at least 1− d−1, ‖
∑n

i=1 ϕiεi‖∞ 6 C1

√
n log p. Thus,

max
M :|M |6m̄n

‖ϕTMε‖2
2 6 m̄n‖

n∑
i=1

ϕiεi‖2
∞ 6 m̄nC

2
1n log p,

where the first inequality is true because ‖ϕTMε‖2
2 6 |M |‖ϕTMε‖2

∞, and |M | 6 m̄n.

By assumptions of Theorem 4.1,

max
M :|M |6m̄n

‖ϕTMB‖2
2 6 m̄n‖

n∑
i=1

ϕiBi‖2
∞ 6 m̄nC

2
2n log p.

Thus,

max
M :|M |6m̄n

‖θM‖2
2 6 C2 m̄n log p

nφ2
min(m̄n)

,

which finishes the proof.

H.3 Proof of Lemma E.4

Proof. Before the proof, we state a lemma.

Lemma H.1. For x ∈ Rq, suppose x̂1 = arg minx f1(x) and x̂2 = arg minx f2(x) where

f1(x) = 1
2
xTATAx + bTx with A ∈ Rn×q which is full rank and b ∈ Rq. Also, f2(x) =

f1(x) + cTx with c ∈ Rq. Let AZ , bZ and cZ be defined in the same way as before. Let
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g1(yZ) = 1
2
‖AZyZ‖2

2 +(bZ)TyZ +h(yZ) and g2(yZ) = 1
2
‖AZyZ‖2

2 +(bZ)TyZ +(cZ)TyZ +h(yZ),

where h(y) is a convex function with respect to y and everywhere sub-differentiable, and

define ŷZ1 = arg minZy g1(yZ) and ŷZ2 = arg minZy g1(yZ). Then we have

‖ŷ2 − ŷ1‖2 6 γ‖x̂2 − x̂1‖2.

Proof. Our proof is similar to Liu and Zhang (2009), with the only difference that ‖AZ(ŷZ1 −

ŷZ2 )‖2
2 + (cZ)T (ŷZ1 − ŷZ2 ) = ‖A(ŷ1 − ŷ2)‖2

2 + cT (ŷ1 − ŷ2).

Let M(ξ) = Aλ,ξ. Let 0 = ξ1 < ... < ξJ+1 = 1 be the points of discontinuity of M(ξ). At

these locations, variables either join the active set or are dropped from the active set. Fix

some j with 1 6 j 6 J . Denote by Mj be the set of active groups M(ξ) for any ξ ∈ (ξj, ξj+1).

Assuming

∀ξ ∈ (ξj, ξj+1) : ‖β̂λ,ξ − β̂λ,ξj‖2 6 C(ξ − ξj)‖θ̂Mj‖2 (H.22)

is true, where θMj is the restricted OLS estimator of noise. Then

‖β̂λ,0 − β̂λ‖2 6
J∑
j=1

‖β̂λ,ξj − β̂λ,ξj+1‖2

6 C max
M :|M |6m

‖θM‖2

J∑
j=1

(ξj+1 − ξj)

= C max
M :|M |6m

‖θM‖2.

By replacing x̂1, x̂2, ŷ1 and ŷ2 with ξθ̂Mj , ξj θ̂
Mj , β̂λ,ξ and β̂λ,ξj in Lemma H.1, respectively,

we obtain (H.22). Hence, we complete the proof.
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H.4 Proof of Lemma E.5

Proof. Our proof is similar to Meinshausen and Yu (2009). The only thing need to be

noticed is that for (38) in Meinshausen and Yu (2009), we have

(‖(ϕZAλ,ξ)
Tϕ(β − β̂λ,ξ)‖2 + ‖(ϕZAλ,ξ)

T (ε+B)‖2)2 6 2(‖(ϕZAλ,ξ)
Tϕ(β − β̂λ,ξ)‖2

2 + ‖(ϕZAλ,ξ)
T (ε+B)‖2

2)

6 2c̄(‖ϕTAλ,ξϕ(β − β̂λ,ξ)‖2
2 + ‖ϕTAλ,ξ(ε+B)‖2

2).

I Stochastic Function

In this section, a stochastic function is considered. In particular, this example demonstrates

tuning parameter selection. We consider the following function, which was used in Gramacy

and Lee (2009),

f(x1, x2, x3, x4, x5, x6) = exp
{

sin([0.9× (x1 + 0.48)]10)
}

+ x2x3 + x4 + ε, (I.23)

where ε ∼ N (0, 0.052) and xi ∈ [0, 1], i = 1, . . . , 6. The function is nonlinear in x1, x2 and

x3, and linear in x4. In x1, it oscillates more quickly as it reaches the upper bound of the

interval [0, 1]. x5 and x6 are irrelevant variables.

Here, we consider 5 replicates at each unique training location, n = 5m, as indicated in

Wang and Haaland (2018), along with ntest = 10, 000 unique predictive locations randomly

generated from a uniform distribution on [0, 1]d. Since the choice of tuning parameter λ

in (2) can be particularly crucial in stochastic function emulation, we consider AIC, BIC

and 10-fold CV as selection criteria. For the implementation of 10-fold CV, 10 CPUs are

requested for parallel computing. Table 1 shows the performance of traditional Gaussian

process, local Gaussian process, and MRFA with these three selection criterion based on

designs of increasing size n. It can be seen that, similar to the results in the previous

subsections, traditional Gaussian process is only feasible at n = 1, 000, while MRFA is

feasible and accurate for large problems. Even when traditional Gaussian process is feasible,

MRFA is much faster in terms of fitting and prediction, and more accurate with any tuning

parameter selection method. Local Gaussian process fitting is feasible for large problems,
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but less accurate than MRFA and traditional Gaussian process. Among the three criteria,

it can be seen that AIC, BIC and CV have relatively small differences in terms of prediction

accuracy. Computationally, the tuning parameters can be chosen within 2 seconds using

AIC or BIC, while the computational costs of CV can be considerable.

This example also illustrates the flexibility of the proposed method. From (I.23), the

function appears not to satisfy the strong effect heredity conditions, because the main effects

of x2 and x3 are not present. On the other hand, the function can be easily re-expressed in

a form that does satisfy strong effect heredity. For example,

f(x1, . . . , x6) = −1 + exp
{

sin([0.9× (x1 + 0.48)]10)
}

+ x2 + x3 + (x2 − 1)(x3 − 1) + x4 + ε,

which satisfies the strong effect heredity assumption because main effect functions of x2

and x3 appear in the function in addition to the interaction function (x2 − 1)(x3 − 1).

n
Fitting Prediction Selection RMSE

Time (sec.) Time (sec.) Time (sec.) (×10−1)
mlegp 1,000 2524 88 1.64

laGP

1,000 - 394 7.30
10,000 - 439 6.07
100,000 - 457 4.70

1,000,000 - 433 3.85

MRFA

1,000 96 8
AIC 1 1.36
BIC 1 1.36
CV 92 1.32

10,000 443 23
AIC 1 0.18
BIC 1 0.19
CV 423 0.26

100,000 2999 34
AIC 1 0.14
BIC 1 0.14
CV 2213 0.14

1,000,000 61504 103
AIC 1 0.01
BIC 1 0.01
CV 55849 0.05

Table 1: The 6-dimensional stochastic function example with ntest = 10, 000 random predictive
locations.
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J Other Functions

In this section, we present three more example functions in comparison with laGP and

mlegp, the 3-dimensional bending function (Plumlee and Apley, 2017), the 6-dimensional

OTL circuit function (Ben-Ari and Steinberg, 2007), and the 10-dimensional wing weight

function (Forrester et al., 2008). The details of these examples and their input ranges are

given in Appendix K.

The comparison results are shown in Table 2. Similar to the results in the previous

subsections, the results indicate the MRFA outperforms the traditional Gaussian process in

terms of prediction accuracy, except for the wing function at n = 1, 000 where the traditional

Gaussian process fitting has better accuracy. The reason might be that the underlying

wing weight function contains high-order interaction functions making it not particularly

well-suited to low-order representation. See (K.24) in Appendix K. Nevertheless, even when

the traditional Gaussian process fitting is feasible (at n = 1, 000), the MRFA is much faster

than traditional Gaussian process fitting. Local Gaussian process fitting is feasible for large

problems and has better accuracy in the low-dimensional example (see Table 2(a)), but it is

less accurate in the other two examples and in some cases slower than the MRFA.

K Description of Functions in Section J

• The amount of deflection of a bending function is given by

De =
4

109

L3

bh3
,

where the 3 inputs are L, b, and h.

• The midpoint voltage of a transformerless OTL circuit function is given by

Vm =
(Vb1 + 0.74)B(Rc2 + 9)

B(Rc2 + 9) +Rf

+
11.35Rf

B(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(B(Rc2 + 9) +Rf )Rc1

,

where Vb1 = 12Rb2/(Rb1 +Rb2), and the 6 inputs are Rb1, Rb2, Rf , Rc1, Rc2, and B.

• The wing weight function models a light aircraft wing, where the wing’s weight is
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d = 3 n
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−5)
mlegp 1,000 1807 140 5.64

laGP

1,000 - 310 0.66
10,000 - 312 0.21
100,000 - 311 0.08

1,000,000 - 316 0.04

MRFA

1,000 49 8 2.16
10,000 293 14 0.46
100,000 3311 25 0.20

1,000,000 113279 159 0.14*

(a) Performance of the 3-dimensional bending function. *Note that due to memory limits, in the
cases Rmax = 3 and Dmax = 3 are considered instead.

d = 6 n
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−4)
mlegp 1,000 3976 173 13.70

laGP

1,000 - 314 102.71
10,000 - 301 27.01
100,000 - 323 11.43

1,000,000 - 328 4.80

MRFA

1,000 294 19 7.81
10,000 798 17 2.05
100,000 6688 82 1.42

1,000,000 122075 133 1.18*

(b) Performance of the 6-dimensional OTL circuit function. *Note that due to memory limits, in
the cases Rmax = 3 and Dmax = 3 are considered instead.

d = 10 n
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−1)
mlegp 1,000 2922 228 1.56

laGP

1,000 - 327 19.74
10,000 - 325 10.72
100,000 - 329 5.04

1,000,000 - 347 2.22

MRFA

1,000 1319 28 7.77
10,000 1633 21 1.52
100,000 12289 84 1.39

1,000,000 168854 148 1.18*

(c) Performance of the 10-dimensional wing weight function. *Note that due to memory limits, in
the cases Rmax = 1 and Dmax = 3 are considered instead.

Table 2: Performance of the bending, OTL circuit, and wing weight functions with ntest = 10, 000
random predictive locations.
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given by

W = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006R0.04

(
100tc

cos(Λ)

)−0.3

(NzWdg)
0.49 + SwWp,

(K.24)

where the 10 inputs are Sw,Wfw, A,Λ, q, R, tc, Nz,Wdg, and Wp.

The input ranges are given in Table 3.

Bending OTL circuit Wing weight

L ∈ [10, 20] Rb1 ∈ [50, 150] Sw ∈ [150, 200]
b ∈ [1, 2] Rb2 ∈ [25, 70] Wfw ∈ [220, 300]
h ∈ [0.1, 0.2] Rf ∈ [0.5, 3] A ∈ [6, 10]

Rc1 ∈ [1.2, 2.5] Λ ∈ [−10, 10]
Rc2 ∈ [0.25, 1.2] q ∈ [16, 45]
β ∈ [50, 300] R ∈ [0.5, 1]

tc ∈ [0.08, 0.18]
Nz ∈ [2.5, 6]
Wdg ∈ [1700, 2500]
Wp ∈ [0.025, 0.08]

Table 3: Input ranges of the OTL circuit function, the piston simulation function, and the wing
weight function.
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