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A Supplementary Methods
A.1 Notation Table

The following table contains the notations used to develop the TReC and TReCASE models

for an arbitrary gene and a candidate eQTL of this gene. Subscripts specifying the gene

and eQTL are suppressed. The A allele and B allele are defined based on the genotype of

the candidate eQTL.

TReC + ASE Quantities

Value Dimension Description

G(i) NA The genotype of subject i at the specified eQTL. Can take values:
AA – homozygous for A allele
AB – heterozygous
BB – homozygous for B allele

ρi 1 × 1 Estimate of the tumor purity for the tumor sample of subject i, defined
as the proportion of cells that are tumor cells.

TReC Only Quantities

Value Dimension Description

Yi 1 × 1 Total read count at the given gene in the tumor sample of subject i.

µiA 1 × 1 The mean TReC for subject i at A allele.

µiB 1 × 1 The mean TReC for subject i at B allele.

µi 1 × 1 The mean TReC for subject i.

φ 1 × 1 The overdispersion parameter for the distribution of TReC.

xi P × 1 Vector of covariate values for subject i

β P × 1 Vector of covariate impacts on log total read count.

di 1 × 1 Read depth of RNA-Seq experiment for subject i.

ASE Only Quantities

Value Dimension Description

Ri 1 × 1 The total number of allele specific reads for subject i.

RiB 1 × 1 The number of allele specific reads mapped to the B allele for subject i.

ψ 1 × 1 The overdispersion parameter for the distribution of the ASE.

eQTL Parameters

Value Dimension Description

η 1 × 1 The eQTL effect in normal tissue: µ
(N)
iB /µ

(N)
iA .

γ 1 × 1 The eQTL effect in tumor tissue: µ
(T )
iB /µ

(T )
iA .

κ 1 × 1 An over-expression effect in the tumor for A allele: µ
(T )
iA /µ

(N)
iA .

ξi 1 × 1 The ratio of gene expression of B allele versus A allele for subject i,
defined as µiB/µiA.

Table S1: Notation for defining the TReC and TReCASE models.

A.2 Optimization Algorithm

As mentioned in main text, the optimization routine for solving the TReC and TReCASE

models uses a coordinate block ascent routine with the following steps.
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(0) Select initial estimates for κ, η, and γ.

(1) Holding κ, η, γ, and ψ constant, use negative binomial regression to update β and φ.

(2) Holding β, φ and ψ constant, use a Quasi-Newton method (LBFGS) to update κ, η,

and γ.

(3) Holding β, φ, κ, η, and γ constant, update ψ using a Quasi-Newton method (LBFGS).

(4) Iterate steps (1)-(3) until convergence.

The algorithm above is specified for the TReCASE model. A similar algorithm is used

for TReC model except that we need to remove step (3) and iterate steps (1) and (2)

repeatedly (while removing ψ from estimation procedures) until convergence.

To fully define the algorithm above, a discussion of Step (0) is warranted. Under the

null hypothesis η = 1, model fit proceeds following the above algorithm starting at position

κ = 1 and γ = 1 and holding η fixed at 1. Under the null hypothesis γ = 1, model fit

proceeds as above, starting at position κ = 1 and η = 1 and holding γ at 1 throughout.

To fit the full model, we choose initial values for κ, η, and γ in accordance with the fit of

the null hypothesis, either η = 1 or γ = 1, which gives larger likelihood value at its MLE.

This initialization method ensures that the suggested likelihood ratio tests are well defined

by avoiding situations where the likelihood of full model is less than the likelihood of a

restricted model.
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A.3 Mathematical Details for Optimization

Mathematical details for section (A.2) are presented in the following. Note that, as defined,

κ, η and γ are strictly positive parameters. Thus, we estimate log(η), log(γ), and log(κ) in

the optimization process to guarantee that κ, η and γ are all positive, and avoid constrained

optimization when working directly with κ, η and γ.

A.3.1 Total Read Count (TReC) Model Component

To motivate the structure of the TReC model, consider the ratio of the mean expressions

for alleles B versus allele A for subject i. Assume that the expression of each allele is a

weighted sum of its expression in normal and tumor tissues, weighted by the proportional

composition of the sample with respect to each type. One can then specify this ratio for

subject i as:

ξi =
µiB
µiA

=
(1− ρi)µ(N)

iB + ρiµ
(T )
iB

(1− ρi)µ(N)
iA + ρiµ

(T )
iA

=
(1− ρi)

(
µ

(N)
iB /µ

(N)
iA

)
+ ρi

(
µ

(T )
iB /µ

(T )
iA

)(
µ

(T )
iA /µ

(N)
iA

)
1− ρi + ρi

(
µ

(T )
iA /µ

(N)
iA

)
=

(1− ρi)η + ρiκγ

1− ρi + ρiκ
= (1− ci)η + ciγ,

where ci = (ρiκ)/(1 − ρi + ρiκ). Assuming now that the total expression for subject i is

the sum of the expressions from each constituent allele and modeling µ
(N)
i,AA = exp(xTi β),

the above implies that our mean takes the following form:

µi =


ex

T
i β(1− ρi + ρiκ), if G(i) = AA

ex
T
i β(1− ρi + ρiκ)(1 + ξi)/2, if G(i) = AB

ex
T
i β(1− ρi + ρiκ)ξi, if G(i) = BB

Under a negative binomial distribution, the likelihood component for the TReC model for

a single subject is given by:

f(Yi;µi, φ) =
Γ(Yi + 1/φ)

Yi!Γ(1/φ)

(
1

1 + φµi

)1/φ( φµi
1 + φµi

)Yi
.
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Thus, the log-likelihood for this component takes the form:

`TReC =

N∑
i=1

`
(i)
TReC

=

N∑
i=1

[
ln

{
Γ(yi + 1/φ)

yi!Γ(1/φ)

}
− (1/φ+ yi) log(1 + φµi) + yi log(φ) + yi log(µi)

]
.

Letting λ denote one of κ, η, or γ, we have:

∂`TReC
∂ log(λ)

=
N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂µi
∂λ

)(
∂λ

∂ log(λ)

)
.

We derive each of these components in turn. First, consider ∂`
(i)
TReC/∂µi:

∂`
(i)
TReC

∂µi
=
yi
µi
− 1 + φyi

1 + φµi
.

For utility in later steps, lets consider derivatives of the form ∂ξi
∂λ and ∂ci

∂κ :

∂ξi
∂κ

= (γ − η)

(
∂ci
∂κ

)
,

∂ci
∂κ

= κ−1ci(1− ci),
∂ξi
∂γ

= ci, and
∂ξi
∂η

= 1− ci.

Next, consider ∂µi/∂λ. It is easiest to consider this component separately for each geno-

type. For G(i) = AA, µi is dependent on κ, but free of η and γ. Thus:

∂µi
∂κ

= ex
T
i βρi, and

∂µi
∂η

=
∂µi
∂γ

= 0.

For G(i) = AB, we have:

∂µi
∂κ

= ex
T
i β

[
ρi

(
1 + ξi

2

)
+ (1− ρi + ρiκ)(1/2)

(
∂ξi
∂κ

)]
= ex

T
i β(ρi/2)(1 + γ),

∂µi
∂η

= ex
T
i β(1− ρi + ρiκ)(1/2)

(
∂ξi
∂η

)
= ex

T
i β(1/2)(1− ρi),

∂µi
∂γ

= ex
T
i β(1− ρi + ρiκ)(1/2)

(
∂ξi
∂γ

)
= ex

T
i β(ρi/2)κ.
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Finally, for G(i) = BB, we have:

∂µi
∂κ

= ex
T
i β

[
ρiξi + (1− ρi + ρiκ)

(
∂ξi
∂κ

)]
= ex

T
i βρiγ,

∂µi
∂η

= ex
T
i β(1− ρi + ρiκ)

(
∂ξi
∂η

)
= ex

T
i β(1− ρi),

∂µi
∂γ

= ex
T
i β(1− ρi + ρiκ)

(
∂ξi
∂η

)
= ex

T
i βρiκ.

While not used for the C++ implementation of the model, the R-version uses the

Hessian matrix with respect to the κ, η, and γ variables. We derive it here for completeness.

Let ˙̀
TReC = ∂`TReC

∂log(λ) where λ is one of κ, η, and γ. As specified above:

˙̀
TReC = λ

N∑
i=1

{(
∂`

(i)
TReC

∂µi

)(
∂µi
∂λ

)}
.

Then:

∂2 ˙̀
TReC

∂ log(λ)2
=

(
∂ ˙̀
TReC,κ

∂κ

)(
∂κ

∂ log(κ)

)
= κ

(
∂ ˙̀
TReC,κ

∂κ

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µi∂κ

)(
∂µi
∂κ

)
+ κ2

N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ2

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)2

+ κ2
N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ2

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)2

.

The last equality holds since ∂2µi
∂κ2

= 0 and we may plug in:

∂2`
(i)
TReC

∂µ2
i

= −
(
yi
µ2
i

)
+

φ+ φ2yi
(1 + φµi)2

.

Similar results hold for η and γ and are given below:

∂2`TReC
∂ log(η)2

= ˙̀
TReC,η + η2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂η

)2

,

∂2`TReC
∂ log(γ)2

= ˙̀
TReC,γ + γ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂γ

)2

.
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To complete the Hessian, we compute the remaining results:

∂2`TReC
∂ log(κ)∂ log(η)

= ηκ

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)(
∂µi
∂η

)
,

∂2`TReC
∂ log(κ)∂ log(γ)

= γκ

N∑
i=1

[(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)(
∂µi
∂γ

)
+

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ∂γ

)]
,

∂2`TReC
∂ log(η)∂ log(γ)

= ηγ
N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂η

)(
∂µi
∂γ

)
,

where ∂2µi
∂κ∂η = ∂2µi

∂η∂γ = 0 and

∂2µi
∂κ∂γ

=


0, if G(i) = AA

(1/2)ex
T
i βρi, if G(i) = AB

ex
T
i βρi, if G(i) = BB

A.3.2 Allele Specific Expression (ASE) Model Component

In the following, let µi1 represent the number of reads that are expressed by allele 1 on

average for subject i and µi2 be its counterpoint for allele 2. Within a sample prepped for

RNA-seq, the pool of reads for the given gene contains µi1 + µi2 reads. The proportion of

reads belonging to allele 1 on average is then given by:

πi =
µi1

µi1 + µi2
=

(µi1/µi2)

1 + µi1/µi2
.

Thus, viewing the RNA-Seq sampling procedure as drawing a group of reads at random

and allowing for extra-binomial variation, we can model the data-generation mechanism via

a beta-binomial distribution. Extra-binomial variation is often observed in genetic studies

and in the case of ASE reads can in part be attributed to incorrectly genotyped alleles

resulting from genotyping or imputation error.

In order to model a consistent eQTL effect within the TReC and ASE components of

the model, define allele 1 as that containing the minor allele B for heterozygous subjects.

In homozygous subjects, an arbitrary allele is selected as the expression between the two

alleles is assumed to be equal on average. Thus, by the statement above and previous
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definitions, we may model the average reads for allele 1 as:

πi =

{
ξi/(1 + ξi), if G(i) = BB

(1/2), otherwise

Thus, the likelihood for the ASE component of the model is given by:

f(riB; ri, πi, ψ) =

(
ri
riB

)[
Γ
(
ψ−1

)
Γ (ψ−1πi) Γ (ψ−1(1− πi))

]
×[

Γ
(
ψ−1πi + riB

)
Γ
(
ψ−1(1− πi) + ri − riB

)
Γ (ψ−1 + ri)

]
.

Define `
(i)
ASE be the ASE likelihood from the i− th sample. Then:

`ASE =
n∑
i=1

`
(i)
ASE =

n∑
i=1

log [f(riB; ri, πi, ψ)] .

It can be seen that the gradient functions for πi and ψ are given by:

∂`
(i)
ASE

∂πi
= ψ−1

[
Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1(1− πi) + ri − riB

)
−Ψ0

(
ψ−1πi

)
+ Ψ0

(
ψ−1(1− πi)

)]
,

∂`ASE
∂ψ

=
n∑
i=1

−ψ−2πi
[
Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1πi

)]
−

n∑
i=1

ψ−2(1− πi)
[
Ψ0

(
ψ−1(1− πi) + ri − riB

)
−Ψ0

(
ψ−1(1− πi)

)]
−

n∑
i=1

ψ−2
[
Ψ0

(
ψ−1

)
−Ψ0

(
ψ−1 + ri

)]
.

Before deriving the remaining components necessary for the gradient, we note that only

individuals of heterozygous genotype contribute to the gradient of κ, η and γ, whereas all

individuals contributed to the gradient of ψ. Thus, we have:

∂`ASE
∂ log(λ)

≡ ˙̀
ASE,λ =

∑
i;G(i)=AB

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ξi
∂λ

)(
∂λ

∂ log(λ)

)

= λ
∑

i;G(i)=AB

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ξi
∂λ

)
.
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To calculate the above quantity, we need:

∂πi
∂ξi

= (1 + ξi)
−2,

∂ξi
∂η

= 1− ci,
∂ξi
∂γ

= ci,
∂ξi
∂κ

= (γ − η)ci(1− ci)κ−1.

As noted in the previous section, the C++ fit routine does not utilize the Hessian but we

provide its derivation here for completeness. We will make repeated use of the following

terms, so they are presented here for later reference.

∂2`
(i)
ASE

∂π2
i

= ψ−2
[
Ψ1

(
ψ−1πi + riB

)
+ Ψ1

(
ψ−1(1− πi) + ri − riB

)
−Ψ1

(
ψ−1πi

)
−Ψ1

(
ψ−1(1− πi)

)]
∂2πi
∂ξ2

i

= −2(1 + ξi)
−3

∂2ξi
∂κ2

= (γ − η)

[
κ−1(1− 2ci)

(
∂ci
∂κ

)
− κ−2ci(1− ci)

]
,

where

Ψ0 (x) =
∂lnΓ (x)

∂x
and Ψ1 (x) =

∂2lnΓ (x)

∂x2
.

We complete the derivation in the following.

∂2`ASE
∂ log(κ)2

=

(
∂ ˙̀
ASE,κ

∂κ

)(
∂κ

∂ log(κ)

)
= κ

(
∂ ˙̀
ASE,κ

∂κ

)
= ˙̀

ASE,κ+

κ2
∑

i;G(i)=AB

{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2(
∂ξi
∂κ

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)(
∂ξi
∂κ

)2

+

(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)(
∂2ξi
∂κ2

)}
.

Similarly for η and γ, we have:

∂2`ASE
∂ log(η)2

= ˙̀
ASE,η + η2

∑
i;G(i)=AB

(1 − ci)
2

[(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
,

∂2`ASE
∂ log(γ)2

= ˙̀
ASE,γ + γ2

∑
i;G(i)=AB

c2i

[(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
.
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Finally, for the “mixed” second derivatives, we have:

∂2`ASE
∂ log(η)∂ log(κ)

= κη
∑

i;G(i)=AB

[{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

−

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)}(
∂ξi
∂κ

)
(1 − ci) −

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ci
∂κ

)]
,

∂2`ASE
∂ log(γ)∂ log(κ)

= κγ
∑

i;G(i)=AB

[{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)}(
∂ξi
∂κ

)
ci +

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ci
∂κ

)]
,

∂2`ASE
∂ log(γ)∂ log(η)

= γη
∑

i;G(i)=AB

ci(1 − ci)

[(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
.

A.4 Cis-Trans Score Test

Recall that eQTL come in two varieties: cis- and trans-eQTL. cis-eQTLs induce allelic

imbalance of gene expression whereas trans-eQTLs affect the expression of two alleles to

the same degree. Sun [2011] and Hu et al. [2015] have developed and refined a “Cis-Trans

test” to identify whether eQTL act in a cis- or trans- fashion. Under the null hypothesis

(cis-), the eQTL effect sizes are the same between TReC and ASE models. A small p-value

using this test leads to rejection of the null hypothesis, and thus the conclusion that the

given Gene-SNP pair behave in a trans-eQTL manner. In that case, only the TReC data

should be used for eQTL mapping.

To develop this test for eQTL mapping in tumor tissues, we follow Hu et al. [2015]

by extending the likelihood framework through the introduction of new parameters which

allow eQTL effects to differ between TReC and ASE components. Specifically, we define:

ηASE = η + αη, and γASE = γ + αγ,

where η and γ are the TReC-specific eQTL effects in normal and tumor tissues, respec-

tively; ηASE and γASE are the ASE-specific counterparts; αη and αγ are the discrepancies

of eQTL effects between ASE and TReC components of the model in normal and tumor

tissues, respectively. Then to test cis- versus trans-eQTL, we employ a score test for the

two-dimensional hypothesis: αη = αγ = 0.

A.4.1 Structure of the Score Test

Define the following groups of parameters: ε = (κ, η, γ)T ; α = (αη, αγ)T ; and Θ =

(βT , εT , αT , φ, ψ). Let ` = `TReC + `ASE be the full data log-likelihood, ˙̀ be the first
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derivative of the log-likelihood with respect to the parameters, and I (Θ) be the Fisher’s

Information Matrix. We may specify the Fisher’s Information Matrix in the following way:

I(Θ) =


Iβ,β Iβ,ε Iβ,φ Iβ,ψ Iβ,α
Iε,β Iε,ε Iε,φ Iε,ψ Iε,α
Iφ,β Iφ,ε Iφ,φ Iφ,ψ Iφ,α
Iψ,β Iψ,ε Iψ,φ Iψ,ψ Iψ,α
Iα,β Iα,ε Iα,φ Iα,ψ Iα,α

 =

(
M1 M2

MT
2 Iα,α

)
,

where M1 is the upper-left block of the Fisher’s Information matrix through Iψ,ψ and M2

is the remaining block excluding Iα,α.

Following the developments of Radhakrishna Rao [1948], we may compute the score

test of αη = αγ = 0 in the following way:

SC = ˙̀
(

Θ̂
)T

I
(

Θ̂
)−1

˙̀
(

Θ̂
)

=
(
∂`
∂αη

∂`
∂αγ

) (
Iα,α −MT

2 M
−1
1 M2

)−1

(
∂`
∂αη
∂`
∂αγ

)∣∣∣∣
Θ=Θ̂

,

where θ̂ is the estimate of our parameters under the null. SC asymptotically follows a

Chi-squared distribution with two degrees of freedom under the null.

A.4.2 TReC Derivatives

Preceding development of the gradients and Hessians of the TReC components in the

following section, it will be helpful to compose a list of definitions and useful derivatives

for later use. Recall that µi is the mean read count in the TReC component of the model,

given by:

µi =


ex

T
i β [1− ρi + ρiκ] , if G(i) = AA,

ex
T
i β [1− ρi + ρiκ]

[
1+ξi

2

]
, if G(i) = AB,

ex
T
i β [1− ρi + ρiκ] ξi, if G(i) = BB,

where ξi = (1− ci)η + ciγ and ci = (ρiκ)/(1− ρi + ρiκ). It is clear that:

∂ci
∂κ

= κ−1ci(1− ci)

∂2ci
∂κ2

= κ−1(1− 2ci)

(
∂ci
∂κ

)
− κ−2ci(1− ci)

11



This allows us to compose the following derivatives for ξi:

∂ξi
∂κ

= (γ − η)

(
∂ci
∂κ

)
∂ξi
∂η

= (1− ci)

∂ξi
∂γ

= ci

The Hessian for ξi is provided by the following

∂ξi
∂ε∂εT

=

(γ − η)
(
∂2ci
∂κ2

)
−∂ci
∂κ

∂ci
∂κ

0 0
0



The gradient of µi with respect to ε is provided below:

∂µi
∂ε

∣∣∣∣
G(i)=AA

= ex
T
i β

ρi0
0


∂µi
∂ε

∣∣∣∣
G(i)=AB

= ex
T
i β


[
ρi

(
1+ξi

2

)
+ (1− ρi + ρiκ)(1/2)

(
∂ξi
∂κ

)][
(1− ρi + ρiκ)(1/2)

(
∂ξi
∂η

)][
(1− ρi + ρiκ)(1/2)

(
∂ξi
∂γ

)]


∂µi
∂ε

∣∣∣∣
G(i)=BB

= ex
T
i β


[
ρiξi + (1− ρi + ρiκ)

(
∂ξi
∂κ

)][
(1− ρi + ρiκ)

(
∂ξi
∂η

)][
(1− ρi + ρiκ)

(
∂ξi
∂γ

)]


The Hessian for µi is identically 0 for genotype AA. However, for genotypes AB and BB,
we have the following where we define δi = 1− ρi + ρiκ.

∂2µi
∂ε∂εT

= ex
T
i β


[
ρi
(
∂ξi
∂κ

)
+ δi

(
∂2ξi
∂κ2

)]
(1/2)

[
ρi
(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)]
(1/2)

[
ρi
(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
(1/2)

[
ρi
(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)]
0 0

(1/2)
[
ρi
(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
0 0



∂2µi
∂ε∂εT

= ex
T
i β


[
2ρi
(
∂ξi
∂κ

)
+ δi

(
∂2ξi
∂κ2

)] [
ρi
(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)] [
ρi
(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)][
ρi
(
∂ξi
∂η

)
+ δi(1/2)

(
∂2ξi
∂κ∂η

)]
0 0[

ρi
(
∂ξi
∂γ

)
+ δi(1/2)

(
∂2ξi
∂κ∂γ

)]
0 0


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To simplify the notation in our derivation, we define the following n× n diagonal ma-

trices, ∆1 through ∆6. Elements on the diagonal are contained within the diag() notation

below and are specified for a single subject.

∆1 = diag

(
µi

V ar[Yi]

)
∆2 = diag

(
µ2
i

V ar[Yi]

)
∆3 = diag

(
µ3
i (yi − µi)
V ar[Yi]2

)
∆4 = diag

(
µ2
i (yi − µi)
V ar[Yi]2

)
∆5 = diag

(
1

V ar[Yi]

)
∆6 = diag

(
(yi − µi)(1 + 2 ∗ φµi)

V ar[Yi]2

)

The log-likelihood for the TReC component is given by:

`TReC =
N∑
i=1

lnΓ (yi + 1/φ)− lnΓ (1/φ)− lnΓ (yi + 1)− [1/φ+ yi] ln (1 + φµi) + yi (ln(φ) + ln(µi))

It can be shown that the following hold for derivatives involving β:

∂`

∂β
=

N∑
i=1

(
yi − µi
1 + φµi

)
xi = XT∆1(Y − µ)

∂2`

∂β∂βT
= −

N∑
i=1

[
µi

1 + φµi
+
φµi (yi − µi)
(1 + φµi)2

]
xix

T
i = −

[
XT∆2X + φXT∆3X

]
∂`

∂β∂εT
= −

N∑
i=1

[
1

1 + φµi
+
φ(yi − µi)
(1 + φµi)2

]
xi
∂µi
∂ε

T

= −
[
XT∆1Dµ(ε) + φXT∆4Dµ(ε)

]
∂`

∂β∂φ
= −

N∑
i=1

[
(yi − µi)µi
(1 + φµi)2

]
xi = −XT∆3JN

13



Regarding derivatives involving ε, we have:

∂`TReC
∂ε

=

N∑
i=1

[
yi − µi
µi + φµ2

i

]
∂µi
∂ε

= Dµ(ε)T∆5 (Y − µ) ,

∂`TReC
∂ε∂εT

=

N∑
i=1

−
[

1

µi + φµ2
i

+
(yi − µi)(1 + 2φµi)

(µi + φµ2
i )

2

](
∂µi
∂ε

)(
∂µi
∂ε

)T
+

(
yi − µi
µi + φµ2

i

)(
∂2µi
∂ε∂εT

)

= −
[
Dµ(ε)T∆5Dµ(ε) +Dµ(ε)T∆6Dµ(ε)

]
+

N∑
i=1

(
yi − µi
µi + φµ2

i

)(
∂2µi
∂ε∂εT

)
,

∂`

∂ε∂φ
= −

N∑
i=1

(yi − µi)µ2
i

(µi + φµ2
i )

2
= −Dµ(ε)T∆4JN .

Finally, derivatives involving φ are provided below:

∂`

∂φ
=

N∑
i=1

−φ−2 [Ψ0(yi + φ−1) − Ψ0(φ−1) − ln(1 + φµi)
]
− (φ−1 + yi)

[
µi

1 + φµi

]
+
yi
φ

∂`

∂φ2
=

N∑
i=1

2φ−3 [Ψ0(yi + φ−1) − Ψ0(φ−1) − ln(1 + φµi)
]

+ φ−4 [Ψ1(yi + φ−1) − Ψ1(φ−1)
]

+ 2φ−2

[
µi

1 + φµi

]
− yi
φ2

+ (φ−1 + yi)

[
µ4
i

V [Yi]2

]
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A.4.3 ASE Derivatives

Preceding development of the gradients and Hessians of the ASE component in the following

section, it will be helpful to compose a list of definitions and useful derivatives for later

use. Recall the definitions of ξAi and πi:

ξAi = (1− ci)(η + αη) + ci(γ + αγ)

πi =

{
ξAi /(1 + ξAi ) , if G(i) = AB

0.5 , otherwise

For genotypes AA and AB, πi is independent of our parameters. Only genotype AB will

be considered. Thus, consider the gradient of ξAi with respect to our parameters.

∂ξAi
∂(ε, α)

=


[(γ + αγ)− (η + αη)]

(
∂ci
∂κ

)
1− ci
ci

1− ci
ci


The Hessian of ξi is presented below:

∂ξAi
∂(ε, α)∂(ε, α)T

=


[(γ + αγ)− (η + αη)]

(
∂2ci
∂κ2

)
−∂ci
∂κ

∂ci
∂κ −∂ci

∂κ
∂ci
∂κ

−∂ci
∂κ 0 0 0 0
∂ci
∂κ 0 0 0 0

−∂ci
∂κ 0 0 0 0
∂ci
∂κ 0 0 0 0


Then for an arbitrary λ, we have:

∂πi
∂λ

= (1 + ξAi )−2

(
∂ξAi
∂λ

)

∂2πi
∂λ1∂λ2

= −2(1 + ξAi )−3

(
∂ξi
∂λ1

)(
∂ξi
∂λ2

)
+ (1 + ξAi )−2

(
∂2ξAi
∂λ1∂λ2

)
The log-likelihood for the ASE component of the data is given below:

`ASE =

n∑
i=1

lnΓ (ri + 1)− lnΓ (riB + 1)− lnΓ (ri − riB + 1) + lnΓ
(
ψ−1

)
− lnΓ

(
ψ−1πi

)
−

lnΓ
(
ψ−1(1− πi)

)
+ lnΓ

(
ψ−1πi + riB

)
+ lnΓ

(
ψ−1(1− πi) + ri − riB

)
− lnΓ

(
ψ−1 + ri

)
15



Let λ represent a single parameter from either ε or α. For such terms, it can be shown

that:

∂`ASE
∂λ

=
n∑
i=1

ψ−1Bi

(
∂πi
∂λ

)
∂2`ASE
∂λ1∂λ2

=
n∑
i=1

ψ−1Bi

(
∂2πi

∂λ1∂λ2

)
+ ψ−1

(
∂Bi
∂πi

)(
∂πi
∂λ1

)(
∂πi
∂λ2

)
∂`ASE
∂λ∂ψ

=
n∑
i=1

−ψ−2Bi

(
∂πi
∂λ

)
+ ψ−1

(
∂Bi
∂ψ

)(
∂πi
∂λ

)
Where we define Bi and it’s derivatives in the following way:

Bi = −Ψ0

(
ψ−1πi

)
+ Ψ0

(
ψ−1(1− πi)

)
+ Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1(1− πi) + ri − riB

)
∂Bi
∂πi

= ψ−1
[
−Ψ1

(
ψ−1πi

)
−Ψ1

(
ψ−1(1− πi)

)
+ Ψ1

(
ψ−1πi + riB

)
+ Ψ1

(
ψ−1(1− πi) + ri − riB

)]
∂Bi
∂ψ

= −ψ−2πi
[
−Ψ1

(
ψ−1πi

)
+ Ψ1

(
ψ−1πi + riB

)]
+

− ψ−2(1− πi)
[
Ψ1

(
ψ−1(1− πi)

)
−Ψ1

(
ψ−1(1− πi) + ri − riB

)]
Derivatives involving ψ are specified below:

∂`ASE
∂ψ

=

NAS∑
i=1

−ψ−2Ai,

∂2`ASE
∂ψ2

=

NAS∑
i=1

2ψ−3Ai − ψ−2

(
∂Ai
∂ψ

)
,

where Ai and its derivatives are specified by:

Ai = πi
[
−Ψ0

(
ψ−1πi

)
+ Ψ0

(
ψ−1πi + riB

)]
+

(1− πi)
[
−Ψ0

(
ψ−1(1− πi)

)
+ Ψ0

(
ψ−1(1− πi) + ri − riB

)]
+[

Ψ0

(
ψ−1

)
−Ψ0

(
ψ−1 + ri

)]
,

∂Ai
∂ψ

= −ψ−2π2
i

[
−Ψ1

(
ψ−1πi

)
+ Ψ1

(
ψ−1πi + riB

)]
−

ψ−2(1− πi)2
[
−Ψ1

(
ψ−1(1− πi)

)
+ Ψ1

(
ψ−1(1− πi) + ri − riB

)]
−

ψ−2
[
Ψ1

(
ψ−1

)
−Ψ1

(
ψ−1 + ri

)]
.

16



A.4.4 Fisher’s Information: Observed or Expected

The traditional form of the score test involves use of the expected Fisher’s Information

Matrix. In the case where the expected value of the Fisher’s Information Matrix is difficult

to compute, the observed Fisher’s Information Matrix is often used [Freedman, 2007]. In

some situations, while using the observed Fisher’s Information Matrix still provides a sta-

tistically valid test under the null, it can be unstable and produce inconsistent estimates of

the variance matrix for MLEs [Freedman, 2007]. In the likelihood framework proposed by

this paper, there is an inherent, stochastic dependence of Ri on Yi. Namely, the value of

Ri depends on the number of heterozygous SNPs present within the gene body and cannot

exceed Yi. This makes computing the expected Fisher’s Information Matrix challenging as

it becomes an infinite sum of finite sums containing the digamma and trigamma functions.

As such, we may compute an approximation to the expected Fisher’s Information Ma-

trix which assumes that Yi and Ri are stochastically independent or we may use the

observed Fisher’s Information Matrix. The observed Fisher’s Information Matrix can

be computed as in the previous section using untransformed κ, η, γ, and ψ or the log-

transformations of these quantities. The log transformation variant of the observed score

test, termed Observed Score test (log), is slightly more stable than its untransformed com-

petitor. A comparison of these three methods [observed, observed (log), expected] on

simulated data is provided below (Supplementary Table S2). To evaluate Type I error of

the Cis-Trans score test, simulations follow the structure provided for the power simula-

tions. To evaluate power, ξi,ASE is set to 1 for all subjects regardless of eQTL genotype

and eQTL effect size. This behavior is designed to mimic trans-eQTL behavior. In the case

of numerical instability for the observed information Cis-Trans score tests, the expected

information variant is substituted.

As we can see from Supplementary Table S2, the observed information matrix variants

of the Cis-Trans Score test display superior power to the expected information variant

at the cost of an inflated type I error (∼8%). In addition, we note that the numerical

instability of the observed information variants leads to a high rate of computation failure

for the Cis-Trans score test. Due to its superior stability and Type I error, we opt to use

the approximated expected Fisher’s Information matrix within the real data analysis.
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Observed Score Test Observed Score Test (log) Expected Score Test
γ Value Power Type I Error Power Type I Error Power Type I Error

1.0 – 8.4 (7) – 8.9 (4) – 6.6 (5)
1.2 25.8 (6) 8.0 (2) 25.3 (4) 8.0 (4) 15.5 (0) 5.3 (1)
1.4 66.8 (38) 9.5 (10) 63.5 (35) 8.5 (3) 48.8 (0) 3.5 (0)
1.6 89.0 (88) 9.3 (2) 86.3 (66) 8.5 (4) 82.3 (0) 4.3 (0)
1.8 99.0 (185) 8.5 (2) 98.5 (164) 10.3 (3) 97.3 (0) 3.8 (0)

Table S2: Summarizing the power and Type I error of the derived score tests. Number in
parentheses represents the number of failures due to numerical instability.

B Supplementary Results for Real Data Analysis
B.1 Sample Size

Among these 728 patients, 178 were excluded from our analysis: 18 did not have geno-

type data (Affymetrix 6.0 array) from both tumor and paired normal samples, 35 failed

Affymetrix genotype quality control (QC), 22 were male or of unknown gender, and 112

were non-Caucasian individuals, and 1 failed RNA-seq QC (Supplementary Figure S1).

728 samples
with tumor RNA-

seq data

710 samples
with affy 6.0 SNP data for 
tumor and normal tissues

685 samples
663 female, 7 male, 

and 15 unknown

663 female 
samples

551 female 
Caucasians
RNA-seq @ 
tumor tissue

PCA with 
HapMap samples

Affy6 QC 

550 female 
Caucasians
RNA-seq @ 
tumor tissue

RNA-seq
QC

Figure S1: Sample size after each step of filtering.

B.2 Genotype Data Preparation

B.2.1 Genotype calling and quality control (QC)
We started our genotype data analysis with raw data in CEL files. After downloading all
the CEL files of Affymetrix 6.0 arrays, we saved the file locations of these CEL files into file
cel_files_normal.txt and ran the following APT (Affymetrix Power Tools) command
to check genotype quality.

apt-geno-qc \

--cdf-file /path_to_lib_files/GenomeWideSNP_6.cdf \

--qcc-file /path_to_lib_files/GenomeWideSNP_6.r2.qcc \
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--qca-file /path_to_lib_files/GenomeWideSNP_6.r2.qca \

--cel-files /path_to_working_folder/cel_files_normal.txt \

--out-file /path_to_working_folder/apt-geno-qc.txt

Low quality samples were determined via low contrast QC (contrast.qc ≤ 0.4) or low QC

call rate (qc.call.rate.all ≤ 0.8) (Supplementary Figure S2).

Figure S2: Results of genotype QC by APT. Each sample is labeled by the plate to which
it belongs. The cutoff we use to select samples are QC call rate > 0.8 and contrast QC >
0.4.

After removing low quality samples, the new list of 685 remaining CEL files was recorded
in file cel_files_normal_after_qc.txt. We called genotypes and genders for these 685
samples using birdseed-v2 implemented as part of APT.

apt-probeset-genotype \

-o ../genotype_normal \

-c /path_to_lib_files/GenomeWideSNP_6.cdf \
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--set-gender-method cn-probe-chrXY-ratio \

--chrX-probes /path_to_lib_files/GenomeWideSNP_6.chrXprobes \

--chrY-probes /path_to_lib_files/GenomeWideSNP_6.chrYprobes \

--special-snps /path_to_lib_files/GenomeWideSNP_6.specialSNPs \

--read-models-birdseed /path_to_lib_files/GenomeWideSNP_6.birdseed-v2.models \

-a birdseed-v2 \

--cel-files /path_to_working_folder/cel_files_normal_after_qc.txt

To determine sample ethnicity, we performed PCA using genotype from TCGA sam-

ples together with genotypes from HAPMAP CEU (Caucasian), YRI (African), and CHB

(Asian) samples. The PC1 versus PC2 plot clearly separated CEU, YRI, and CHB sam-

ples, and the TCGA samples that were clustered with CEU samples in the PC1 versus

PC2 plot were classified as Caucasian samples (Supplementary Figure S3).
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Figure S3: The left panel shows eigen-values of the PCA, and the right panel shows PC1
versus PC2 plot. Based on this plot, we choose the Caucasian samples as those with PC1
< 0 and PC2 < 0.

B.2.2 Genotype Imputation

We imputed genotype data for the 551 samples that passed all the genotype-related fil-

ters. The output of birdseed includes genotype calls for 909,622 SNPs. We removed

those SNPs without chromosome location information or with more than 5% of missing

values leaving 832,334 SNPs that passed these filters. We used MACH Li et al. [2010]

(mach.1.0.18.Linux) to phase and impute the genotypes using the 1000 Genome Refer-

ence (∼36 million SNPs), which were downloaded from MACH website (http://csg.sph.
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umich.edu/abecasis/MaCH/download/1000G.2012-02-14.html).

B.3 RNA-seq Data Preparation

We downloaded RNA-seq bam files from the TCGA data portal. First, we pre-processed

these bam files using the R function prepareBAM of R package asSeq (http://research.

fhcrc.org/sun/en/software/asSeq.html), to remove duplicated reads, or reads with av-

erage sequencing quality or mapping quality lower than 10. Next the expression of each

gene in a sample is calculated as the number of RNA-seq reads that overlap with the ex-

onic regions of this gene, obtained using R function asSeq/countReads. Annotations of ex-

onic regions of each gene were obtained from Ensembl (version Homo sapiens.GRCh37.66).

Based on this version of gene annotation, we obtained read counts for 53,561 genes. Many

of these genes have zero expression across most of the samples. We selected the 18,827

genes for which the 75 percentile of gene expression is equal or larger than 20. In other

words, we remove those genes whose expression is less than 20 in more than 75% of samples.
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Figure S4: The total number of
reads (across all genes) per sample
versus the total number of allele-
specific reads per sample. The red
point indicates a sample (A15R)
that has unexpected low proportion
of allele-specific reads and it is ex-
cluded from further analysis.

To obtain allele-specific read counts for each sam-

ple, we first extracted all the heterozygous SNPs

per sample, and then extracted those RNA-seq reads

that overlap with at least one heterozygous SNP by

R function asSeq/extractAsReads. Such RNA-seq

reads were saved into three bam files, one for reads

that match haplotype 1, one for those that match

haplotype 2, and one for those with conflicts. For

example, a conflicting read may overlap with more

than one heterozygous SNPs, and its haplotype as-

signment is not consistent across these heterozygous

SNPs. Usually the number of reads assigned to the

conflict bam file is much smaller than the number of

reads assigned to the two other bam files, otherwise

it indicates errors in the data files or the data pro-

cessing pipeline. Approximately 3.4% of the RNA-

seq reads are classified as allele-specific reads (Sup-

plementary Figure S4) across all 551 samples, with

one apparent outlier (sample ID: A15R), which is la-
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beled as red in Supplementary Figure S4. We removed this sample in the following analysis.

For any association analysis using TReC per gene, one has to account for read-depth

difference across samples. One way to quantify read-depth of a sample is to simply add

up the total number of reads of this sample. Here we adopted a more robust approach, to

quantify read-depth using 75 percentile of TReC across all the genes of a sample. In fact,

in this data set, the two measurements of read depth are highly correlated (Supplementary

Figure S5).
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Figure S5: The total number of reads (across all genes) per sample versus the 75 percentile
of the TReC of all the genes within a sample.
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B.4 eQTL mapping results

We summarize the agreement and disagreement of each tested model for individual gene-

SNP pairs and number of genes with at least 1 significant eQTL, respectively.

Gene-SNP Pairs

P-value Cutoff Category pTReC(ASE) TReC(ASE) pLR

# of gene-SNP pairs 133,599 436,021 48,717
5× 10−4 overlap/alternative – 19.8% 69.4%

overlap/pTReC(ASE) – 64.6% 25.3%

# of gene-SNP pairs 43,605 208,546 14,285
5× 10−6 overlap/alternative – 16.8% 80.5%

overlap/pTReC(ASE) – 80.2% 26.4%

# of gene-SNP pairs 19,867 131,795 6,593
5× 10−8 overlap/alternative – 13.5% 78.5%

overlap/pTReC(ASE) – 89.8% 26.0%

Table S3: Summarizing the results of pTReC(ASE), TReC(ASE) and Westra models
for TCGA data analysis. Here the notation pTReC(ASE) indicate that we use pTRe-
CASE or pTReC model, depending on the results of Cis-Trans test. “overlap” represents
the gene-SNP pairs identified by both pTReC(ASE) and an alternative method. “over-
lap/alternative” is the number of overlaps divided by the number of findings by the alter-
native method. “overlap/pTReC(ASE)” is the number of overlaps divided by the number
of findings by pTReC(ASE). If we consider the results of pTReC(ASE) as true findings,
then “overlap/alternative” is true discovery rate and “overlap/pTReC(ASE)” is sensitivity.

23



Genes

P-value Cutoff Category pTReC(ASE) TReC(ASE) pLR

# of Genes 4788 7793 2055
5× 10−4 overlap/alternative – 42.7 70.2

overlap/pTReC(ASE) – 69.5 30.3

# of Genes 1245 2982 268
5× 10−6 overlap/alternative – 27.0 85.4

overlap/pTReC(ASE) – 64.7 18.4

# of Genes 496 1612 110
5× 10−8 overlap/alternative – 21.4 93.6

overlap/pTReC(ASE) – 69.6 20.8

Table S4: Summarizing the results of pTReC(ASE), TReC(ASE), the Westra models for
TCGA data at gene level. The results are presented in the same format as Table S3, though
the results are summarized at gene level instead of the level of SNP-gene pairs.
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We have also compared the eQTLs identified by our study versus the eQTLs reported

by another study of breast cancer patients [Li et al., 2013]. These two studies have used

different list of genes and SNPs. We used gene expression measured by RNA-seq and filtered

out genes with low expression. Li et al. [2013] used gene expression from microarray. We

have used more SNPs but search for smaller region around each gene. Specifically, we used

more than 6 million SNPs after imputation and filtering by MAF ≥ 0.02 and search for

100Kb around each gene, while Li et al. [2013] used around 800,000 SNPs but search 1Mb

around each gene. Since two studies have used different gene and SNP list, it is not easy to

make a precise comparison. Here we just assess how much the list of genes with significant

local eQTLs overlap. Table S5 and S6 show the comparison results using TReCASE and

pTReCASE, respectively. As expected, there are significant overlap in either case and the

overlap is larger for TReCASE model because Li et al. [2013] did not account for tumor

purity in their study.New Overlap (TReCASE) – Gene Level [# Overlap genes (Hypergeometric P-value)] 
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Table S5: Summary of the overlap of eGenes (i.e., the genes with at least one local eQTL)
reported by our study and an earlier study by Li et al. (2013) Li et al. [2013]. For example,
at p-value cutoff 5e − 8, TReCASE identified eQTLs for 1,612 genes and Li et al. (2013)
Li et al. [2013] identified eQTLs for 219 genes. The overlap is 85 genes. This overlap is
much larger than expected by chance (p-value 8.5e-34).

New Overlap (TReCASE) – Gene Level [# Overlap genes (Hypergeometric P-value)] 

 LI 

TR
eC

AS
E 

𝒑𝟏   /   𝒑𝟐 𝟕.𝟓𝒆 − 𝟓 𝟓𝒆 − 𝟔 𝟓𝒆 − 𝟖 # Genes T 
𝟓𝒆 − 𝟔 343 (6.5𝑒 − 20) 179 (4.6𝑒 − 25) 101 (5.3𝑒 − 25) 2982 
𝟓𝒆 − 𝟖 251 (6.9𝑒 − 33) 148 (4.2𝑒 − 40) 85 (8.5𝑒 − 34) 1612 

# Genes Li 1325 513 219  

 

New Overlap (pTReCASE) – Gene Level 

 LI 

pT
Re

CA
SE

 𝒑𝟏   /   𝒑𝟐 𝟕.𝟓𝒆 − 𝟓 𝟓𝒆 − 𝟔 𝟓𝒆 − 𝟖 # Genes T 

𝟓𝒆 − 𝟔 165 (1.6𝑒 − 14) 102 (5.0𝑒 − 23) 63 (2.4𝑒 − 23) 1245 

𝟓𝒆 − 𝟖 86 (3.5𝑒 − 14) 61 (1.9𝑒 − 22) 45 (1.1𝑒 − 26) 496 

# Genes Li 1325 513 219  

 

New Overlap (Combined) – Gene Level 

 LI 

TR
eC

AS
E 𝒑𝟏   /   𝒑𝟐 𝟕.𝟓𝒆 − 𝟓 𝟓𝒆 − 𝟔 𝟓𝒆 − 𝟖 # Genes T 

𝟓𝒆 − 𝟔 343 (6.5𝑒 − 20) 179 (4.6𝑒 − 25) 101 (5.3𝑒 − 25) 2982 

𝟓𝒆 − 𝟖 251 (6.9𝑒 − 33) 148 (4.2𝑒 − 40) 85 (8.5𝑒 − 34) 1612 

pT
Re

CA
SE

 𝟓𝒆 − 𝟔 165 (1.6𝑒 − 14) 102 (5.0𝑒 − 23) 63 (2.4𝑒 − 23) 1245 

𝟓𝒆 − 𝟖 86 (3.5𝑒 − 14) 61 (1.9𝑒 − 22) 45 (1.1𝑒 − 26) 496 

# Genes Li 1325 513 219  

 

  

Table S6: Similar to Table S5, but here the comparison is between the results of pTReCASE
and Li et al. (2013) Li et al. [2013].
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Figure S6: The left panel shows the distribution of -log10(p-value) from pTReCASE model
for those 345 genes with eQTLs by both TReCASE and pTReCASE methods (p-value
< 5× 10−8, orange solid curve), and those 151 genes with pTReCASE p-value < 5× 10−8

and TReCASE p-value ≥ 5×10−8 (blue dotted line). The right panel shows the distribution
of -log10(p-value) from TReCASE model for those 345 genes with eQTLs by both TReCASE
and pTReCASE methods (p-value < 5× 10−8, red solid curve), and those 1267 genes with
TReCASE p-value < 5× 10−8 and pTReCASE p-value ≥ 5× 10−8 (purple dotted line).
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Figure S7: -log10(p-value) for Chi-squared test whether the three categories of eQTL SNPs
(with eQTL p-value < 5× 10−8 in TReCASE and/or pTReCASE model have equal prob-
ability to be located within certain distance (X-axis of this plot) of breast cancer GWAS
hits. We downloaded the breast cancer GWAS results by Michailidou et al. [2017] from
GWAS catalog (https://www.ebi.ac.uk/gwas/). Among all the 813 GWAS hits, 795
have location information and can be liftOver to hg19. We used 469 of these 795 GWAS
hits with p-value < 5× 10−7 for our test. Results are consistent when using 371 of the 795
GWAS hits with p-value < 5× 10−8.
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Gene Symbol Gene Name Entrez Id Genome Location

ETV1 ets variant gene 1 2115 7:13895866-13989052
GAS7 growth arrest-specific 7 8522 17:9917228-10198390
FCGR2B Fc fragment of IgG, low affinity IIb, receptor

for (CD32)
2213 1:161663242-161677553

HLF hepatic leukemia factor 3131 17:55265486-55320880
SGK1 serum/glucocorticoid regulated kinase 1 6446 6:134170268-134174807
USP44 ubiquitin specific peptidase 44 84101 12:95518154-95534256
TCF7L2 transcription factor 7-like 2 6934 10:112950757-113165972

Table S7: Seven eGenes with eQTLs identified by pTReCASE but not by TReCASE (at
p-value cutoff 5× 10−8).

Gene Symbol Name Entrez Id Genome Location

PAX8 paired box gene 8 7849 2:113218533-113278394
CYP2C8 cytochrome P450 family 2 subfamily C mem-

ber 8
1558 10:95037128-95069402

RET ret proto-oncogene 5979 10:43077259-43128269
CNTNAP2 contactin associated protein like 2 26047 7:146116877-148415616

Table S8: Four eGenes with eQTLs identified by both pTReCASE and TReCASE (at
p-value cutoff 5× 10−8).
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Gene Symbol Name Entrez Id Genome Location

FLT4 fms-related tyrosine kinase 4 2324 5:180608281-180649545
CLTCL1 clathrin, heavy polypeptide-like 1 8218 22:19180219-19291641
FSTL3 follistatin-like 3 (secreted glycoprotein) 10272 19:676425-681709
PTK6 protein tyrosine kinase 6 5753 20:63529536-63537314
NDRG1 N-myc downstream regulated 1 10397 8:133238878-133284311
POU2AF1 POU domain, class 2, associating factor 1

(OBF1)
5450 11:111354261-111379177

PDGFRB platelet-derived growth factor receptor, beta
polypeptide

5159 5:150115763-150137047

PRRX1 paired related homeobox 1 5396 1:170664220-170730332
CEP89 centrosomal protein 89kDa 84902 19:32879162-32971874
MYH11 myosin, heavy polypeptide 11, smooth muscle 4629 16:15708811-15838252
CBLC Cas-Br-M (murine) ecotropic retroviral trans-

forming sequence c
23624 19:44777932-44800443

NRG1 neuregulin 1 3084 8:32548727-32764402
H3F3A H3 histone, family 3A 3020 1:226064352-226071479
CASP3 caspase 3 836 4:184629272-184638453
IL7R interleukin 7 receptor 3575 5:35856978-35876486
MGMT O-6-methylguanine-DNA methyltransferase 4255 10:129536253-129766997
RMI2 RecQ mediated genome instability 2 116028 16:11345472-11350790
CD28 CD28 molecule 940 2:203706697-203734912
PRF1 perforin 1 (pore forming protein) 5551 10:70598053-70600902
BCR breakpoint cluster region 613 22:23180961-23315522
MITF melanogenesis-associated transcription factor 4286 3:69936723-69965248
CARD11 caspase recruitment domain family, member

11
84433 7:2906638-2958506

POU5F1 POU domain, class 5, transcription factor 1 5460 6:31164601-31170620
HLA-A major histocompatibility complex, class I, A 3105 6:29942554-29945455

Table S9: Twenty-four eGenes with eQTLs identified by TReCASE but not by pTReCASE
(at p-value cutoff 5× 10−8).
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B.5 Additional results for potential confounding due to copy number alteration or
DNA methylation

Using the omic data prepared by Sun et al. [2018], we examined the correlation between

gene expression before and after removing copy number effects. Such correlations are very

high for most of the genes. For example, it is larger than 0.8 for 86% of 15,284 genes with

both gene expression and copy number data.

Correlation

F
re

qu
en

cy

0.0 0.4 0.8

0
20

00
50

00

Figure S8: The distribution of correlations between gene expression before and after remov-
ing copy number effects using a linear regression. For the i-th gene, we have its expression
in n samples before and after removing copy number effects. Denote these two vectors
as xi1 and xi2, we calculated the correlation between xi1 and xi2. Then the histogram is
generated from such correlations across all genes

We also checked whether copy number of DNA methylation may confound the eQTLs

reported in Figure 2 of the main paper. The first example is about gene ENSG00000115525

(ST3GAL5). Its expression is not associated with its copy number (p-value 0.22, R2 =

0.039), but is associated with the methylation level of two CpG’s: cg10017626 (p-value

6.2e-05, R2 = 0.039) and cg07214715 (p-value 2.8e-05, R2 = 0.043) after correcting for

tumor purity and cell type compositions [Sun et al., 2018]. The second example is about

gene ENSG00000142794 (NBPF3). Its expression is not associated with DNA methylation

but is associated with its copy number (p-value 1.3e-07, R2 = 0.067). These associations

are illustrated in Figure S10.
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Figure S9: (A) The distribution of the number of samples with copy number events (i.e.,
with |Dij | > 0.5 across all 18,134 genes. Note that Dij = Cij −Ni, where Cij is the total
copy number of gene j in sample i, and Ni is the ploidy of the i-th sample. (B) We measure
the copy number changes using Gij , which equals to -1, 0, or 1 if Dij < −0.5, |Dij | ≤ 0.5,
or Dij > 0.5, respectively. This figure shows the distribution of the correlations between
Gij and relative gene expression summarized across all 18,134 genes.

Next we check whether the associations between eQTL SNP genotype and gene ex-

pression are affected after controlling DNA methylation of gene expression measurement

(Figure S11). We conducted this analysis in 328 samples (a subset of the 550 samples in

main analysis) with all the data needed: SNP genotype, copy number, gene expression, and

DNA methylation. Using a simple linear regression of gene expression versus SNP geno-

type (without using allele-specific expression), the eQTL p-value for ST3GAL5 is 2.3e-4,

and after controlling for methylation, the p-values remain similar (1.8e-4 for cg10017626

and 5.4e-4 for cg07214715). The eQTL p-value for NBPF3 is also similar before and after

controlling for copy number (t-statistics being 9.309 and 9.295 before and after controlling

for copy number and p-value < 2e-16 in both cases).
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Figure S10: Scatter plots demonstrate the associations between gene expression and copy
number of two genes ST3GAL5 and NBPF3 (upper panel), and the associations between
gene expression of ST3GAL5 and DNA methylation of two CpG’s.
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Figure S11: Scatter plots demonstrate the associations between eQTL and gene expression
before or after conditioning on two CpG’s for gene ST3GAL5 (upper panel), and associ-
ations between eQTL and gene expression before or after conditioning on copy number
alteration for gene NBPF3 (lower panel).
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sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic

epidemiology, 34(8):816–834, 2010.

Kyriaki Michailidou, Sara Lindström, Joe Dennis, Jonathan Beesley, Shirley Hui, Sid-
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