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Abstract

This supplementary material (SM) contains the results of the benchmarking of the
proposed algorithms and additional figures corresponding to the application. A AN-
PASSEN!!!



Alternative algorithm for the generalized graphical lasso

Different algorithms may be conceived to find the generalized graphical lasso estimator. As
suggested by a reviewer we explore the line of thought that the generalized graphical lasso
estimator may be found by a modification of the block-wise approach of the graphical lasso
algorithm. The generalized graphical lasso estimator maximizes:

log(|€2[) — tr(S€2) — [|A o (2 = T)|1, (1)

where the o-operator is the Hadamard product. The corresponding estimating equation,
in analogy to Friedman et al. (2008), is:

Q' —S—Aosign(Q—-T) = 0,,

where the sign-function is to be applied element-wise. To find its root(s) write the involved
matrices as 2 X 2-block matrices:
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and similar partitioned apply to S and T. Then, in line with the graphical lasso algorithm
we solve for ¥ (from which € is eventually obtained). When temporarily assuming the
matrix 3;; known, the estimating equations for the remaining blocks are:

092 — S92 — Agasign(way — tae) = 0, (3)
319 — S — Aposign(wiy —t1z) = 0,1, (4)

Having found the solutions of these equations, the current estimate of X is updated, and
the another row/column is selected for updating. This process runs over all rows/columns
and and is then repeated until convergence.

Estimating equations (3) and (4) may be solved as follows. First note that, effectively,
an estimate of 3 is obtained, which is then inverted to yield one of 2. We first concentrat
on estimating equation (4). Still pursuing the analogy with Friedman et al. (2008), this
equation is rewritten to

Siiwiawyy + Siz 4+ App osign(wis — t12) = 0,1,

where we have used that X5 = —Xjjwiowsy, which is obtained from (2). To solve this
apply the change-of-variable B = (wyy — t12)wsy , which yields:

B+ E11t12W2_21 +S12+ Apposign(B) = 0,4, (5)

where we have used the fact that the sign of ws, is positive. In this one recognizes a lasso
regression estimating equation of the following lasso problem:

) 1 B _
min_ = [|Z11°8 + B tawsy + 25 Sall2 + A 0 Bl
BeRP—1 2



This may be solved by, e.g., coordinate-wise ascent (as used in the glmnet-package).

To obtain a solution of estimating equation (2), however, requires at each update knowl-
edge of wyy. In the regular graphical lasso only knowledge of its sign is needed, which is
provided by the fact that it is a diagonal element of the precision matrix and therefore
positive, which simplifies — for the regular graphical lasso — its estimating equation (3) and
yields 099 = S99 + Aoo. In case of the generalized graphical lasso estimator knowledge of
the sign of way — too is required. This is not a priori known, and — in principle — all three
values, {—1,0,1}, need to be considered. In certain cases, the solution corresponding to
the negative sign can be discarded if it is negative. Irrespectively, at least two solutions
need to be considered, and for each the lasso regression problem needs to be solved. At
this stage a choice between the found solutions needs to be made. This can be done by
choosing that that combination of (o712, 092) updates that yields the largest penalized like-
lihood (1) (evaluated through substitution of the possible solutions). However, in this oo
still depends on the actual value of wys (or its inverse), which is still unknown. An obvious
way around this is to perform a line search:
choose a value for woo,
find B through solving estimating equation (5),
put the above together to obtain 32,
use its inverse of 3 to evaluate the penalized loglikelihood (1),
repeat this for a grid of was,
choose that that combination of wyy and 3 that maximizes the penalized loglikelihood
(1).

The above line search needs to be done at each row/column update. Then, run over the
rows/columns until convergence.



Benchmarking: precision matrices and results

The following precision matrices have been employed in benchmarking:
Banded: The precision matrix is fully parametrized by (2);;, = 1 for j = 1,...,p,
(Q)j,j-l-l = 05 = (Q)j+17j fOI'j = ]_,...,p — ]_, (Q)j7j+2 = 02 = (Q)j+27j fOI'

j=1...,p—2, (Q)jj+3 = 01 = (Q)j43, for j = 1,...,p — 3, and zero other-
wise.

Full: The precision matrix is fully parametrized by (€2);; = 1 for j = 1,...,p and 0.5
otherwise.

Blocked: The precision matrix contains five equally sized square block matrices along the
diagonal. Each block is fully parametrized by as the full precision matrix above.
Elements outside the blocks are all zero.

Hub: The precision matrix is fully parametrized by (2);, = 1for j =1,...,p, (2)1; =
1/5=(2),1 for j =2,...,p, and zero otherwise.



Table 1: Accuracy (x107%) of the proposed algorithm for a banded precision matrix with various choices of n (1** column)
and p (2™ column). The 3™ and 4" columns contain the Frobenius and supremum loss, respectively, of the two ridge precision
estimator algorithms. The 5" and 6™ columns contain the Frobenius and supremum loss, respectively, of the two algorithms
for the ridge precision estimator with known chordal support. The 7" and 8™ columns contain the Frobenius and supremum
loss, respectively, of the two lasso precision estimator algorithms. All accuracies are to be multiplied by 1077,

ridge vs. gen. ridge lasso vs. gen. ridge chordal ridge vs. gen. ridge

Frobenius supremum Frobenius supremum Frobenius supremum

n p ||Qr—Qgr F ||Qr—Qgr oo ||Qrc_9gr F ||Qr—Qgr oo ||Qg1_9ggl||F ||Qg1_9ggl||00
10 10 0.71432 0.37363 3960.40 1360.79 232722.4 159294.6
10 50 1.56462 0.43841 32618.23 7080.29 3668748.0 1214063.3
10 100 2.09675 0.45846 77320.61 14585.24 7123890.3 1522635.9
50 10 0.68086 0.37770 2533.83 926.91 34679.0 9106.1
50 50 1.57712 0.43232 19718.57 4171.40 968972.8 572887.1
50 100 2.26400 0.45245 39612.16 7195.54 1489323.8 803768.7
100 10 0.71450 0.37317 2297.79 811.15 31500.9 8736.7
100 50 1.57185 0.43897 13012.74 3387.29 600332.5 385868.6
100 100 2.26802 0.45617 28385.48 5649.60 1072888.2 673200.7




Table 2: Accuracy (x107?) of the proposed algorithm for a uniform precision matrix with various choices of n (1** column)
and p (2™ column). The 3" and 4" columns contain the Frobenius and supremum loss, respectively, of the two ridge precision
estimator algorithms. The 5" and 6™ columns contain the Frobenius and supremum loss, respectively, of the two algorithms
for the ridge precision estimator with known chordal support. The 7" and 8™ columns contain the Frobenius and supremum
loss, respectively, of the two lasso precision estimator algorithms. All accuracies are to be multiplied by 1077,

ridge vs. gen. ridge lasso vs. gen. ridge chordal ridge vs. gen. ridge

Frobenius supremum Frobenius supremum Frobenius supremum
n p ||Qr - Qgr F ||Qr - Qgr 0 ||Qrc - Qgr F ||Qr - Qgr 0 ||Qg1 - QgngF ||Qg1 - QgngOO
10 10 0.71358 0.36602 not applicable not applicable 219646.4 134245.1
10 50 1.57030 0.43565 not applicable not applicable 3813712.7 1183803.2
10 100 2.10661 0.45351 not applicable not applicable 7577082.3 1460170.7
50 10 0.70095 0.36809 not applicable not applicable 29584.1 7588.9
50 50 1.58580 0.42757 not applicable not applicable 147183.9 30556.2
50 100 2.31228 0.45686 not applicable not applicable 844113.3 469993.0
100 10 0.70340 0.36254 not applicable not applicable 24075.3 5789.5
100 50 1.54659 0.43197 not applicable not applicable 98387.7 6905.9
100 100 2.28135 0.44783 not applicable not applicable 197518.9 7855.1




Table 3: Accuracy (x107%) of the proposed algorithm for a block precision matrix with various choices of n (1** column) and
p (2" column). The 3™ and 4" columns contain the Frobenius and supremum loss, respectively, of the two ridge precision
estimator algorithms. The 5" and 6™ columns contain the Frobenius and supremum loss, respectively, of the two algorithms
for the ridge precision estimator with known chordal support. The 7" and 8™ columns contain the Frobenius and supremum
loss, respectively, of the two lasso precision estimator algorithms. All accuracies are to be multiplied by 1077,

ridge vs. gen. ridge lasso vs. gen. ridge chordal ridge vs. gen. ridge

Frobenius supremum Frobenius supremum Frobenius supremum

n p ||Qr—Qgr F ||Qr—Qgr oo ||Qrc_9gr F ||Qr—Qgr oo ||Qg1_9ggl||F ||Qg1_9ggl||00
10 10 0.70059 0.37263 0.76549 0.36282 93429.1 59531.5
10 50 1.54269 0.43545 2.93732 0.44105 3798381.6 1274041.7
10 100 2.11993 0.45915 5.56982 0.44844 7420574.8 1480242.8
50 10 0.67681 0.35508 0.69580 0.36144 26581.1 8574.4
50 50 1.60251 0.43182 1.93964 0.43645 132193.4 9287.4
50 100 2.27878 0.4477 3.26871 0.45340 851590.3 493502.0
100 10 0.68343 0.36419 0.68659 0.35872 24339.2 8303.4
100 50 1.57218 0.43831 1.73714 0.41516 96955.2 7061.9
100 100 2.26573 0.45390 2.79204 0.43924 192824.2 7631.6




Table 4: Accuracy (x107%) of the proposed algorithm for a star/hub precision matrix with various choices of n (1* column)
and p (2™ column). The 3" and 4" columns contain the Frobenius and supremum loss, respectively, of the two ridge precision
estimator algorithms. The 5" and 6™ columns contain the Frobenius and supremum loss, respectively, of the two algorithms
for the ridge precision estimator with known chordal support. The 7" and 8™ columns contain the Frobenius and supremum
loss, respectively, of the two lasso precision estimator algorithms. All accuracies are to be multiplied by 1077,

ridge vs. gen. ridge lasso vs. gen. ridge chordal ridge vs. gen. ridge

Frobenius supremum Frobenius supremum Frobenius supremum
n p ||Qr—Qgr F ||Qr—Qgr oo ||Qrc_9gr F ||Qr—Qgr oo ||Qg1_9ggl||F ||Qg1_9ggl||00
10 10 0.69747 0.37136 2392.67 1097.68 52026.5 29765.9
10 50 1.55732 0.43747 NA NA 1643625.1 999534.2
10 100 2.13252 0.45642 NA NA 3407280 1446042.5
50 10 0.68110 0.37198 2227.25 961.41 27541.2 8819.8
50 50 1.53463 0.44135 11783.35 4597.35 80344.1 9115.3
50 100 2.25040 0.45333 19994.67 T7153.77 148065.8 8997.8
100 10 0.67821 0.37341 2531.88 1067.16 253244 8675.8
100 50 1.55951 0.43940 11294.70 4387.91 59610.5 8637.4

100 100 2.22942 0.45090 22083.76 8933.61 106685.3 9048.2




A asn— o

Proposition 3 in the main text hinges upon the assumption that the minimum over the
elements of the penalty matrix tends to zero as the sample size increases. While the validity
of this assumption is assessed in the Supplementary Material of ?) for the regular ridge
precision estimator with only a single penalty parameter, it is here assessed for the gener-
alized ridge precision estimator with a penalty matrix parameterized by either two or three
parameters. This is done in simulation. Data are drawn from a zero-mean multivariate
normal with one the following precision matrices:
2 x 2 block: A 2x 2 block matrix €2 with each block a 25 x 25 dimensional matrix. The left-
upper block, denoted by €241, is banded and fully parametrized by (£241);; = 1 for j =
1, .. .,25, (Q)j,j-l-l = 0.0 = (Q)j-‘rl,j fOI'j = ]_, .. .,24, (Qll)j7j+2 =02 = (Qll)j+2,j
for j = 1,...,23, (), 43 = 0.1 = ()43, for j = 1,...,22, and zero otherwise.
The elements of the off-diagonal blocks, denoted €215 and €297, all equal 0.1. The
right-lower block, denoted €255, is parametrized by (€241);; =1 for j =1,...,25 and
(€41);,; = 0.1 otherwise.
3 x 3 block: A 3 x 3 block matrix € with diagonal blocks of dimensions 20 x 20, 20 x 20,
and 10 x 10, (in that order). The first diagonal block, denoted by €21, is banded
and fully parametrized by (41);; = 1 for j = 1,...,20, (2);;11 = 0.5 = (Q);41
fOI'j = 1, .. .,19, (911)j7j+2 =02 = (Qll>j+2,j fOI'j = 1,. . .,18, (Q)j,j+3 =01 =
()43, for j = 1,...,17, and zero otherwise. The second diagonal block, denoted
Q9, is parametrized by (41);,; = 1 for j = 1,...,25 and (€24;);,; = 0.1 otherwise.
The third diagonal block, denoted €233, is the unit matrix of appropriate dimensions.
The elements of the off-diagonal blocks all equal 0.1.
The sample size ranges from n = 10 to n = 100000. For each data set the optimal
penalty matrix A for the generalized ridge estimation of the precision matrix is determined
by means of K-fold cross-validation (with K = 5). In this, for both choices of €, the
target matrix T is banded and parametrized by (T);; = 1 for j = 1,...,50, (Q); ;11 =
0.1 = (T)j41,; for j = 1,...,49, and zero otherwise. The penalty matrix A shares the
block structure with the employed precision matrix. All elements of a diagonal block are
equal to the same penalty parameter, e.g. in the case of the 2 x 2 block matrix this gives
A1 = M1y 95 and Agy = Aglos95. The elements of the off-diagonal blocks are set equal
to the product of the corresponding penalty parameters, e.g. in the case of the 2 x 2
block matrix Ajs = AjA2l9s595 = Ag;. The optimal penalty parameters then maximize the
cross-validation loglikelihood. This maximum is sought in the interval [10'°, 1000] for each
penalty parameter and found by means of gradient ascent. The results, the optimal penalty
parameters, are plotted against the sample size (Figure 1). The panels of Figure 1 do not
invalidate the assumption of Proposition 3 of the main text.



Optimal CV penalty parameters vs. sample size, 2 blocks Optimal CV penalty par S VS. ple size, p=50
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Figure 1: The 5-fold cross-validated penalty parameters (y-axis) plotted against the sample
size n (x-axis). The left panel: data sampled from a 2 x 2 block structured precision matrix
2 and similarly structured penalty matrix A parametrized by A\; and A in the estimation
(see text for details). The right panel: data sampled from a 3 x 3 block structured precision
matrix 2 and a similarly structured penalty matrix A parametrized by A;, A\ and A3 is
used in the estimation (see text for details).
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Comparison: regular vs. generalized ridge precision

estimation

Matrices employed in Simulation I (banded precision):

Q:

The precision matrix is banded and fully parametrized by (£2);; =1for j =1,...,p,
(Q)jj+1 =05 = (Q)j1, for j =1,...,p—1, ()42 = 0.2 = (Q)j42, for j =
L...,p—2, ()43 =01= ()43, for j =1,...,p— 3, and zero otherwise.

The target matrix is banded and fully parametrized by (T);; = 0.5 for j =1,...,p,
(T);j+1=01=(T)j41, for j=1,...,p— 1, and zero otherwise.

The penalty matrix for the regular ridge precision estimator is of course A = A1,
while for the generalized ridge precision estimator is parametrized: (A);; = A for
j = 1, oD, (A>j,j+1 =2\ = (A)j—l—l,j fOI'j = 1, e, p— 1, (A>j,j+2 =3\ = (A)j+2,j
forj=1,...,p—2, (A)jjy3 =4\ = (A)j43, for j =1,...,p— 3, and so on until
(A)rp =pA = (A)p1.

Matrices employed in Simulation II (partially known precision):

Q:

The precision matrix is banded and fully parametrized by (£2);; =1for j =1,...,p,
(Q)jj+1 =05 = ()41 for j = 1....p— 1, ()42 = 0.2 = ()42 for j =
1,...,p— 2, and all remaining elements equal 0.1.

The target matrix comprises of only zeros expect for the first row and column that
are set equal to those of the precision matrix: T, = €y, and T, ; = Q.

The penalty matrix for the regular ridge precision estimator is of course A = A1,
while for the generalized ridge precision estimator is parametrized: (A);; = 10" =
(A)jifor j=1,...,p,and (A); ;s =Aforall j,5’=2,...,p.

11



Frobenius loss difference, banded, n=10, p=10
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Figure 2: Histograms of the Frobenius loss difference between the generalized and regu-
lar precision estimators, ||Q.(A,T) — Qr - [|Qus(A, T) — Q| r, with banded Q and T
for various sample sizes and dimensions. Rows and columns correspond sample size and
dimension, n,p € {10,50,100}, in ascending order.
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Frobenius loss difference, partially known, n=10, p=10
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Figure 3: Histograms of the Frobenius loss difference between the generalized and regular
precision estimators, |[Q2..(A, T) — Q|| p - [|Qee(X, T) — Q|| , with full , partially correct
T, A that totally shrinks €2 towards T on the correct part, and for various sample sizes
and dimensions. The loss difference is restricted to that part of the precision matrix that
is unknown. In the grid of histograms rows and columns correspond sample size and
dimension, n,p € {10,50, 100}, in ascending order.
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Application: additional figures
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estimated partial correlation matrix, cancer, null target
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Figure 4: The upper two left-hand side panels contain the contour plots of the 5-fold cross-
validated loglikelihood for both cancer (topkand (bottom) metastasis analysis with the
generalized ridge estimator. The corresponding right-hand side panels contain heatmaps of
the generalized ridge estimates with the optimal cross-validated penalty parameters. The
bottom two panels show the scatter plots of the partial correlation in both groups, separated
by those among the genes’ expression levels and those between a gene’s expression level



Cancer Metastasis
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Figure 5: Reconstructed network (from the generalized ridge precision estimates) of the
toll-like receptor pathway in cancer (top left panel) and metastasis (middle right panel),
now with the same layout. For clarity the networks are limited to inferred interactions
among genes’ expression levels, ignoring those between a gene’ expression levels and its
DNA copy number as well as unconnected nodes. Dashed and solid edges indicate negative
and positive, respectively, signs of the associated partial correlations. The bottom panel
shows the differential graph, i.e. edges that are present in one group and not the other.
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estimated partial correlation matrix, cancer, null target
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Figure 6: The left-hand side panels contain heatmaps of the regular ridge estimates with
the optimal cross-validated penalty parameters of the precision matrix of the toll-like re-
ceptor pathway in cancer (top left panel) and metastasis (middle left panel). Reconstructed
network (from the regular ridge precision estimates depicted in the heatmaps) of the toll-
like receptor pathway in cancer (top left panel) and metastasis (middle right panel), with
the same layout. For clarity the networks are limited to inferred interactions among genes’
expression levels, ignoring those between a gene’ expression levels and its DNA copy num-
ber as well as unconnected nodes. Dashed and solid edges indicate negative and positive,
respectively, signs of the associated partial correlations.
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estimated partial correlation matrix, cancer, null target

estimated partial correlation matrix, metastasis, informative target
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Figure 7: The left-hand side panels contain heatmaps of the regular ridge (with chordal
support) estimates with the optimal cross-validated penalty parameters of the precision
matrix of the toll-like receptor pathway in cancer (top left panel) and metastasis (middle
left panel). Reconstructed network (from the ridge precision estimates with chordal sup-
port depicted in the heatmaps) of the toll-like receptor pathway in cancer (top left panel)
and metastasis (middle right panel), with the same layout. For clarity the networks are
limited to inferred interactions among gene$8 expression levels, ignoring those between a
gene’ expression levels and its DNA copy number as well as unconnected nodes. Dashed
and solid edges indicate negative and positive, respectively, signs of the associated partial
correlations. The bottom panel shows the differential graph, i.e. edges that are present in
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Regular ridge Chordal ridge
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Figure 8: Histograms of QDA (Quadratic Discriminant Analysis) scores for cancer vs.
metastasis classification using the regular (top left panel), chordal support (top right panel),
and generalized (bottom panel) ridge precision estimates of both groups.
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