
Supplementary Materials for “A Generalized
Gaussian Process Model for Computer Experiments

with Binary Time Series”

S1 Algorithm: Estimation of (β,ω)

1: Set initial values ω = (σ2,θ) = 1d+1,β = 1m, pit = 1, and set η̃it = log pit
1−pit + yit−pit

pit(1−pit)

for each i and t.

2: repeat

3: repeat

4: Set W as an N ×N diagonal matrix with diagonal elements Wit = pit(1− pit)
5: Set V = W−1 + σ2(Rθ ⊗ IT )

6: Update β = (X ′V −1X)−1X ′V −1η̃

7: Set Z = σ2(Rθ ⊗ IT )V −1(η̃ −X ′β)

8: Update pit =
(

exp{X′β+Z}
1N+exp{X′β+Z}

)
it

and η̃it = log pit
1−pit + yit−pit

pit(1−pit) for each i and t

9: until {η̃it}it converges

10: Update ω = arg minω L(ω), where L(ω) is the negative log-likelihood function (12)

11: Update (σ2,θ) = ω

12: until β and ω converge

13: Return β and ω

S2 Assumptions

1. The parameter β belongs to an open set B ⊆ Rm and the parameter ω belongs to an

open set Ω ⊆ Rd+1.

2. The model matrix Xit lies almost surely in a nonrandom compact subset of Rm such

that Pr(
∑n

i=1

∑T
t=1X

′
itXit > 0) = 1.
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For any matrix A, define ‖A‖ ≡
√

tr(A′A); for the covariance matrix V (ω), define Vi(ω) ≡
∂V (ω)/∂ωi and Vij(ω) ≡ ∂V (ω)/∂ωi∂ωj; for ω ∈ Ω, denote

u−→ as uniform convergence

of nonrandom functions over compact subsets of Ω.

3. JN(ω)PN(ω)−1
d−→ W (ω) for some nonsingular W (ω), which is continuous in ω,

where PN(ω) = diag(‖Π(ω)V1(ω)‖, . . . , ‖Π(ω)Vd+1(ω)‖) and Π(ω) = V (ω)−1 −
V (ω)−1X(X ′V (ω)−1X)−1X ′V (ω)−1.

4. If there exists a sequence {rN}N≥1 with lim supN→∞ rN/N ≤ 1−δ, for some δ ∈ (0, 1),

such that for any compact subset K ⊆ Ω, there exist constants 0 < C1(K) <∞ and

C2(K) > 0 such that

lim sup
N→∞

max{|λN |, |λiN |, |λ
ij
N | : 1 ≤ i, j ≤ k} < C1(K) <∞

and

lim sup
N→∞

min{|λ1|, |λirN | : 1 ≤ i ≤ k} > C2(K) > 0,

uniformly in ω ∈ K, where |λ1| ≤ . . . ≤ |λN | are the absolute eigenvalues of V (ω),

|λi1| ≤ . . . ≤ |λiN | are the absolute eigenvalues of Vi(ω), and |λij1 | ≤ . . . ≤ |λijN | are the

absolute eigenvalues of Vij(ω).

Assumption 2 holds when the row vectors of X are linear independent. Thus, if only

the linear effect is considered in the mean function, then orthogonal designs or orthogonal

array-based designs, such as OA-based Latin hypercube designs (Tang, 1993), can be chosen

for sampling schemes. The conditions for Assumption 4 can be referred to Cressie and

Lahiri (1996), in which the checkable conditions for rectangular lattice of data sites and

irregularly located data sites are given. For instance, for rectangular lattice of data sites,

with certain correlation functions, a sufficient condition is choosing data locations whose

minimum distance is sufficiently large. More details can be seen in Cressie and Lahiri

(1996). Thus, space-filling designs, such as Latin hypercube designs (McKay et al., 1979)

and maximin distance designs (Johnson et al., 1990), can be chosen for sampling schemes.
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S3 Proof of Theorem 3.1

The model (4) can be seen as a binary time series model with random effects by multiplying

an identity matrix on Z, that is,

logit(p) = Xβ + INZ, Z ∼ N (0N ,Σ(ω)),

where IN and Z are viewed as the model matrix and coefficients of random effects, respec-

tively. Therefore, if the variance-covariance parameters are given, inference of β is a special

case of the binary time series model with random effects in Hung et al. (2008). Therefore,

following Theorem 1 in Hung et al. (2008), the score function SN(β,ω) is asymptotically

normally distributed.

S4 Proof of Theorem 3.3

According to Breslow and Clayton (1993), one can view the inference on the variance-variance

component as an iterative procedure for the linear mixed model

η̃ = Xβ + INZ + ε, ε ∼ N (0N ,W
−1)

with the iterative weight W−1. Thus, it is a special case of the Gaussian general linear model

in Cressie and Lahiri (1993) with response vector η̃ and variance-covariance component

Σ(ω) +W−1 with parameters ω. Since the asymptotic distribution of REML estimators

for the variance-covariance parameters has been shown in Cressie and Lahiri (1993) for

a Gaussian general linear model, the result directly follows as a special case of Corollary

3.3 in Cressie and Lahiri (1993). Note that Assumption 4 in the supplementary material

S2 implies the conditions for Corollary 3.3 in Cressie and Lahiri (1993). See the proof of

Theorem 2.2 in Cressie and Lahiri (1996).
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S5 Proof of Lemma 4.1

We start the proof by deriving the conditional distribution from a simple model (1) (without

time-series), and then extend the result to prove Lemma 4.1. First, a definition and a

lemma about multivariate log-normal distribution are in order.

Definition S5.1. Suppose ξ = (ξ1, . . . , ξn)′ has a multivariate normal distribution with

mean µn and covariance variance Σn×n. Then b = exp{ξ} has a multivariate log-normal

distribution. Denote it as b ∼ LN (µn,Σn×n).

Lemma S5.1. Suppose bn and bn+1 have a multivariate log-normal distribution(
bn

bn+1

)
∼ LN

((
µn

µn+1

)
,

[
Σn×n r

r′ σ2
n+1

])
.

The conditional distribution of bn+1 given bn is bn+1|bn ∼ LN (µ∗, v∗), where µ∗ = µn+1 +

r′Σ−1n×n(log bn − µn) and v∗ = σ2
n+1 − r′Σ−1n×nr.

Proof. Using transformation of a standard normal distribution, one can show that the joint

probability density function of the multivariate log-normal distribution bn is

gbn(b1, . . . , bn) =
1

(2π)n/2|Σn×n|1/2
1∏n
i=1 bi

exp{−1

2
(log bn − µn)′Σ−1n×n (log bn − µn)}.

Denote bn+1 = (b1, . . . , bn, bn+1), µ
n+1 = (µ1, . . . , µn, µn+1) and

Σ(n+1)×(n+1) =

[
Σn×n r

r′ σn+1

]
.
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Then, the conditional probability density function of bn+1 given bn can be derived as

gbn+1|bn(bn+1|bn) ∝ g(b1, . . . , bn, bn+1)

∝ 1

bn+1

exp{−1

2

(
log bn+1 − µn+1

)′
Σ−1(n+1)×(n+1)

(
log bn+1 − µn+1

)
}.

Let a1 = log bn − µn and a2 = log bn+1 − µn+1. Applying the partitioned matrix inverse

results (page 99 of Harville (1997)) gives

(
log bn+1 − µn+1

)′
Σ−1(n+1)×(n+1)

(
log bn+1 − µn+1

)
=
[
a′1 a′2

] [Σn×n r

r′ σn+1

]−1 [
a1

a2

]
=(a2 − r′Σ−1n×na1)

′σ−122·1(a2 − r′Σ−1n×na1) + a′1Σ
−1
n×na1

=(a2 − r′Σ−1n×na1)
2/σ22·1 + a′1Σ

−1
n×na1,

where σ22·1 = σ2
n+1 − r′Σ−1n×nr and is a real number.

Thus, the conditional probability density function of bn+1 given bn can be simplified as

gbn+1|bn(bn+1|bn) ∝ 1

bn+1

exp{− 1

2σ22·1
(a2 − r′Σ−1n×na1)

2 − 1

2
a′1Σ

−1
n×na1}

∝ 1

bn+1

exp{− 1

2σ22·1
(a2 − r′Σ−1n×na1)

2}

=
1

bn+1

exp{− 1

2σ22·1

(
log bn+1 − (µn+1 + r′Σ−1n×n(log bn − µn))

)2}.
Therefore, according to the probability density function of a log-normal distribution, we

have bn+1|bn ∼ LN (µ∗, v∗), where µ∗ = µn+1 + r′Σ−1n×n(log bn − µn) and v∗ = σ22·1 =

σ2
n+1 − r′Σ−1n×nr.

Lemma S5.2. Consider the model (1) (without time-series), given (p(x1), . . . , p(xn))′ = pn,

the conditional distribution of p(xn+1) is a logit-normal distribution, that is, p(xn+1)|pn ∼
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Logitnormal(m(pn), v(pn)) with

m(pn) = µ(xn+1) + r′θR
−1
θ (log

pn

1− pn
− µn) and v(pn) = σ2(1− r′θR−1θ rθ),

where µn = (µ(x1), . . . , µ(xn))′, µ(xi) = α0 + x′iα, rθ = (Rθ(xn+1,x1), . . . , Rθ(xn+1,xn))′,

and Rθ = {Rθ(xi,xj)}.

Proof. Let ηi = µ(xi) + Z(xi) and bi = exp{ηi} = p(xi)/(1 − p(xi)) for i = 1, . . . , n + 1.

Since (η1, . . . , ηn, ηn+1)
′ ∼ N (µn+1, σ2R∗θ), where µn+1 = ((µn)′, µ(xn+1))

′ and

R∗θ =

[
Rθ rθ

r′θ 1

]
,

we have (b1, . . . , bn, bn+1)
′ ∼ LN (µn+1, σ2R∗θ) by Definition S5.1. Thus, using Jacobian of

the transformation and Lemma S5.1, we have

gp(xn+1)|p(x1),...,p(xn)(pn+1|p1, . . . , pn)

=gbn+1|b1,...,bn(
pn+1

1− pn+1

| p1
1− p1

, . . . ,
pn

1− pn
)

1

(1− pn+1)2

∝1− pn+1

pn+1

exp{−

(
log pn+1

1−pn+1
− (µ(xn+1) + r′θR

−1
θ (log pn

1−pn − µ
n))
)2

2σ2(1− r′θR
−1
θ rθ)

} 1

(1− pn+1)2

∝ 1

pn+1(1− pn+1)
exp{−

(
log pn+1

1−pn+1
− (µ(xn+1) + r′θR

−1
θ (log pn

1−pn − µ
n))
)2

2σ2(1− r′θR
−1
θ rθ)

}.

Therefore, according to the probability density function of a logit-normal distribution, we

have p(xn+1)|pn ∼ Logitnormal(m(pn), v(pn)).

Similarly, the result of Lemma S5.2 can be extended to the general model (3). Given

Y = (y′1, . . . ,y
′
T , yn+1,1, . . . , yn+1,s−1)

′, at a fixed time-step s, ps(xi) can be seen to have the

model (1) with mean function µ(xi,Y ) =
∑R

r=1 ϕryi,s−r +α0 + x′iα+
∑L

l=1 γ lxiyi,s−l. Thus,
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by Lemma S5.2, denote ps = (ps(x1), . . . , ps(xn))′, we have

ps(xn+1)|ps,Y ∼ Logitnormal(m(ps,Y ), v(ps,Y )),

where m(ps,Y ) = µ(xn+1,Y ) +r′θR
−1
θ (log ps

1−ps
−µn),µn = (µ(x1,Y ), . . . , µ(xn,Y ))′, and

v(ps,Y ) = σ2(1 − r′θR−1θ rθ). By the fact that Zt(x) is independent over time, which

implies ps(x) is independent of pt(x) for any t 6= s, ps(xn+1)|Dn+1,s and ps(xn+1)|ps,Y have

the same distribution. So, ps(xn+1)|Dn+1,s ∼ Logitnormal(m(Dn+1,s), v(Dn+1,s)), where

m(Dn+1,s) = m(ps,Y ) and v(Dn+1,s) = v(ps,Y ).

S6 Proof of Theorem 4.3

(i) First, one can show that if (ps(xn+1), Dn+1,s) has a joint distribution for which the

conditional mean of ps(xn+1) given Dn+1,s exists, then E [p(xn+1)|Dn+1,s] is the minimum

mean squared error predictor of p(xn+1). See Theorem 3.2.1 in Santner et al. (2003).

Thus, by the result of Lemma 4.1, we have the conditional mean E [p(xn+1)|Dn+1,s] =

κ(m(Dn+1,s), v(Dn+1,s)) with variance V [p(xn+1)|Dn+1,s] = τ(m(Dn+1,s), v(Dn+1,s)).

(ii) If xn+1 = xi for i = 1, . . . , n, then m(Dn+1,s) = log(ps(xi)/(1−ps(xi))) and v(Dn+1,s) = 0,

which implies that

κ(m(Dn+1,s), 0) = exp{m(Dn+1,s)}/(1 + exp{m(Dn+1,s)}) = ps(xi)

and τ(m(Dn+1,s), 0) = 0 by using transformation of a normal distribution. Thus, by

Theorem 4.3 (i), we have E [ps(xn+1)|Dn+1,s] = ps(xi) and V [ps(xn+1)|Dn+1,s] = 0.

(iii) Let X ∼ N (m(Dn+1,s), v(Dn+1,s)), P = exp{X}/(1 + exp{X}), which has the dis-

tribution Logitnormal(m(Dn+1,s), v(Dn+1,s)), and Q(q;Dn+1,s) be the q-th quantile of P .

Consider the function f(x) = log(x/(1− x)). The derivative is f ′(x) = 1/(x(1− x)). Thus,
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for 0 < x < 1 the derivative is positive and the f(x) function is increasing in x. Then,

Pr {P > Q(q;Dn+1,s)} = q

⇔Pr
{

exp{X}
1 + exp{X}

> Q(q;Dn+1,s)

}
= q

⇔Pr
{
f(

exp{X}
1 + exp{X}

) > f(Q(q;Dn+1,s))

}
= q

⇔Pr
{
X > log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)

}
= q

⇔Pr

{
X −m(Dn+1,s)√

v(Dn+1,s)
>

1√
v(Dn+1,s)

(
log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)
−m(Dn+1,s)

)}
= q

⇔ 1√
v(Dn+1,s)

(
log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)
−m(Dn+1,s)

)
= zq

⇔Q(q;Dn+1,s) =
exp{m(Dn+1,s) + zq

√
v(Dn+1,s)}

1 + exp{m(Dn+1,s) + zq
√
v(Dn+1,s)}

.

S7 Metropolis-Hastings Algorithm and Approximation

for Theorem 4.4

The Metropolis-Hastings (MH) algorithm for generating random samples from p|Y is given

as follows.

1: for j = 1 to J do

2: Set Ns = nT + s− 1.

3: Start with a zero vector p of size Ns.

4: for k = 1 to Ns do

5: Generate a random value p∗k from Logitnormal(m(p−k,y−k), v(p−k,y−k)).
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6: Generate an uniform random variable U ∼ Unif(0, 1).

7: if U < min{1, f(yk|p
∗
k)

f(yk|pk)
} then

8: Set p = (p1, . . . , p
∗
k, . . . , pNs).

9: Set p(j) = p

10: Return {p(j)}j=1,...,J .

In the algorithm, we first sample a value for the k-th component pk from the conditional

distribution of pk given pj, yj, j 6= k, which is Logitnormal(m(p−k,y−k), v(p−k,y−k)), where

m(p−k,y−k) = µt(xi)−
∑
k 6=j

Qkj

Qkk

(
log

pk
1− pk

− µt(xi)

)
, v(p−k,y−k) =

σ2

Qkk

,

in which µt(xi) =
∑R

r=1 ϕryi,t−r +x′iα+
∑L

l=1 γ lxiyi,t−l and Qkj is the (k, j)-element of R−1θ .

Similar to Zhang (2002), we use the single-component MH algorithm, that is, to update only

a single component at each iteration. Moreover, the proposed distribution f(pk) is used for

the single MH algorithm, so that the probability of accepting a new p∗k is the minimum of 1

and
f(p∗k|yk)f(pk)
f(pk|yk)f(p∗k)

(
=

f(yk|p∗k)
f(yk|pk)

)
.

Based on the samples {p(j)}j=1,...,J , the mean, variance, and q-quantile of ps(xn+1)|Y
can be respectively approximated by

1

J

J∑
j=1

κ(m(p(j),Y ), v(p(j),Y )),

1

J

J∑
j=1

τ(m(p(j),Y ), v(p(j),Y ))+

1

J − 1

J∑
j=1

[
κ(m(p(j),Y ), v(p(j),Y ))2 − 1

J

J∑
j=1

κ(m(p(j),Y ), v(p(j),Y ))

]
,

and the q-quantile of {p(j)s }Jj=1, where p
(j)
s is generated from Logitnormal(m(p(j),Y ), v(p(j),Y )).
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Similarly, the distribution of ys(xn+1)|Y can be approximated by the sample distribution

of {y(j)s }Jj=1, where y
(j)
s is generated from a Bernoulli distribution with probability p

(j)
s .

S8 Algorithm: Dynamic Binary Emulator

1: for j = 1 to J do

2: Set N = nT .

3: Start with a zero vector p of size N .

4: for i = 1 to N do

5: Generate a random value p∗k from Logitnormal(m(p−k,y−k), v(p−k,y−k)).

6: Generate an uniform random variable U ∼ Unif(0, 1).

7: if U < min{1, f(yk|p
∗
k)

f(yk|pk)
} then

8: Set p = (p1, . . . , p
∗
k, . . . , pN).

9: Set pn+1 = p,Y n+1 = Y , zero vectors pnew and ynew of size T .

10: for t = 1 to T do

11: GivenDn+1,t = {pn+1,Y n+1}, draw a sample pt(xn+1) from Logitnormal(m(Dn+1,t), v(Dn+1,t)),

and then draw a sample yt(xn+1) from a Bernoulli distribution with parameter pt(xn+1).

12: Update pn+1 = (p′n+1, pt(xn+1))
′, Y n+1 = (Y ′n+1, yt(xn+1))

′, (pnew)t = pt(xn+1),

and (ynew)t = yt(xn+1).

13: Set p
(j)
new = pnew and y

(j)
new = ynew.

14: Take pointwise median from {p(j)new}j=1,...,J and {y(j)
new}j=1,...,J .
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