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1 Auxiliary tools

In this section, we review some mathematical tools which are used in the proofs presented

in Appendix.

1.1 Reproducing kernel Hilbert spaces

In this subsection we introduce the reproducing kernel Hilbert spaces and several results

from literature. Let Ω be a subset of Rd. Assume that K : Ω × Ω → R is a symmetric
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positive definite kernel. Define the linear space

FK(Ω) =

{
n∑
i=1

βiK(·, xi) : βi ∈ R, xi ∈ Ω, n ∈ N

}
, (1.1)

and equip this space with the bilinear form〈
n∑
i=1

βiK(·, xi),
m∑
j=1

γjK(·, x′j)

〉
K

:=
n∑
i=1

m∑
j=1

βiγjK(xi, x
′
j). (1.2)

Then the reproducing kernel Hilbert space NK(Ω) generated by the kernel function K is

defined as the closure of FK(Ω) under the inner product 〈·, ·〉K , and the norm of NK(Ω)

is ‖f‖NK(Ω) =
√
〈f, f〉NK(Ω), where 〈·, ·〉NK(Ω) is induced by 〈·, ·〉K . More detail about

reproducing kernel Hilbert space can be found in Wendland (2004) and Wahba (1990).

In particular, we have the following theorem, which gives another characterization of the

reproducing kernel Hilbert space when K is defined by a stationary kernel function Φ, via

the Fourier transform of Φ.

Theorem 1 (Theorem 10.12 of Wendland (2004)). Let Φ be a positive definite kernel

function which is continuous and integrable in Rd. Define

G := {f ∈ L2(Rd) ∩ C(Rd) : f̃/
√

Φ̃ ∈ L2(Rd)},

with the inner product

〈f, g〉NΦ(Rd) = (2π)−d
∫
Rd

f̃(ω)g̃(ω)

Φ̃(ω)
dω.

Then G = NΦ(Rd), and both inner products coincide.

For f ∈ NΦ(Ω), a pointwise error bound for the radial basis function interpolation is

given by (Wendland (2004), Theorem 11.4):

|f(x)− IΦ,Xf(x)| ≤ PΦ,X(x)‖f‖NΦ(Ω). (1.3)

In addition, it can be shown that the interpolant IΦ,Xf(x) satisfies the following properties

(Corollary 10.25, Wendland (2004)):

‖IΦ,Xf(x)‖NΦ(Ω) ≤ ‖f‖NΦ(Ω). (1.4)

In addition, if X′ ⊂ X,

‖IΦ,X′h‖NΦ(Ω) ≤ ‖IΦ,Xh‖NΦ(Ω). (1.5)
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1.2 A Maximum inequality for Gaussian processes

The theory of bounding the maximum value of a Gaussian process is well-established in the

literature. The main step of finding an upper bound is to calculate the covering number

of the index space. Here we review the main results. Detailed discussions can be found in

Adler and Taylor (2009).

Let Zt be a Gaussian process indexed by t ∈ T . Here T can be an arbitrary set. The

Gaussian process Zt induces a metric on T , defined by

d(t1, t2) =
√
E(Zt1 − Zt2)2. (1.6)

The ε-covering number of the metric space (T, d), denoted as N(ε, T, d), is the minimum

integer N so that there exist N distinct balls in (T, d) with radius ε, and the union of these

balls covers T . Let D be the diameter of T . The supremum of a Gaussian process is closely

tied to a quantity called the entropy integral, defined as∫ D/2

0

√
logN(ε, T, d)dε. (1.7)

Lemma 1 gives a maximum inequality for Gaussian processes, which is a direct consequence

of Theorems 1.3.3 and 2.1.1 of Adler and Taylor (2009).

Lemma 1. Let Zt be a centered separable Gaussian process on a d-compact T , d the metric,

and N the ε-covering number. Then there exists a universal constant K such that for all

u > 0,

P(sup
t∈T
|Zt| > K

∫ D/2

0

√
logN(ε, T, d)dε+ u) ≤ 2e−u

2/2σ2
T , (1.8)

where σ2
T = supt∈T EZ2

t .

2 Additional figure related to Table 2

Figure 1 shows the relationship between the logarithm of the fill distance (i.e., log hX) and

the logarithm of the average prediction error (i.e., log E) in scatter plots for the four cases

given in Table 2. The solid line in each panel shows the linear regression fit calculated

from the data. Each of the regression lines in Figure 1 fits the data very well, which
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Figure 1: The regression line of log supx∈Ω ε(x) on log hX. Each point denotes one average

prediction error for each n. Panel 1: ν0 = 3, ν = 2.5. Panel 2: ν0 = 5, ν = 3.5. Panel

3: ν0 = ν = 3.5. Panel 4: ν0 = ν = 5.

gives an empirical confirmation of the approximation in (4.2) in the main text. It is also

observed from Figure 1 that, as the fill distance decreases, the maximum prediction error

also decreases.
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